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Abstract 17 

Assay for Transposase-Accessible Chromatin sequencing (ATAC-Seq) is a widely used technique to 18 

explore gene regulatory mechanisms. For most ATAC-Seq data from healthy and diseased tissues 19 

such as tumors, chromatin accessibility measurement represents a mixed signal from multiple cell 20 

types. In this work, we derive reliable chromatin accessibility marker peaks and reference profiles for 21 

all major cancer-relevant cell types. We then capitalize on the EPIC deconvolution framework (Racle 22 

et al. 2017) previously shown to accurately predict cell-type composition in tumor bulk RNA-Seq data 23 

and integrate our markers and reference profiles to EPIC to quantify cell-type heterogeneity in bulk 24 
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ATAC-Seq data. Our EPIC-ATAC tool accurately predicts non-malignant and malignant cell fractions in 25 

tumor samples. When applied to a breast cancer cohort, EPIC-ATAC accurately infers the immune 26 

contexture of the main breast cancer subtypes. 27 

 28 

Introduction 29 

Gene regulation is a dynamic process largely determined by the physical access of chromatin-binding 30 

factors such as transcription factors (TFs) to regulatory regions of the DNA (e.g., enhancers and 31 

promoters) (Klemm, Shipony, and Greenleaf 2019). The genome-wide landscape of chromatin 32 

accessibility is essential in the control of cellular identity and cell fate and thus varies in different cell 33 

types (K. Zhang et al. 2021; Klemm, Shipony, and Greenleaf 2019). Over the last decade, Assay for 34 

Transposase-Accessible Chromatin (ATAC-Seq) (Buenrostro et al. 2013) has become a reference 35 

epigenomic technique to profile chromatin accessibility and the activity of gene regulatory elements 36 

in diverse biological contexts including cancer (Luo, Gribskov, and Wang 2022) and across large 37 

cohorts (Corces et al. 2018). Several optimized ATAC-seq protocols have been developed to improve 38 

the quality of ATAC-Seq data and expand its usage to different tissue types. These include the OMNI-39 

ATAC protocol, which leads to cleaner signal and is applicable to frozen samples (Corces et al. 2017; 40 

Grandi et al. 2022), as well as the formalin-fixed paraffin-embedded (FFPE)-ATAC protocol adapted to 41 

FFPE samples. The reasonable cost and technical advantages of these protocols foreshadow an 42 

increased usage of ATAC-Seq in cancer studies.  43 

 44 

Most biological tissues are composed of multiple cell types. For instance, tumors are complex 45 

ecosystems including malignant and stromal cells as well as a large diversity of immune cells. This  46 

cellular heterogeneity, in particular the presence of specific immune cell types, impacts tumor 47 

progression as well as response to immunotherapy (Fridman et al. 2012; 2017; de Visser and Joyce 48 

2023). Most existing ATAC-Seq data from tumors were performed on bulk samples, thereby including 49 

information from both cancer and non-malignant cells. Precisely quantifying the proportions of 50 
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different cell types in such samples represents therefore a promising way to explore the immune 51 

contexture and the composition of the tumor micro-environment (TME) across large cohorts. 52 

Carefully assessing cell-type heterogeneity is also important to handle confounding factors in 53 

genomic analyses in which samples with different cellular compositions are compared. Recently, 54 

single-cell ATAC-Seq (scATAC-Seq) has been developed to explore cellular heterogeneity with high 55 

resolution in complex biological systems (Cusanovich et al. 2015; Lareau et al. 2019; Satpathy et al. 56 

2019). However, the resulting data are sensitive to technical noise and such experiments require 57 

important resources, which so far limits the use of scATAC-Seq in contrast to bulk sequencing in the 58 

context of large cohorts.  59 

 60 

In the past decade, computational deconvolution tools have been developed to predict the 61 

proportion of diverse cell types from bulk genomic data obtained from tumor samples (Avila Cobos 62 

et al. 2018; 2020; Sturm et al. 2019; Racle et al. 2017; Monaco et al. 2019; Newman et al. 2019; H. Li 63 

et al. 2020; Finotello et al. 2019; Becht et al. 2016). A large number of these tools model bulk data as 64 

a mixture of reference profiles identified in purified cell populations for each cell type. The accuracy 65 

of the predictions of cell-type proportions relies on the quality of these reference profiles as well as 66 

on the use of cell-type specific markers (Avila Cobos et al. 2018). A limitation of most deconvolution 67 

algorithms is that they do not predict the proportion of cell types that are not present in the 68 

reference profiles (here referred to as ‘uncharacterized’ cells). In the context of cancer samples, 69 

these uncharacterized cell populations include malignant cells whose molecular profiles differ not 70 

only from one cancer type to another, but also from one patient to another even within the same 71 

tumor type (Corces et al. 2018). A few tools consider uncharacterized cells in their deconvolution 72 

framework by using cell-type specific markers not expressed in the uncharacterized cells (Clarke, 73 

