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ABSTRACT 
 
The Cingulo-Opercular network (CON) is an executive network of the human brain that 

regulates actions. CON is composed of many widely distributed cortical regions that are 

involved in top-down control over both lower-level (i.e., motor) and higher-level (i.e., 

cognitive) functions, as well as in processing of painful stimuli. Given the topographical 

and functional heterogeneity of the CON, we investigated whether subnetworks within 

the CON support separable aspects of action control. Using precision functional 

mapping (PFM) in 15 participants with > 5 hours of resting state functional connectivity 

(RSFC) and task data, we identified three anatomically and functionally distinct CON 

subnetworks within each individual. These three distinct subnetworks were linked to 

Decisions, Actions, and Feedback (including pain processing), respectively, in 

convergence with a meta-analytic task database. These Decision, Action and Feedback 

subnetworks represent pathways by which the brain establishes top-down goals, 

transforms those goals into actions, implemented as movements, and processes critical 

action feedback such as pain.  
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INTRODUCTION 
 

The human brain is organized into a set of large-scale functional networks that are 

reproducibly identifiable across populations, datasets, and analysis techniques 1–7. One 

of the most functionally complex large-scale networks is the Cingulo-Opercular network 

(CON). The CON is composed of a set of functionally coupled regions in dorsal anterior 

cingulate cortex (dACC), dorsomedial prefrontal cortex (dmPFC), anterior insula (aI), 

supramarginal gyrus (SMG), pars marginalis of the cingulate gyrus, and the anterior 

prefrontal cortex (aPFC) 5,6,8–10. The CON exhibits strong functional connectivity to a 

highly diverse set of brain networks, including cognitive, sensory, and somatomotor 

networks 2,5,6. This intrinsic connectivity structure suggests that CON may exert 

influence over a wide variety of brain processes, from high-level cognition to basic 

motor outputs.  

 

The CON has been primarily characterized as a network critical for exerting top-down 

cognitive control over other purely cognitive functions. Large signals are observed in the 

CON when complex cognitive tasks are initiated, and it also exhibits sustained task 

signals to maintain goals and prevent distraction 8–10. CON regions also respond 

strongly to feedback in order to provide more effective top-down control in the future. 

The CON exhibits large responses when errors are made or when reaction times are 

slow, and CON signals are elevated when stimuli are ambiguous or multiple possible 

responses are in conflict 8–19. 

 

Other lines of work suggest that some CON regions enable top-down motor control 20. 

Recent work has demonstrated direct connections between the CON and Somato-

cognitive action network (SCAN) regions that alternate with effector-specific regions in 

primary motor cortex (M1); these connections are thought to represent a mechanism by 

which the CON implements whole-body action plans within the motor system 21. Further, 

prolonged dominant arm immobilization results in both substantial changes in motor 

behavior and strengthened functional connectivity between disused M1 and the CON, 

suggesting an important role in motor control 22,23. In non-human primates, three 
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cingulate areas have been identified as critical for motor planning (termed the rostral, 

ventral, and dorsal cingulate motor areas) 24,25; their human homologues 

(anterior/posterior rostral cingulate zone, and caudal cingulate zone) are likely located 

within the anterior cingulate portion of the CON.  

 

The CON also plays a role in processing painful stimuli. The dACC and the aI are 

commonly reported as brain regions most active during application of painful stimuli 26–

28. This pattern is generally consistent across both somatic and visceral pain 29, is 

spatially distinct from representations of negative affect or social pain 28, and partially 

overlaps with CON regions involved in cognitive control 30.  

 

The substantial functional heterogeneity exhibited by the CON, including control over 

cognitive processes, control over action plans, and processing of painful stimuli, 

suggests that the CON is not well represented as a single brain system with a unitary 

label. Instead, it is likely that the apparently unitary CON is a representation of network 

structure at just one level of a functional hierarchy 31–35 that could be further divided into 

functionally divergent substructures. Indeed, recent work has suggested at least a 

bipartite division of CON, with one CON subdivision linked to top-down cognitive control 

and another linked to motor and interoceptive functions 36, though these divisions were 

identified using a priori ROIs in group-averaged data, and so are necessarily imprecise. 

 

To improve precision of network delineation, our group has developed a technique 

called precision functional mapping (PFM) that uses repeated fMRI scanning to reliably 

characterize brain networks within individual highly sampled participants 2,36–47. By 

characterizing networks at the individual level, detailed subdivisions within large-scale 

networks have been identified, including within the DMN35,48, striatum49, and primary 

motor cortex 21.  

 

Here, we implemented a similar approach in 15 participants with > 5 hours of RSFC 

data and additional task data, in order to identify and characterize discrete 

substructures within the CON that could explain the organization and integration of 
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various functional domains. We hypothesized that multiple distinct subnetworks would 

be identified in each participant that would be specialized for controlling complex 

cognitive functions and adjudicating among multiple options, developing and controlling 

motor actions, and processing pain-related and other feedback.  
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RESULTS  

 

Three Distinct CON Subnetworks in Each Individual 
 

 
Figure 1: Three Cingulo-Opercular Subnetworks. The undifferentiated CON (left) and CON 
subnetworks (right) in an exemplar participant (P01) with 356 minutes of resting-state fMRI data. 
Three distinct subnetworks were consistently identified in every individual: an Anterior 
subnetwork in dorsal anterior cingulate, dorsal anterior insula, and anterior PFC (green); a 
Central subnetwork in more posterior dorsal anterior cingulate extending up to dmPFC, 
middle/posterior insula, and regions just anterior and posterior of the central sulcus (yellow); and 
a Lateral subnetwork in middle insula, supramarginal gyrus, and the pars marginalis of the 
cingulate (blue). See Figure S1 for all individual participants. 
 
The subnetwork structure of each individual’s CON was identified following previously 

described methods using the data-driven Infomap community detection algorithm 21,35,49. 

Three spatially distinct subnetworks were identified within the large-scale CON. An 

example participant is shown in Figure 1. These three subnetworks were topologically 

consistent across participants (Figure 2). All three subnetworks were identified in each 

of the 15 PFM data sets (Figure S1). Subnetworks were initially labeled according to 

their locations on the cortex as the Anterior, Central, and Lateral subnetworks of CON. 

Together, these subnetworks included representations in each of the major areas of the 

CON, including: 1) the dorsal anterior cingulate, dorsal anterior insula, and anterior PFC 

Undifferentiated CON CON Subnetworks

Central LateralAnterior
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(Anterior); 2) the posterior dorsomedial prefrontal cortex, inferior supramarginal gyrus, 

posterior middle insula, and dorsal postcentral gyrus (Central); 3) the anterior middle 

insula, anterior lateral frontal cortex, inferior frontal gyrus, dorsal supramarginal gyrus, 

and pars marginalis of the cingulate (Lateral).  

 

 
Figure 2: Cortical and subcortical distribution of CON subnetworks across participants. 
A-C) Density maps illustrate the number of participants with overlapping subnetwork 
representations at each point in cortex (left), thalamus and striatum (top right), and cerebellum 
(bottom right), for the A) Anterior, B) Central, and C) Lateral subnetworks. Maps were 
thresholded to retain points at which at least three participants exhibited overlap. Differential 
scaling of density maps in cortex and subcortex was employed because of increased cross-
participant variability (due to lower SNR) in subcortex. D) A winner-take-all map illustrates the 
relative topographies of all three subnetworks. 
 

 

The Anterior and Central subnetworks had representation in ventral and dorsal anterior 

putamen, respectively, though the Central subnetwork had more extensive putamen 

representation, and in central thalamus (Fig 2A-B). By contrast, almost no voxels were 

consistently identified as part of the Lateral subnetwork within striatum or thalamus. All 
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three subnetworks were represented in the cerebellum, though overlap across 

participants was lower in cerebellum than in cortex or striatum, suggesting greater 

anatomical heterogeneity across individuals.  

