Abstract
Hearing loss is the most common form of sensory deficit. It occurs predominantly due to hair cell (HC) loss. Mammalian HCs are terminally differentiated by birth, making HC loss challenging to replace. Here, we show the pharmacogenetic downregulation of Cldn9, a tight junction protein, generates robust supernumerary inner HCs (IHCs) in mice. The ectopic IHC shared functional and synaptic features akin to typical IHCs and were surprisingly and remarkably preserved for at least fifteen months >50% of the mouse’s life cycle. In vivo, Cldn9 knockdown using shRNA on postnatal days (P) P2-7 yielded analogous functional ectopic IHCs that were equally durably conserved. The findings suggest that Cldn9 levels coordinate embryonic and postnatal HC differentiation, making it a viable target for altering IHC development pre- and post-terminal differentiation.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
In memory of the late Dr. Bruce Tempel, who helped to generate the mouse model.
Abstract updated in response to reviewers. Supplement Figure 8 was added, and Supplement files were updated. Methods are clarified, and Figure legends are updated. Text clarified.