Seol, and Clarke 2010; Gosink, Petrie, and Tsinoremas 2007; Racle et al. 2017; Finotello et al. 2019). 74 

These tools include EPIC (Estimating the Proportion of Immune and Cancer cells) which 75 
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simultaneously quantifies immune, stromal, vascular as well as uncharacterized cells from bulk tumor 76 

samples (Racle et al. 2017; Racle and Gfeller 2020). 77 

 78 

Most deconvolution algorithms have been initially developed for transcriptomic data (RNA-Seq data) 79 

(Newman et al. 2015; Racle et al. 2017; Finotello et al. 2019; Monaco et al. 2019; Newman et al. 80 

2019; T. Li et al. 2020; Jimenez-Sanchez, Cast, and Miller 2019; Gong and Szustakowski 2013). More 81 

recently they have been adapted for other omics layers such as methylation (Chakravarthy et al. 82 

2018; Teschendorff et al. 2020; Arneson, Yang, and Wang 2020; H. Zhang et al. 2021) and proteomics 83 

(Feng et al. 2023) or chromatin accessibility. For the latter, a specific framework called DeconPeaker 84 

(H. Li et al. 2020) was developed to estimate cell-type proportions from bulk samples. Deconvolution 85 

tools developed initially for other omics modalities, such as RNA-Seq, can also be applied on ATAC-86 

Seq if appropriate ATAC-Seq profiles are provided to the tool. For example, the popular 87 

deconvolution tool, CIBERSORT (Newman et al. 2015), was used to deconvolve leukemic ATAC-Seq 88 

samples (Corces et al. 2016). Other methods have been proposed to decompose ATAC-Seq bulk 89 

profiles into subpopulation-specific profiles (Zeng et al. 2019; Burdziak et al. 2019) or compartments 90 

(Peng et al. 2019). However, these methods have more requisites: (i) the integration of the ATAC-Seq 91 

data with single-cell or bulk RNA-Seq (Zeng et al. 2019; Burdziak et al. 2019) and HIChIP data (Zeng et 92 

al. 2019) or, (ii) subsequent feature annotation to associate compartments with cell types or 93 

biological processes (Peng et al. 2019). 94 

The application of existing bulk ATAC-Seq data deconvolution tools to solid tumors is limited. First, 95 

current computational frameworks do not quantify populations of uncharacterized cell types. 96 

Second, ATAC-Seq based markers (i.e., chromatin accessible regions called peaks) and reference 97 

profiles generated so far have been derived in the context of hematopoietic cell mixtures (Corces et 98 

al. 2016; H. Li et al. 2020). Markers and profiles for major populations of the TME (e.g., stromal and 99 

vascular cells) are thus missing. While cell-type specific markers have been identified from scATAC-100 

Seq data (K. Zhang et al. 2021), not all TME-relevant cell types are covered (e.g., lack of scATAC-Seq 101 
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data from neutrophils due to extracellular traps formation). Also, these markers have not been 102 

curated to fulfill the requirements of tools such as EPIC to quantify uncharacterized cells (i.e., 103 

markers of a cell-type should not be accessible in other human tissues).  104 

 105 

In this study, we collected ATAC-Seq data from pure cell types to identify cell-type specific 106 

marker peaks and to build reference profiles from most major non-malignant cell types typically 107 

observed in tumors. These data were integrated in the EPIC (Racle et al. 2017) framework to perform 108 

bulk ATAC-Seq samples deconvolution (Figure 1). Applied on peripheral blood mononuclear cells 109 

(PBMCs) and tumor samples, the EPIC-ATAC framework showed accurate predictions of the 110 

proportions of non-malignant and malignant cells with similar or higher performances than other 111 

existing tools. 112 

 113 

 114 

Results 115 

ATAC-Seq data from sorted cell populations reveal cell-type specific marker peaks and 116 

reference profiles  117 

A key determinant for accurate predictions of cell-type proportions by most deconvolution tools is 118 

the availability of reliable cell-type specific markers and reference profiles. To identify robust 119 

chromatin accessibility marker peaks of cancer relevant cell types, we collected 564 samples of 120 

sorted cell populations from twelve studies including eight immune cell types (B cells (Calderon et al. 121 

2019; Corces et al. 2016; P. Zhang et al. 2022), CD4+ T cells (Corces et al. 2016; Liu et al. 2020; P. 122 