 

CON subnetworks are functionally dissociated by Meta-Analytic Network 
Annotation 

 
Figure 3: Meta-Analytic Network Annotation of Cingulo-Opercular subnetworks. 
Subnetworks from the cross-participants winner-take-all analysis (Fig 2D) were matched to 
spatial activation distributions that had task descriptor terms in the Neurosynth database 50. 
Word clouds illustrate terms more associated with activation patterns of each Cingulo-Opercular 
subnetwork compared to the other subnetworks (tested for each term via one-way ANOVA). 
Larger font size indicates higher frequency of the term. Terms shown in black are significant at p 
< 0.05 (unc.); colored terms are significant at p < 0.05, FDR corrected for the 742 terms tested.  
 
 
The functional role of each CON subnetwork was determined by matching the 

subnetwork to distributed activation patterns within the Neurosynth meta-analysis 

database 50. We term this novel connectome annotation method Meta-Analytic Network 

Annotation. 

 

For each CON subnetwork, we first identified all articles in the database that reported 

multiple activation peaks that were at least partially congruent with the spatial 

distribution of that subnetwork (see Methods). Then, for each of the 742 cognition-

related terms in the database, a one-way ANOVA tested whether the weighting of that 
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term within matched articles was significantly different across the three subnetworks. 

Each term with significant differences across the subnetworks was associated with the 

subnetwork for which it had the highest weighting. Word clouds illustrate the terms 

associated with each subnetwork, with word size scaled to the magnitude of differences 

among subnetworks (Figure 3). Terms shown in black exhibited differences between 

subnetworks that were significant at p < 0.05 (unc.); colored terms were significant at p 

< 0.05, FDR corrected for the total number of terms tested. It should be noted that while 

this analysis identifies which subnetwork is most strongly associated with each term, 

such results should not be misinterpreted as an absence of association for other 

subnetworks. For example, while the Lateral subnetwork is most strongly associated 

with “pain”, the Anterior and Central subnetworks were also pain associated, though 

less strongly. 

 

The Anterior subnetwork was significantly more associated with terms such as 

‘decision’, ‘cognitive control’, ‘conflict’, ‘semantic’, and ‘working memory’ than the other 

subnetworks. It was also most associated with terms such as ‘reward’, ‘risk’, and ‘error’, 

though these tests did not survive correction for multiple comparisons. Together, these 

terms suggest a circuit that integrates information from multiple sources to decide on a 

course of action. Thus, we functionally annotate the Anterior CON as the Decision 

subnetwork. 

 

The Central subnetwork was associated with motor terms; it included pure motor terms 

such as ‘movement’, ‘hand’, and ‘finger’, as well as motor control terms such as 

‘actions’, ‘motor control’, ‘execution’, and ‘motor imagery’. It also included sensory 

feedback terms such as ‘somatosensory’. These terms suggest a circuit that generates 

an action plan and receives sensory feedback about that action. We annotate this as 

the Action subnetwork. 

 

The Lateral subnetwork was associated with terms such as ‘pain’ and ‘noxious’, but also 

with terms such as ‘action observation’. These terms suggest a circuit that processes 
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multiple somatic, non-cognitive feedback modalities resulting from actions, such as 

visual feedback and pain. We annotate this as the Feedback subnetwork. 

 

CON subnetworks exhibit differential connectivity with other large-scale networks 
 

 

 
 
Figure 4: Functional connectivity of CON subnetworks. A) A spring embedded plot in an 
exemplar participant (P01) illustrates the preferential connectivity of Cingulo-Opercular 
subnetworks to large-scale functional networks. For clarity of visualization, only networks most 
closely associated with the subnetworks are shown. See Figure S2 for all individual participants. 
B) Across participants, individual-specific Cingulo-Opercular subnetworks demonstrate 
preferential connectivity to other individual-specific large-scale networks. The radial axis 
indicates the strength of functional connectivity Z(r) between each CON subnetwork and each 
large-scale functional network. Negative connectivity values are not represented. Colors and 
spatial locations of CON subnetworks (left) and other large-scale networks (right) are shown in 
the exemplar participant at the bottom. 
 
Spring-embedded graph visualizations (following methods from 5,21,53; example 

participant shown in Figure 4A; all participants in Figure S2) suggest that the three CON 

subnetworks exhibit preferential connectivity to distinct large-scale networks. 

Quantification of average connectivity to each network showed that the Action CON 
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subnetwork was most closely linked to motor networks, the Decision CON subnetwork 

was most closely linked to the Salience network, and the Feedback CON subnetwork 

was most closely linked to the Dorsal Attention Networks (Figure 4B).  

 

Paired t-tests were used to statistically compare the strength of functional connectivity 

between pains of CON subnetworks to a given large-scale network. Reported findings 

all survived FDR correction for the number of comparisons run at q < 0.05. Across 

participants, the Decision subnetwork exhibited stronger connectivity with the Salience 

Network than did any other subnetwork (ts(14) > 2.9, ps(unc) < 0.012). The Feedback 

subnetwork exhibited stronger connectivity with the Dorsal Attention Network (ts(14) > 

3.2, ps(unc) < 0.007) than any other network. The Action subnetwork exhibited stronger 

connectivity with SCAN (ts(14) > 5.8, ps(unc) < 0.001) as well as Somatomotor Foot, 

Hand, and Face networks (ts(14) > 5.4, ps(unc) < 0.001). The Action subnetwork also 

exhibited significantly stronger negative connectivity with the Default network compared 

to the other two subnetworks (ts(14) > 3.1, ps(unc) < 0.008). All subnetwork-network t-

tests can be found in Supplementary Table 1. 

 

Rs-fMRI signals from CON subnetworks are temporally ordered 
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Figure 5: Temporal ordering of CON signals in the action output hierarchy. Temporal 
ordering of subnetwork fMRI signals for each individual-specific CON subnetwork, as well as for 
the SCAN and the Somatomotor-hand networks. Values are averaged across vertices within 
each subnetwork and across participants. Standard error across participants is indicated by 
error bars. A one-way ANOVA indicated a significant main effect of subnetwork/network identity 
(p = 0.0007). * indicates p < 0.05 for post-hoc paired t-tests. Inset shows subnetwork and 
network topography for an example participant (P01). Prior electrophysiology work suggests 
that later infra-slow activity (here, the Feedback subnetwork) corresponds to earlier delta-band 
(0.5-4Hz) activity 52. 
 
Previously, we have shown that low-frequency rs-fMRI signals exhibit different timings 

within different subnetworks of the Default Mode and action and motor networks 21,35. 

Here, lag analyses demonstrate the temporal order of low-frequency BOLD signals 

within networks of the putative action output processing stream, including CON 

subnetworks, SCAN, and effector-specific hand motor networks (Figure 5). A one-way 

ANOVA found a significant main effect of subnetwork/network identity (F(4,74) = 5.49, p 

= 0.0007). Post-hoc t-tests indicated that signals in the Feedback subnetwork occurred 

later than those in the Action, SCAN, and Somatomotor Hand networks (ts(14) > 2.62, 

ps < 0.02). Signals in the Decision subnetwork occurred later than those in the 

Somatomotor Hand (ts(14) > 2.44, p = 0.02), as did signals in the Action subnetwork, 

though only at trend level (t(14) = 1.76, p = 0.09). All temporal lag t-tests can be found 

in Supplementary Table 2. Previous reports have associated inter-regional lags in infra-

slow (<0.1 Hz) signals with propagation of higher-frequency delta activity (0.5-4 Hz) in 

the opposite direction 52. Thus, these results suggest that high-frequency activity 

propagates from Feedback and Decision subnetworks to the Action subnetwork, and 

then to SCAN and effector-specific Somatomotor networks.  
 
 
CON subnetworks exhibit differential evoked responses during cognitive and 
motor tasks 
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Figure 6: Differentiation of Cingulo-Opercular subnetworks based on task activations. 
Ten participants performed motor tasks53 (including flexure of right and left toes, open/closing of 
right and left hand, and left-right movement of the tongue), as well as a Spatial and a Verbal 
Discrimination task54. The radial axis indicates the z-score of each condition relative to baseline 
fixation, averaged across all participants and across all vertices in each individual-specific CON 
subnetwork. Inset shows subnetwork topography for an example participant (P01). 
 
Task data collected in 10 of the 15 participants across five motor task conditions (HCP 

motor task 53: Tongue, Left Hand, Right Hand, Left Leg, Right Leg) and two cognitive 

conditions (spatial discrimination and verbal discrimination 2) confirmed differences in 

evoked activity between CON subnetworks. 

 

Paired t-tests (FDR-corrected for all comparisons run) revealed that CON subnetworks 

were differentially activated across the seven task conditions (Figure 6). In the Tongue 

movement condition, the Decision and Action subnetworks were more activated than 

the Feedback subnetwork (ts(9) > 3.56, ps(unc) < 0.007). For all Hand and Leg 

movement conditions, the Action subnetwork was more activated than either of the 

Decision or Feedback subnetworks (ts(9) > 3.80, ps(unc) < 0.005). For each of the two 

cognitive conditions (spatial and verbal discrimination), the Decision subnetwork was 

more active than either of the other two subnetworks (ts(9) > 4.42, ps(unc) < 0.002). 

These results demonstrate that CON subnetworks are distinguished by within-

participant differences in task activation that are consistent with the Neurosynth-based 

Central LateralAnterior
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Meta-Analytic Network Annotation. Specifically, the Action CON subnetwork is more 

active during motor conditions, and the Decision CON subnetwork is more active during 

this particular set of cognitive conditions. The Feedback subnetwork was not strongly 

activated during any condition, suggesting that this specific set of task conditions was 

not well-suited to highlight its function. T-tests for all subnetworks, for all tasks, can be 

found in Supplementary Table 3. 
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DISCUSSION 
 
We identified three distinct subnetworks within the large-scale Cingulo-Opercular 

network. Broadly, these subnetworks appear to support the various known functions of 

the CON. Based on the connections, meta-analytic network annotation, and prior 

descriptions of each subnetwork’s constituent regions in the literature, we argue that 

these three subnetworks can be conceptualized as a Decision subnetwork, an Action 

subnetwork, and a Feedback subnetwork. Together, identification of these network 

substructures helps inform how the human brain develops goals and implements 

actions to serve those goals. 

 

A Decision subnetwork for action selection, maintenance, and control  
The Decision subnetwork described here converges closely with the most well-

described functions of the classic CON. The functional core of the classic description of 

CON 8–10 is centered in bilateral dACC, aI, and aPFC, which exactly converges with the 

Decision subnetwork described here. The preferentially cognitive nature of functions 

associated with the Decision subnetwork here also converges with previous reports of 

CON functionality, including involvement in task maintenance, error processing, conflict 

monitoring, and ambiguity processing to decide among competing options 9,14,17–19,55. 

The Decision subnetwork had representation in the anterior ventral putamen, 

convergent with dACC-ventral anterior putamen projections in non-human primates 

argued to be related to selecting among different actions56.  

 

Notably, the Decision subnetwork was most strongly connected to the Salience network 
57. Salience network regions have been associated with reward valuation and motivation 

in meta-analyses 58, and dorsal anterior cingulate regions corresponding with the 

Decision subnetwork have been argued to evaluate reward information in order to make 

decisions 59, guide behavior 60,61, and produce actions 62. This suggests that the 

Salience network inputs to the Decision subnetwork enable it to select decisions, exert 

control, and produce actions in ways that are guided by the reinforcement value of that 

decision. The outputs of the Decision subnetwork may be abstract—exerting control 
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over working memory or attention functions—or they may be physical actions. In the 

latter case, the temporal ordering of signals (Fig 5) suggests that Decision network 

outputs are projected to the Action subnetwork. 

 

An Action subnetwork for initiation and top-down control over physical actions 
Action control can be understood as a cascade of executive functions that proceed from 

abstract to concrete action plans, and then to execution of movement 63. The CON in 

particular has been shown to exhibit strong connectivity to SCAN in the precentral gyrus 
21 and to exert influence over motor functions 23,64. Further, non-human primate 

research has demonstrated that the regions at the top of this motor control hierarchy are 

the rostral and caudal cingulate motor zones in the dorsal medial prefrontal cortex 24,25, 

which initiate a chain of neuronal projections backwards to supplementary motor area, 

premotor area, and finally to primary motor cortex. These cingulate motor zones appear 

homologous with the dorsomedial prefrontal portion of the CON, and they are most 

likely identified here as the Action subnetwork, which exhibited strong connectivity with 

motor networks, and strong activation—in both participant-specific tasks and in Meta 

Analytic Network Annotion—during motor function.  

 

The Action subnetwork was particularly strongly connected to the recently identified 

SCAN 21, which has been argued to implement action control on a whole-body level, 

including regulation of posture and internal physiology (e.g., blood pressure, adrenaline 

release), to maintain body allostasis. The action subnetwork had substantial 

representation in dorsal anterior putamen, which is the potion of striatum associated 

with motor planning and learning, and receiving projections from premotor areas in non-

human primates56. Further, several Action subnetwork regions were directly proximal to 

either primary somatosensory cortex (S1) on the postcentral gyrus, or secondary 

somatosensory cortex (S2) in the dorsal posterior insula. Further, meta-analytic network 

annotation indicated somatosensory functions in the Action subnetwork. Thus, the 

Action subnetwork may also receive fast sensory feedback from somatosensory 

functions about the immediate results of executed actions. Given these postulated 
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functions, it is possible that the Action subnetwork also represents visceral sensation, 

which has localization in middle insula convergent with this subnetwork65. 

 

A Feedback subnetwork for evaluating action outcomes 
Unlike the Decision and Action subnetworks, the Feedback subnetwork is notable in 

exhibiting a paucity of striatal or thalamic representation. Cortico-striato-thalamo-cortical 

loops are argued to be critical for the motivation, development, planning, and execution 

of goal-directed actions 56. The absence of such loops in the Feedback subnetwork 

suggests that this circuit is not directly involved in the feedforward hierarchy of action 

production and control.  

 

Instead, we hypothesize that the Feedback subnetwork provides more temporally 

extended feedback to the Decision subnetwork to evaluate the efficacy of generated 

plans. This subnetwork did not strongly activate during performance of either motor or 

cognitive tasks, but was strongly associated with meta-analytic terms reflecting 

processing of painful and noxious stimuli. Further, the subnetwork’s representation in 

the middle section of the anterior insula is consistent with known distributions of pain-

related brain activity 27,29. Nociceptive somatosensory stimulation has been shown to 

increase functional connectivity between CON, sensorimotor, and emotional networks. 

This suggests a role for the CON, and specifically the Feedback subnetwork, in 

attending to, integrating, and transmitting sensory information related to pain 66. Notably, 

cortical processing of pain information may operate on a different timescale than the 

immediate spinal-mediated reflexive responses to pain, reflecting a slower, more 

cognitive interpretation of pain. 

 

However, the Feedback subnetwork cannot be conceptualized as purely pain-related. In 

addition to pain, the Feedback subnetwork was also associated with meta-analytic 

terms reflecting observation of actions; and further, it exhibited uniquely strong 

connectivity to the Dorsal Attention Network, which helps direct eye movements and 

processes attention-directed visuospatial information 67,68. Together, we hypothesize 

that the Feedback subnetwork processes multiple types of post-action feedback, 
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including both pain and visual information about the results of an executed action. Most 

interestingly, Feedback subnetwork-associated terms included “empathy”, “tom [theory 

of mind]”, and “mirror neuron,” suggesting this system may also process painful and 

visual feedback information about the results of actions taken by others. 

 

The Feedback subnetwork may not be as primary in processing another type of 

feedback, task errors (i.e. incorrect choices). Here, the “Error” term was associated 

most with the Decision subnetwork in meta-analytic network annotation, though this 

difference only passed an uncorrected threshold. Prior work has shown that the 

strongest error-related signals are in Decision subnetwork regions such as dACC and 

aI, but weaker error signals can also observed in some Feedback regions such as 

inferior parietal and inferior frontal gyri 8,13,14. We hypothesize that task errors, being 

more complex and context-dependent than pain or visual feedback, may require more 

integrated cross-subnetwork processing, and ultimately adjudication by the Decision 

subnetwork. 

 

Information flow through the action hierarchy 
Differences in rs-fMRI relative signal timings among the subnetworks suggest that 

information primarily flows from Feedback to Decision to Action subnetworks, and then 

to the SCAN and the motor system and likely back to Feedback completing the cycle. 