Zhang et al. 2022; Mumbach et al. 2017; Giles et al. 2022), CD8+ T cells (Calderon et al. 2019; Corces 123 

et al. 2016; Liu et al. 2020; P. Zhang et al. 2022; Giles et al. 2022), natural killer (NK) cells (Calderon et 124 

al. 2019; Corces et al. 2016), dendritic cells (DCs) (Calderon et al. 2019; Leylek et al. 2020; Liu et al. 125 

2020), macrophages (Liu et al. 2020; P. Zhang et al. 2022), monocytes (Calderon et al. 2019; Corces et 126 

al. 2016; Leylek et al. 2020; P. Zhang et al. 2022; Trizzino et al. 2021) and neutrophils (Ram-Mohan et 127 
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al. 2021; Perez et al. 2020), as well as fibroblasts (Ge et al. 2021; Liu et al. 2020) and endothelial (Liu 128 

et al. 2020; Xin et al. 2020) cells (Figure 1 box 1, Figure 2A, Supplementary Table 1). To limit batch 129 

effects, the collected samples were homogeneously processed from read alignment to peak calling. 130 

For each cell type, we derived a set of stable peaks, i.e., peaks observed across samples and studies 131 

(see Materials and Methods).  132 

These peaks were then used to perform pairwise differential analysis to identify marker peaks for 133 

each cell type (Figure 1, box 2). To ensure that the cell-type specific marker peaks are not accessible 134 

in other human tissues, we included in the differential analysis ATAC-Seq samples from diverse 135 

human tissues from the ENCODE data (The ENCODE Project Consortium et al. 2020; Rozowsky et al. 136 

2023) (Supplementary Figure 1). To select a sufficient number of peaks prior to peak filtering, the top 137 

200 peaks recurrently differentially accessible across all cell-type pairs were selected as cell-type 138 

specific markers (see Materials and Methods). Using the human atlas study (K. Zhang et al. 2021), 139 

markers with potential residual accessibility in human tissues were then filtered out (Figure 1, box 3, 140 

see Materials and Methods).  The resulting marker peaks specific to the immune cell types were 141 

considered for the deconvolution of PBMC samples (PBMC markers). For tumor bulk sample 142 

deconvolution, the list of markers was further refined based on the correlation patterns of the 143 

markers in tumor bulk samples from diverse cancer types from The Cancer Genome Atlas (TCGA) 144 

(Corces et al. 2018) (Figure 1, box 4, see the Material and methods). The latter filtering ensures the 145 

relevance of the markers in the TME context since cell-type specific TME markers are expected to be 146 

correlated in tumor bulk ATAC-Seq measurements (Qiu et al. 2021). 716 markers of immune, 147 

fibroblasts and endothelial cell types remained after the later filtering and were considered for the 148 

deconvolution of bulk tumor samples (TME markers). 149 

To assess the quality and reproducibility of these markers, we performed principal component 150 

analysis (PCA) based on each set of marker peaks. Computing silhouette coefficients based on the 151 

cell-type classification and on the study of origin showed that samples clustered by cell type and not 152 

by study of origin (averaged silhouette coefficients above 0.45 for cell type and around 0 for study of 153 
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origin). Two-dimensional UMAP representations of the samples confirmed this observation (Figure 154 

2B). These results indicate limited remaining batch effects after data processing and marker 155 

selection.  156 

We then used the collected samples to generate chromatin accessibility profiles by computing the 157 

average of the normalized counts for each peak in each cell type as well as peak variability in each 158 

cell type (Racle et al. 2017) (see Material and methods). Figure 2C represents the average chromatin 159 

accessibility of each marker peak in each cell type of the reference dataset and highlights, as 160 

expected, the cell-type specificity of the selected markers (see also Supplementary Tables 2 and 3), 161 

which was confirmed in independent ATAC-Seq data from sorted cells and single-cell ATAC-Seq 162 

samples from blood and diverse human tissues (Figure 2D and 2E, see Materials and methods).  163 

 164 

Annotations of the marker peaks highlight their biological relevance 165 

To characterize the different marker peaks, we annotated them using ChiPSeeker (Yu, Wang, and He 166 

2015). We observed that most of the markers are in distal and intergenic regions (Figure 2F), which is 167 

expected considering the large proportion of distal regions in the human genome and the fact that 168 

such regions have been previously described as highly cell-type specific (Corces et al. 2016). We also 169 

noticed that 7% of the PBMC and TME marker peaks are in promoter regions in contrast to 4% when 170 

considering matched genomic regions randomly selected in the set of peaks identified prior to the 171 

differential analysis (see Material and methods), which suggest enrichment in our marker peaks for 172 

important regulatory regions. 173 

To assess the biological relevance of the marker peaks, we associated each marker peak to its 174 

nearest gene using ChIP-Enrich based on the “nearest transcription start site (TSS)” locus definition 175 