Infra-slow rs-fMRI signals were detected relatively later in Feedback and Decision CON 

subnetworks than in motor systems (SCAN and effector-specific). However, the 

“sender-receiver” model argues that infra-slow activity (<0.1 Hz) propagates in the 

opposite direction from the higher frequency (i.e. delta-band, 0.5-4 Hz) cortical activity 

reflective of neural processing, in order to coordinate the timing of high-frequency 

information exchange via phase-amplitude coupling 52,69. This result expands findings 

from our prior work, which described a CON->SCAN->effector-specific M1 ordering of 

signals 21, but assumed homogeneity of CON itself. Here, the distinct ordering of signals 

we observed propagating within and beyond CON converge with prior work conducting 

invasive recordings in macaques, which found that signals in more rostral cingulate 

regions occur much earlier before a movement than those in caudal cingulate 70. 
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A hierarchy of goal establishment and action implementation 
 

 
Figure 7: Model of CON subnetworks within a hierarchical organization of goal and action 
control. Our proposed model represented on the cortex (left) and in schematic form (right). 
Reward-driven valuations from the Salience network feed into CON subnetworks, which 
establish goals (Decision subnetwork) and goal-related action plans (Action subnetwork), and 
project those action plans to the SCAN and to effector-specific M1 to execute an action. Fast 
somatosensory information resulting from the action is processed by the Action subnetwork, 
which modifies action plans. Slower goal-related visual and painful outcomes of the action are 
processed by the Feedback subnetwork, which modifies goals represented by the Decision 
subnetwork. Red arrows indicate feedforward projections; blue arrows indicate feedback. 
 

Together, these findings suggest a hierarchical model of goal and action control in the 

brain (Figure 7). In this model, the Decision subnetwork receives connections reflecting 

valuations from regions in the Salience network that process reward and incorporates 

this information to perform judgments, adjudicate between alternatives, and initiate and 

maintain a goal. If the goal can be expressed as a physical action, it is projected 

backwards to the Action subnetwork where a series of operations transform the abstract 

goal into a concrete action plan. This action plan is projected to the Somato-Cognitive 

Action Network to prepare the whole body to implement the plan 21, and finally to 

effector-specific M1 where it is transformed into movement. Feedback about the action’s 
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outcomes (including salient visual stimuli and pain) is provided through the Feedback 

subnetwork to the Decision subnetwork, which processes these signals, as well as goal-

incompatible errors, to modify maintained goals and future planned actions. Delineation 

of this functionally heterogeneous network substructure has critical implications for the 

characterization of neurological and psychiatric patients with disruptions along the 

hierarchy of action control, including ADHD, abulia, OCD, and Parkinson’s disease. 

Further, the ability to specifically identify this individually variable subnetwork structure 

in every single individual could set the stage for important advances in personalized, 

precision-targeted neuromodulatory treatments for these disorders. 
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METHODS  
 

Data for this project was compiled from three preexisting datasets.  

 

Dataset 1: Plasticity dataset 
Participants: 

Data were collected from 3 healthy, right-handed adult participants (ages 35, 25, and 

27; one female; identified here as P01-P03) as part of a study investigating effects of 

arm immobilization on brain plasticity (data previously published in 21–23,71. Two 

participants are authors (NUFD and ANN). The remaining participant (male, 27 years 

old) was recruited from the Washington University community. Informed consent was 

obtained from all participants. The study was approved by the Washington University 

School of Medicine Human Studies Committee and Institutional Review Board. All data 

employed here was collected either prior to the immobilization intervention (Participants 

P01-03) or two years afterwards (Participant P02), and so we do not report details of 

that intervention. 

 

MRI image acquisition: 

Participants were scanned every day for twelve consecutive days using a Siemens 

Prisma 3T scanner on the Washington University Medical Campus. Every session 

included a 30-minute resting-state fMRI scan collected as a blood oxygen level-

dependent (BOLD) contrast sensitive gradient echo-planar sequence (TE=33 ms, flip 

angle=84°, resolution=2.6 mm isotropic, TR=1100 ms, multiband 4 acceleration). During 

this scan, participants were instructed to hold still and look at a white fixation crosshair 

presented on a black background. A pair of spin echo EPI images with opposite phase 

encoding directions (AP and PA) but identical geometrical parameters to the BOLD data 

were acquired to correct spatial distortions. 

 

For all fMRI data, head motion was tracked in real time using Framewise Integrated 

Real-time MRI Monitoring software (FIRMM 72). An eye-tracking camera (EyeLink, 

Ottawa) was used to monitor participants for drowsiness.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2023. ; https://doi.org/10.1101/2023.10.10.561772doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.10.561772
http://creativecommons.org/licenses/by-nc-nd/4.0/


For Participant 01 and 03, every session also included collection of a high-resolution 

T1-weighted MP-RAGE (TE=2.22ms, TR=2400ms, flip angle=8°, 208 slices with 

0.8x0.8x0.8mm voxels) and a T2-weighted spin-echo image (TE=563ms, TR=3200ms, 

flip angle=120°, 208 slices with 0.8x0.8x0.8mm voxels).  

 

For Participant 02, the structural images used were collected as part of Dataset 2 and 

consisted of four T1-weighted images (sagittal, 224 slices, 0.8 mm isotropic resolution, 

TE=3.74 ms, TR=2400 ms, TI=1000 ms, flip angle = 8°) and four T2-weighted images 

(sagittal, 224 slices, 0.8 mm isotropic resolution, TE=479 ms, TR=3200 ms) collected on 

a Siemens TRIO 3T scanner. 

 
Dataset 2: Midnight Scan Club Dataset 
Participants:  

Data were collected from 10 healthy, right-handed, young adult participants (5 females; 

age: 24–34; identified here as P08-P15). The participants were recruited from the 

Washington University community. Other findings using these participants have been 

previously reported in 2,40,45,46,73. Two participants were excluded because they were 

also participants in the Plasticity dataset. One participant is an author (SMN). Informed 

consent was obtained from all participants. The study was approved by the Washington 

University School of Medicine Human Studies Committee and Institutional Review 

Board. 

 

MRI image acquisition:  

Imaging for each participant was performed on a Siemens TRIO 3T MRI scanner over 

the course of 12 sessions conducted on separate days, each beginning at midnight. 

Structural MRI was conducted across two separate days. In total, four T1-weighted 

images (sagittal, 224 slices, 0.8 mm isotropic resolution, TE=3.74 ms, TR=2400 ms, 

TI=1000 ms, flip angle = 8 degrees), four T2-weighted images (sagittal, 224 slices, 0.8 

mm isotropic resolution, TE=479 ms, TR=3200 ms), four MRA (transverse, 0.6 x 0.6, x 

1.0mm, 44 slices, TR=25ms, TE=3.34ms) and eight MRVs, including four in coronal and 

four in sagittal orientations (sagittal: 0.8 x 0.8 x 2.0 mm thickness, 120 slices, TR=27 
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ms, TE=7.05ms; coronal: 0.7 x 0.7 x 2.5 mm thickness, 128 slices, TR=28ms TE=7.18 

ms), were obtained for each participant. Analyses of the MRA and MRV scans are not 

reported here. On ten subsequent days, each participant underwent 1.5 hours of 

functional MRI scanning beginning at midnight. In each session, we first collected thirty 

contiguous minutes of resting state fMRI data, in which participants visually fixated on a 

white crosshair presented against a black background. Each participant was then 

scanned during performance of three separate tasks: motor (2 runs per session, 7.8 

minutes combined); mixed design including both a spatial and a verbal discrimination 

condition (2 runs per session, 14.2 minutes combined); and incidental memory (3 runs 

per session, 13.1 minutes combined). Preliminary analysis of the incidental memory 

task indicated that CON subnetworks were not active during this task, so we do not 

report results in detail here. Across all sessions, each participant was scanned for 300 

total minutes during the resting state and approximately 350 total minutes during task 

performance. All functional imaging was performed using a gradient-echo EPI sequence 

(TR=2.2 s, TE=27 ms, flip angle=90°, voxel size=4 mm x 4 mm x 4 mm, 36 slices). In 

each session, one gradient echo field map sequence was acquired with the same 

prescription as the functional images. An EyeLink 1000 eye-tracking system 

(http://www.sr-research.com) allowed continuous monitoring of participants’ eyes in 

order to check for periods of prolonged eye closure, potentially indicating sleep. Only 

one participant (P13) demonstrated prolonged eye closures.  

 
Task design:  

Motor task design: The motor task was adapted from that used in the Human 

Connectome Project 53. Participants were presented with visual cues that directed them 

to close and relax their hands, flex and relax their toes, or wiggle their tongue. Each 

block started with a 2.2 s cue indicating which movement was to be made. After this 

cue, a centrally-presented caret replaced the instruction and flickered once every 1.1 s 

(without temporal jittering). Each time the caret flickered, participants executed the 

proper movement. 12 movements were made per block. Each task run consisted of 2 

blocks of each type of movement as well as 3 blocks of resting fixation, which lasted 

15.4 s.  
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Mixed block/event-related design task: This task was adapted from experimental 

conditions reported by 54. One task was a spatial coherence discrimination task, which 

used concentric dot patterns 74 that were either 0% or 50% coherent. During this task, 

participants had to identify each pattern as concentric or random. The other task was a 

verbal discrimination task. Participants were presented with nouns and verbs and had to 

identify which type of word was being presented on the screen. Task blocks began with 

a 2.2 s cue screen indicating which task was to be conducted in the following block. 

Blocks consisted of 30 trials (half concentric/half nonconcentric for coherence, half 

noun/half verb for verbal). Stimuli were presented for 0.5 s with a variable 1.7-8.3 s ISI. 

A stop cue displayed for 2.2 s signaled the end of each task block. Each scan run 

consisted of two blocks of each task. Task blocks were separated by 44 s periods of 

rest. For each task, the finger used for each response was counterbalanced within 

participants across sessions.  

 

MRI Processing: Dataset 1 & 2 
Structural Processing: 
Structural images (T1- and T2-weighted) were corrected for gain field inhomogeneity 

using FSL Fast 75 and aligned to the 711-2B implementation of Talairach atlas space 

using the 4dfp MRI processing software package 

(https://readthedocs.org/projects/4dfp/). The 711-2B template conforms to the 1988 

Talairach atlas 76 according to the method of 77. Relative to MNI152, 711-2B space is 

about 5% smaller and 2° anteriorly rotated about the ear-to-ear axis. Mean T1- and T2-

weighted images (T1w and T2w) were computed by coregistration and averaging 

multiple acquisitions. 

 

Generation of cortical surfaces from the MRI data followed a procedure similar to that 

previously described in 45. First, anatomical surfaces were generated from the 

participant’s average T1-weighted image in native volumetric space using FreeSurfer’s 

default recon-all processing pipeline (version 5.3). This pipeline first conducted brain 

extraction and segmentation. After this step, segmentations were hand-edited to 
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maximize accuracy. Subsequently, the remainder of the recon-all pipeline was 

conducted on the hand-edited segmentations, including generation of white matter and 

pial surfaces, inflation of the surfaces to a sphere, and surface shape-based spherical 

registration of the participant’s original surface to the fsaverage surface 78,79. The 

fsaverage-registered left and right hemisphere surfaces were brought into register with 

each other using deformation maps from a landmark-based registration of left and right 

fsaverage surfaces to a hybrid left-right fsaverage surface (‘fs_LR’; 80). These fs_LR 

spherical template meshes were input to a flexible Multi-modal Surface Matching (MSM) 

algorithm using sulcal features to register templates to the atlas mesh 81. These newly 

registered surfaces were then down-sampled to a 32,492 vertex surface (fs_LR 32k) for 

each hemisphere. These various surfaces in native stereotaxic space were then 

transformed into atlas space (711-2B) by applying the previously calculated T1-to-atlas 

transformation.  

 
fMRI Preprocessing: 

Functional data were preprocessed to reduce artifacts and to maximize cross-session 

registration. All sessions underwent correction of odd vs. even slice intensity differences 

attributable to interleaved acquisition, intensity normalization to a whole brain mode 

value of 1000, and within run correction for head movement. Atlas transformation was 

computed by registering the mean intensity image from a single BOLD session to atlas 

space via the average high-resolution T2-weighted image and average high-resolution 

T1-weighted image. All subsequent BOLD sessions were linearly registered to this first 

session. This atlas transformation, mean field distortion correction (see below), and 

resampling to 3-mm isotropic atlas space were combined into a single interpolation 

using FSL’s applywarp tool. All subsequent operations were performed on the atlas-

transformed volumetric time series.  

 
Distortion Correction: 

A mean field map was generated based on the field maps collected in each participant 
43. This mean field map was then linearly registered to each session and applied to that 

session for distortion correction. To generate the mean field map the following 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2023. ; https://doi.org/10.1101/2023.10.10.561772doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.10.561772
http://creativecommons.org/licenses/by-nc-nd/4.0/


procedure was used: (1) 4 Field map magnitude images were mutually co-registered. 

(2) Transforms between all sessions were resolved. Transform resolution reconstructs 

the n-1 transforms between all images using the n(n-1)/2 computed transform pairs. (3) 

The resolved transforms were applied to generate a mean magnitude image. (4) The 

mean magnitude image was registered to an atlas representative template. (5) 

Individual session magnitude image to atlas space transforms were computed by 

composing the session-to-mean and mean-to-atlas transforms. (6) Phase images were 

then transformed to atlas space using the composed transforms, and a mean phase 

image in atlas space was computed. Application of mean field map to individual fMRI 

sessions: (1) For each session, field map uncorrected data were registered to atlas 

space, as above. (2) The generated transformation matrix was then inverted and 

applied to the mean field map to bring the mean field map into the session space. (3) 

The mean field map was used to correct distortion in each native-space run of resting 

state and task data in the session. (4) The undistorted data were then re-registered to 

atlas space. (5) This new transformation matrix and the mean field map then were 

applied together to resample each run of resting state and task data in the session to 

undistorted atlas space in a single step.  

 
RSFC Preprocessing: 

Additional preprocessing steps to reduce spurious variance unlikely to reflect neuronal 

activity were executed as recommended in 82,83. First, temporal masks were created to 

flag motion-contaminated frames. Motion estimate time courses were filtered retain 

effects occurring below 0.1 Hz in order to eliminate “pseudomotion” induced by 

breathing-related motion of the chest altering the B0 field 84. Motion contaminated 

volumes were then identified by frame-by-frame displacement (FD). Frames with FD > 

0.2mm were flagged as motion-contaminated.  

 

After computing the temporal masks for high motion frame censoring, the data were 

processed with the following steps: (i) demeaning and detrending, (ii) linear interpolation 

across censored frames using so that continuous data can be passed through (iii) a 
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band-pass filter (0.005 Hz < f < 0.01 Hz) without re-introducing nuisance signals 85 or 

contaminating frames near high motion frames. 

 

Next, the filtered BOLD time series underwent a component-based nuisance regression 

approach 45. Nuisance regression using time series extracted from white matter and 

cerebrospinal fluid (CSF) assumes that variance in such regions is unlikely to reflect 

neural activity. Variance in these regions is known to correspond largely to physiological 

noise (e.g., CSF pulsations), arterial pCO2-dependent changes in T2*-weighted 

intensity and motion artifact; this spurious variance is widely shared with regions of 

interest in gray matter. We also included the mean signal averaged over the whole brain 

as a nuisance regressor. Global signal regression (GSR) has been controversial. 

However, the available evidence indicates that GSR is a highly effective de-noising 

strategy 82,86.  

 

Nuisance regressors were extracted from white matter and ventricle masks, first 

segmented by FreeSurfer 87, then spatially resampled in register with the fMRI data. 

Voxels surrounding the edge of the brain are particularly susceptible to motion artifacts 

and CSF pulsations 88,89; hence, a third nuisance mask was created for the extra-axial 

compartment by thresholding the temporal standard deviation image (SDt > 2.5%), 

excluding a dilated whole brain mask. Voxelwise nuisance time series were 

dimensionality reduced as in CompCor 90, except that the number of retained 

regressors, rather than being a fixed quantity, was determined, for each noise 

compartment, by orthogonalization of the covariance matrix and retaining components 5 

ordered by decreasing eigenvalue up to a condition number of 30 (max eigenvalue / min 

eigenvalue > 30). The retained components across all compartments formed the 

columns of a design matrix, X, along with the global signal, its first derivative, and the 

six time series derived by retrospective motion correction. The columns of X are likely to 

exhibit substantial co-linearity. Therefore, to prevent numerical instability owing to rank-

deficiency during nuisance regression, a second-level SVD was applied to XXT to 

impose an upper limit of 250 on the condition number. This final set of regressors was 

applied in a single step to the filtered, interpolated BOLD time series, with censored 
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data ignored during beta estimation. Censored frames were then excised from the data 

for all subsequent analyses.  

 

Surface processing and CIFTI generation of BOLD data: 

Surface processing of BOLD data proceeded through the following steps. First, the 

BOLD fMRI volumetric timeseries (both resting-state and task) were sampled to each 

participant’s original mid-thickness left and right-hemisphere surfaces (generated as the 

average of the white and pial surfaces) using the ribbon-constrained sampling 

procedure available in Connectome Workbench 1.0 91. This procedure samples data 

from voxels within the gray matter ribbon (i.e., between the white and pial surfaces) that 

lie in a cylinder orthogonal to the local mid-thickness surface weighted by the extent to 

which the voxel falls within the ribbon. voxels with a timeseries coefficient of variation 

0.5 standard deviations higher than the mean coefficient of variation of nearby voxels 

(within a 5 mm sigma Gaussian neighborhood) were excluded from the volume to 

surface sampling, as described in 92. Once sampled to the surface, timecourses were 

deformed and resampled from the individual’s original surface to the 32k fs_LR surface 

in a single step using the deformation map generated above (in “Cortical surface 

generation”). This resampling allows point-to-point comparison between each individual 

registered to this surface space.  

 

These surfaces were then combined with volumetric subcortical and cerebellar data into 

the CIFTI format using Connectome Workbench, creating full brain timecourses 

excluding nongray matter tissue. Subcortical (including accumbens, amygdala, caudate, 

hippocampus, pallidum, putamen, and thalamus) and cerebellar voxels were selected 

based on the FreeSurfer segmentation of the individual participant’s native-space 

average T1, transformed into atlas space, and manually inspected. Finally, the BOLD 

timecourses were smoothed with a geodesic 2D (for surface data) or Euclidean 3D (for 

volumetric data) Gaussian kernel of σ = 2.55 mm.  

 

Regression of adjacent cortical tissue from RSFC BOLD: 
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Many subcortical areas, such as dorsal cerebellum and lateral putamen, are in close 

anatomical proximity to cortex, resulting in spurious functional coupling between the 

cortical vertices and adjacent subcortical voxels. To reduce this artifact, RSFC BOLD 

time series from all vertices falling within 20mm Euclidean distance of a source voxel 

were averaged and then regressed from the voxel time series 45,73,93,94. The resulting 

residual timeseries were used for all subsequent analyses. 

 

Dataset 3: Multi-echo dataset 
Participants: 

Data were collected from 4 healthy, right-handed adults (0 female; ages 29, 39, 24, and 

31; identified here as P04-P07). Other findings using these participants have been 

previously reported in 21,95. Informed consent was obtained from all participants. The 

study was approved by the Weill Cornell School of Medicine Institutional Review Board.  

 

MRI Acquisition: 

Data were acquired on a Siemens Magnetom Prisma 3T scanner at the Citigroup 

Biomedical Imaging Center of Weill Cornell’s medical campus using a Siemens 32-

channel head coil. Multi-echo, multi-band resting-state fMRI scans were collected using 

a T2*-weighted echo-planar sequence covering the full brain (TR: 1355 ms; TE1: 13.40 

ms, TE2: 31.11 ms, TE3: 48.82 ms, TE4: 66.53 ms, and TE5: 84.24 ms; FOV: 216 mm; 

flip angle: 68; 2.4mm isotropic; 72 slices; AP phase encoding direction; in-plane 

acceleration factor: 2; and multi-band acceleration factor: 6) with 640 volumes acquired 

per scan for a total acquisition time of 14 min and 27 s. This sequence was generously 

provided by the Center for Magnetic Resonance Research (CMRR) at the University of 

Minnesota. A pair of spin echo EPI images with opposite phase encoding directions (AP 

and PA) but identical geometrical parameters and echo spacing were acquired to 

correct spatial distortions. High-resolution (MPRAGE) T1-weighted image (TR: 2400 

ms; TE: 2.28 ms; FOV: 256; flip angle: 90, and 208 sagittal slices with a 0.8 mm 

thickness) and T2-weighted anatomical images (TR: 3200 ms; TE: 563 ms; FOV: 256; 

flip angle: 8, and 208 sagittal slices with a 0.8 mm thickness) were acquired. Custom 
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headcases were obtained from Caseforge (https://ipira.berkeley.edu/caseforge-inc) for 

each participant to improve comfort and minimize head motion during scanning 96. 

 

MRI Processing: Dataset 3 

Cortical Surface Generation:  

The average T1- and T2-weighted images were cropped to a smaller field of view 

(170mm in z plane), co-registered using FSL’s epi_reg tool (via a boundary-based cost 

function with 6 DOF), and corrected for intensity inhomogeneities 97. The T1- and T2-

weighted images were co-registered to an MNI atlas (hereafter referred to as “ACPC” 

alignment) using a rigid 6 DOF FLIRT transformation. Cortical surfaces were generated 

using Freesurfer’s “recon-all.v6.hires” pipeline. Pial surface placement was refined 

using the co-registered T2-weighted image by specifying the “-T2pial” option. 

Midthickness surfaces were obtained by averaging the pial and white surfaces. 

Fsaverage-registered left and right hemisphere surfaces (pial, white, and midthickness) 

were brought into register with each other in fs_LR space 80 and resampled to the 

computationally tractable resolution of 32k vertices using Connectome Workbench 

command line utilities. 
 

fMRI Preprocessing: 

Preprocessing of multi-echo data minimized spatial interpolation and volumetric 

smoothing while preserving the alignment of echoes. The single-band reference (SBR) 

images (five total; one per echo) for each scan were averaged. The resultant average 

SBR images were aligned, averaged, co-registered to the ACPC aligned T1-weighted 

anatomical image, and simultaneously corrected for spatial distortions using FSL’s 

topup and epi_reg programs. Freesurfer’s bbregister algorithm 98 was used to refine this 

co-registration. For each scan, echoes were combined at each time point and a unique 

6 DOF registration (one per volume) to the average SBR image was estimated using 

FSL’s MCFLIRT tool 99 using a 4-stage (sinc) optimization. All of these steps (co-

registration to the average SBR image, ACPC alignment, and correcting for spatial 

distortions) were concatenated using FSL’s convertwarp tool and applied as a single 

spline warp to individual volumes of each echo after correcting for slice time differences 
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using FSL’s slicetimer program. All denoising was performed on these preprocessed, 

ACPC-aligned images. 

 

Multi-echo denoising: 

Multi-echo ICA (ME-ICA; 100,101 denoising designed to isolate spatially structured T2∗- 

(neurobiological; “BOLD-like”) and S0-dependent (non-neurobiological; “not BOLD-like”) 

signals was performed using a modified version of the “tedana.py” workflow 

(https://tedana.readthedocs.io/en/latest/). In short, the preprocessed, ACPC-aligned 

echoes were first combined according to the average rate of T2∗ decay at each voxel 

across all time points by fitting the monoexponential decay, S(t) = S0e -t / T2∗, using the 

“nlinfit.m” function in MATLAB with least-squares optimization and the initial coefficient 

values obtained from a linear model fit to the log of the data. From these T2∗ values, an 

optimally combined multi-echo (OC-ME) time-series was obtained by combining echoes 

using a weighted average (WTE = TE ∗ e -TE/ T2∗), as in 102. The covariance structure 

of all voxel time-courses was used to identify major signals in the resultant OC-ME time-

series using principal component and independent component analysis. Components 

were classified as either T2∗-dependent (and retained) or S0-dependent (and 

discarded), primarily according to their decay properties across echoes following the 

decision tree described in 100. Mean gray matter time-series regression was 

subsequently performed to remove spatially diffuse noise. Temporal masks were 

generated for censoring high motion time-points using a frame-wise displacement (FD; 
103 threshold of 0.3 mm and a backward difference of two TRs (2 ∗ 1.355 = 2.77 s), for 

an effective sampling rate comparable to historical FD measurements (approximately 2 

to 4 s; 96. Prior to the FD calculation, head realignment parameters were filtered using a 

stopband Butterworth filter (0.2 - 0.35 Hz) to attenuate the influence of respiration 96. 

 
Surface processing and CIFTI generation of BOLD Data: 

The denoised fMRI time-series was mapped to the midthickness surfaces (using the “-

ribbon-constrained” method), combined into the Connectivity Informatics Technology 

Initiative (CIFTI) format, and spatially smoothed with geodesic (for surface data) and 

Euclidean (for volumetric data) Gaussian kernels (σ = 2.55 mm) using Connectome 
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Workbench command line utilities (Glasser et al., 2013). Signals were normalized (z-

scored). This yielded time courses representative of the entire cortical surface, 

subcortex (accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and 

thalamus), and cerebellum, but excluding non-gray matter tissue. Signals from adjacent 

cortex were regressed from subcortical voxels, as in Datasets 1 and 3. 

 
 
Analysis 
Mapping Subnetwork Structure: 

The network organization of each participant’s brain was delineated following 35 using 

the graph-theory based Infomap algorithm for community detection 104. In this approach, 

we calculated the cross-correlation matrix of the time courses from all brain vertices (on 

the cortical surfaces) and voxels (in subcortical structures), concatenated across 

sessions. Correlations between vertices/voxels within 30 mm of each other were set to 

zero in this matrix to avoid basing network membership on correlations attributable to 

spatial smoothing. Geodesic distance was used for within-hemisphere surface 

connections and Euclidean distance for subcortical-to-cortical connections. Connections 

between subcortical structures were disallowed, as we observed extremely high 

correlation values within nearly the entire basal ganglia that would prevent network 

structures from emerging. Interhemispheric connections between the cortical surfaces 

were retained, as smoothing was not performed across the midsagittal plane.  

 

We observed that connectivity patterns within regions known to have low BOLD signal 

due to susceptibility artifact dropout (e.g., ventral anterior temporal lobe and portions of 

orbitofrontal cortex) were unstructured and inconsistent across individuals. To avoid 

having the delineated network structures distorted by regions with poor signal, 

connections to regions with average mode-1000 normalized BOLD signal <750 were set 

to zero (as in 105,106).  

 

The cross-correlation matrix was then thresholded to retain at least the strongest 0.1% 

of connections to each vertex and voxel 21,35,49 . Note that this thresholding approach 
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differs from previous approaches for forming brain graphs from functional connectivity 

data (e.g., 2,5). The typical procedure applies a uniform edge density threshold to all 

functional connectivity values in the brain. The weakness of the uniform threshold 

approach is that subcortical structures generally have decreased BOLD signal-to-noise 

relative to cortex due to their greater distance from the MR head coil. The result is that 

functional connectivity patterns seeded from striatal voxels have weaker peak 

connectivity strengths, even though they may appear well organized and coherent with 

known cortical networks. Thus, with a uniform threshold, these regions are frequently 

not identified as being networked with cortical regions.  

 

By contrast, the current approach thresholds the connectivity maps seeded from each 

cortical or subcortical point in the brain separately, always retaining at least the 0.1% 

strongest connections. Previous validation of this procedure 35 has shown that the 0.1% 

density threshold identifies subnetwork divisions in resting data that best explain task 

activations in these participants.  

 

The thresholded matrices were used as inputs for the Infomap algorithm, which 

calculated community assignments separately for each threshold. The resulting 

communities represent subnetworks in the brain. Small networks with 10 or fewer 

vertices/voxels were considered unassigned and removed from further consideration. 

The above analysis was conducted in each individual participant. 

 
Identifying Matched CON Subnetworks in Individuals 

For each participant, we considered only subnetworks that had at least some 

representation within the traditional distribution of the cingulo-opercular network 

including the insula, anterior cingulate cortex extending dorsally into dorsomedial 

prefrontal cortex, and supermarginal gyrus 2,5,6,8–10. Following 35, we visually examined 

the cortical and subcortical topographies of each subnetwork with CON representation, 

as well as their topological arrangement relative to each other. After careful 

consideration of the subnetworks observable in this population, we initially identified four 

potential discrete CON subnetworks. However, we observed that 1) one of the 
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subnetworks (in middle insula and dorsal postcentral gyrus) could not be separately 

delineated in all participants; and 2) that same subnetwork was not dissociable from the 

Central subnetwork in its connectivity, lag ordering, or task responses. See 

Supplementary Figure S3 for details. Thus, we concluded that the CON was best 

described by three discrete subnetworks. These matched subnetworks were identified 

based on the following heuristic rules: 

 

The Anterior (Decision) subnetwork was present bilaterally with representations in the 

dorsal anterior cingulate, anterior insula, and anterior prefrontal cortex. 

 

The Central (Action) subnetwork was present posterior to the Anterior subnetwork in the 

more posterior aspect of the dorsal anterior cingulate and extended into posterior dorsal 

medial prefrontal cortex, as well as in middle insula, and anterior superior parietal 

cortex. 

 

The Lateral (Feedback) subnetwork was present in the supermarginal gyrus, posterior 

anterior insula, anterior and posterior inferior frontal gyrus, and anterior prefrontal 

cortex. 

 

After identifying subnetworks on the cortex, we examined subcortical areas (basal 

ganglia, thalamus, and cerebellum) for representation of our selected subnetworks in 

these regions.  

 
Visualizing Subnetwork Overlap across Participants 

For each matched subnetwork, the number of individuals with each subnetwork present 

was calculated for each cortical vertex. For subcortical voxels, some participants 

(Plasticity and MSC) were in Talaraich space. To represent overlap, we first 

transformed each of these participants into MNI space. Overlap was then calculated 

across MNI-space participant subnetworks as the number of individuals with the 

subnetwork present in each MNI-space voxel. This procedure produced maps of the 

density of each subnetwork across participants.  
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Meta-Analytic Network Annotation analysis 

We investigated functions associated with each subnetwork by leveraging text-mining 

and meta-analyses techniques in the brain mapping Neurosynth database 

(https://github.com/neurosynth/neurosynth-data). Neurosynth compiles neuroimaging 

studies and generates probabilistic mappings based on article term frequencies and 

term-to-activation correlations 50. Neurosynth functionality natively includes mapping 

single [X, Y, Z] coordinates to meta-analytic descriptor terms common in the 

neuroimaging literature. This is accomplished by automatically text-mining both activity 

peaks and descriptor terms from a huge corpus of neuroimaging papers. Then, papers 

can be identified in which a reported activity peak falls within a short distance of the 

target coordinate. At the time the Neurosynth database was downloaded, it contained 

over 500,000 activation peaks from over 14,000 fMRI papers. Each paper is labeled 

with at least one term automatically mined from its text, and each term has a weighting 

for each paper reflecting the prevalence of that term in the text. 

 

Here, we expanded this functionality by mapping not just a single coordinate, but 

instead simultaneously mapping the multiple regions within each subnetwork. We first 

identified the congruent clusters of each subnetwork present in the group. This was 

accomplished by thresholding the subnetwork density maps (representing cross-

participant overlap, described above) to retain all cortical vertices in which >10% of 

participants had the subnetwork. For each subnetwork, we then identified all studies 

within the Neurosynth database with a collection of activation peaks that “matched” the 

subnetwork. Specifically, the study had to report an activation peak <2mm from at least 

30% of subnetwork regions. Thus, a given study must have elicited activity near a 

substantial number of the subnetwork’s regions in order to match that subnetwork. 

Varying these parameters did not substantially alter findings reported here. 

 

All terms associated with matching studies that were related to mental or task-related 

function (e.g., “effort”, “oddball”, “language”, “delay”, “covert”), were retained, while all 

terms related to aspects of the participant population (e.g. “male”), brain location (e.g. 
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“occipital”, “network”), or anything unrelated (e.g. “voxel”, “peripheral”, “extra”) were 

excluded. This restricted the database to 742 terms. 

 

Terms in the Neurosynth database have “weights” for each study ranging from 0 to 1, 

indicating the prevalence of that term within the text-mined paper. For each term, we 

tested whether that term’s weights differed significantly across different subnetworks. 

Specifically, the weights found for that term in each study matched to each subnetwork 

were all entered into a one-way ANOVA testing for effects of the identity of the matching 

subnetwork. Significance in this test indicates significant differences in the weight of that 

term across subnetworks. If the ANOVA was significant, that term was associated with 

the subnetwork exhibiting the largest average weight. Significance was tested both at 

p<.05, FDR-corrected for the number of terms tested, as well as (for exploratory 

purposes) at p<.05 uncorrected. 

 

Mapping Individual-Specific Large-Scale Networks  

We identified the set of canonical large-scale networks using the individual-specific 

network matching approach described in 2. Briefly, the Infomap algorithm was applied to 

each participant’s correlation matrix thresholded at a range of edge densities spanning 

from 0.01% to 5%. At each threshold, the algorithm returned community identities for 

each vertex and voxel. Communities were labeled by matching them at each threshold 

to a set of independent group average networks described in 2. The matching approach 

proceeded as follows: 1) At each density threshold, all identified communities were 

compared with the independent group networks using the Jaccard Index of spatial 

overlap. 2) The community with the best match (highest overlap) to one of the 

independent networks was assigned that network identity, and then not considered for 

further comparison with other independent networks within that threshold. Matches 

lower than Jaccard = 0.1 were not considered (to avoid matching based on only a few 

vertices). Matches were first made with the large, well-known networks (in order: 

default, lateral visual, motor hand, motor mouth, frontoparietal, and dorsal attention, 

language), and then to the smaller networks (salience, parietal memory, contextual 

association, medial visual, motor foot, and somato-cognitive action). In each individual 
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and in the average, a “consensus” network assignment was derived by collapsing 

assignments across thresholds, giving each node the assignment it had at the sparsest 

possible threshold at which it was successfully assigned to one of the known group 

networks. 

 

Calculating Connectivity to Other Networks / Subnetwork-Network Relationships 

For each CON subnetwork matched across participants, we calculated the average 

fMRI time course across subnetwork voxels/vertices. We then calculated the average 

time course across voxels/vertices of the large-scale Default Mode, Visual, Fronto-

Parietal, Dorsal Attention, Language, Salience, Somatomotor Hand, Somatomotor 

Face, Somatomotor Foot, Auditory, Parietal Memory, Context, and Somato-Cognitive 

Action networks. Voxels/vertices that overlapped with that subnetwork were excluded 

from these averages. We then calculated the functional connectivity between each CON 

subnetwork and each of the 12 large-scale networks as the Fisher-transformed 

correlation of the two-time courses. 

 

For each large-scale network, we compared the connectivity strengths of the 

subnetworks against each other using paired t tests (subnetwork vs. subnetwork) and 

applying FDR correction for multiple comparisons across all network / pairwise 

subnetwork tests.  

 

We calculated pairwise functional connectivity strengths between the CON subnetworks 

themselves to better understand the integration of these subnetworks within the larger-

scale CON. We directly compared connectivity between different pairs of CON 

subnetworks using paired t-tests. 

 

Visualization of subnetwork-network relationships in individual participants was 

conducted using spring-embedded plots 5, as implemented in Gephi (https://gephi.org/). 

In each participant, nodes were defined as contiguous cortical subnetwork or network 

clusters larger than 20 mm2 from each matched CON subnetworks, as well as from 

within the other large-scale networks shown to be strongly connected to CON 
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subnetworks. Pairwise connectivity between nodes was calculated as the Z-transformed 

correlation of their mean time courses. For visualization purposes, graphs were 

constructed by thresholding node-to-node connectivity matrices at 15% density. These 

graphs were then imported into Gephi. For three participants (P05, P07, and P13), 

whole networks (always either Salience or Dorsal Attention) were disconnected from the 

rest of the graph at this density threshold. Since the goal was to visualize connectivity 

with these networks, in these cases we systematically increased the density threshold in 

5% increments until all networks were connected to the graph. For these three 

participants, the graph became connected and was visualized at 45%, 30%, and 20% 

densities, respectively. 

 

Calculating Subnetwork Time Delays 

We computed Time Delay (TD) estimates using an adaptation of a previously published 

method 107. Briefly, the method of 107 computes a lagged cross-covariance function 

(CCF) between timecourses for each session. We observed that these cross-covariance 

functions were more stable and consistent across participants when they were restricted 

to timepoints with large signal fluctuations in the regions of interest. This observations 

follows recent work suggesting that large-amplitude fluctuations allow more precise 

estimation of individual-specific functional connectivity patterns108–110. Thus, we 

restricted timepoints of interest to those in which at least 0.1% of the vertices within the 

CON subnetworks exhibited a large signal fluctuation (> 5 standard deviations above 

the vertex mean), as well as six seconds before and after that large fluctuation. For 

each of these time segments, we computed the lagged CCF between each pair of 

cortical vertex time courses. To account for censored frames, we computed CCFs over 

blocks of contiguous frames and averaged these CCFs, weighted by block duration, to 

obtain a single segment CCF. We excluded TDs greater than 4 s as, in our experience, 

these tend to reflect sampling error or artifact. Thus, CCFs were computed over three 

TR shifts in the positive and negative directions, making the minimum block duration [3 

(TR shifts) + 1 (zero-lag)] x TR = 8.8 s (Dataset 1 & 2); 5.42 s (Dataset 3). Lags were 

then more precisely determined by estimated the cross-covariance extremum of the 

session CCF using three-point parabolic interpolation. The resulting lags were 
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assembled into an antisymmetric matrix capturing all pairwise TDs (TD matrix) for each 

time segment, which was averaged across time segments to yield participant-level TD 

vertexwise matrices.  

 

Each participant’s TD matrix was averaged across rows to summarize the average time 

shift from each vertex to all other vertices. These average time shifts were then 

averaged across vertices for each subnetwork and network of interest. A one-way 

ANOVA tested whether there were any differences in row-average TD across the 

subnetworks, as well as the SCAN and the Somatomotor Hand network. Post-hoc t-

tests determined the relative temporal ordering of networks.  

 

Task Analysis 

Task evoked activations were modeled individually for each vertex and voxel with a 

general linear model (GLM) 111, using in-house image analysis software written in IDL 

(Research Systems, Inc.). First level GLM analyses were conducted separately for each 

session in a given participant, and second level within-participant analyses were run on 

the session-wise beta values of a single participant. Planned second-level contrasts 

were evaluated as paired voxel/vertex-wise t-tests comparing these beta values, and 

the resulting t-values in each voxel/vertex were then Z-transformed for further analysis.  

 

We included tasks that had two different types of designs (motor = block design, 

spatial/verbal discrimination = mixed block/event-related design). In the block design 

motor task, a block regressor was convolved with a canonical hemodynamic response 

to model the five experimental conditions: tongue, left hand, right hand, left foot, right 

foot.  

 

The spatial and verbal discrimination tasks were jointly modeled in a mixed block-event 

related design. Events were modeled with an FIR model (as above, with 8 timepoints for 

each event); separate event regressors were included for the start and end cues in each 

task, and for the different trial types (noun, verb, 50% coherence, 0% coherence). The 

block (sustained activity) was modeled with a square block regressor, with separate 
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regressors for sustained activity in the semantic and coherence task. Given the low 

number of error trials, errors were not modeled in any task. In addition to these terms, 

constant and linear effects were modeled for each run.  

 

The task contrasts of interest included: 1) Tongue > baseline, 2) Left Hand > baseline, 

3) Right Hand > baseline, 4) Left Leg > baseline, 5) Right Leg > baseline, 6) Spatial 

Discrimination Task > baseline, 7) Verbal Discrimination Task > baseline. We calculated 

the average activation (z-scores) for each subnetwork in the vertices involved in each of 

the tasks.  
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