(Welch et al. 2014) (Supplementary Tables 4 and 5). Nearest genes reported as known marker genes 176 

in public databases of gene markers (i.e., PanglaoDB (Franzén, Gan, and Björkegren 2019) and 177 

CellMarker (Hu et al. 2023)) are listed in Table 1.  178 
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In each set of cell-type specific peaks, we observed an overrepresentation of chromatin binding 179 

proteins (CBPs) reported in the JASPAR2022 database (Castro-Mondragon et al. 2022) (using Signac 180 

(Stuart et al. 2021) and MonaLisa (Machlab et al. 2022) for assessing the overrepresentation) and the 181 

ReMap catalog (Hammal et al. 2022) (using RemapEnrich, see Material and Methods). 182 

Overrepresented CBPs also reported as known marker genes in the PanglaoDB and CellMarker 183 

databases are listed in Table 1. Detailed peaks annotations are summarized in Supplementary Tables 184 

4 and 5. 185 

Based on the “nearest TSS” annotation, we tested, using ChIP-Enrich (Welch et al. 2014), whether 186 

each set of cell-type specific marker peaks was enriched for regions linked to specific biological 187 

pathways (GO pathways). Figure 2G highlights a subset of the enriched pathways that are consistent 188 

with prior knowledge on each cell type. Some of these pathways are known to be characteristic of 189 

immune responses to inflammatory or tumoral environments. The complete list of enriched 190 

pathways is listed in the Supplementary Tables 6 and 7. Overall, these analyses demonstrate that the 191 

proposed cell-type specific marker peaks capture some of the known biological properties associated 192 

to each cell type. 193 

Cell type Nearest genes Enriched CPBs 

Bcells DHTKD1 LHPP WDFY4 ARID5B HHEX SIDT2 CD82 MS4A1 FCHSD2 
USP8 RHCG ATF7IP2 CIITA GGA2 SNX29P2 C16orf74 CBFA2T3 
CD79B BCL2 GNG7 CD22 FCER2 FCRL1 LY9 PTPRC LAPTM5 IGLL5 
VPREB3 CENPM AFF3 SP100 INPP5D DTNB CD86 RFTN1 ST6GAL1 
NGLY1 OSBPL10 TLR9 CD38 SMIM14 ARHGAP24 ADAM19 EBF1 
BASP1 CD83 PLEKHG1 CCR6 CCND3 HDAC9 CDCA7L BLK MTSS1 
LYN PLEKHF2 MOB3B PAX5 

SPIB POU2F2 TCF4 EBF1 
TCF3 NFKB1 STAT1 
NFKB2 IKZF1 FOXO1 
FOXP1 BCL6 POU2AF1 
STAT3 BACH2 IKZF3 FLI1 
TBX21 JUNB MITF NKX6-
2 RBPJ 

CD4_Tcells IL2RA CD6 CD5 CD4 RORA PTPRC CTLA4 ICOS SLC9A9 FHIT TCF7 
FYB1 ATXN1 CD40LG 

TCF7 RUNX3 SOHLH2 
IRF9 GATA3 TBX21 MAF 
STAT3 RORA BATF CREM 

CD8_Tcells MKI67 JAML MAML2 KLRD1 NELL2 LAG3 PPP1R13B PTPRC LYST 
CASP8 CD8A CD8B CD96 BTLA GZMA THEMIS ETV1 

ETV1 FOXP3 TBX21 
FOXP1 EOMES CREM 
IRF4 ZEB1 ARNT JUNB 
TCF7 

NK PRF1 ZBTB16 KLRD1 SPN CD226 SH2D1B CD247 IL2RB CXCR4 
NMUR1 GNLY ZAP70 TXK 

EOMES TBX21 NFIL3 FOS 
JUN 

DCs C12orf75 LYZ APP CD8A RIOX2 NFKB1 QDPR ABCG2 PRELID2 
DST CD36 IDO2 PCMTD1 

SPIB IRF8 MYB NR4A1 
REL CUX2 FOXO1 ETV6 
IRF5 BATF3 RUNX2 

Neutrophils TLE3 CA4 CYP4F3 CEACAM8 PGLYRP1 FPR1 CTSS ALPL PI3 MMP9 
CXCR1 DRC1 ASPRV1 LTF MGAM SLC25A37 

FOS 
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Monocytes VENTX GLT1D1 CLEC4E CARS2 SLC24A4 C16orf74 FFAR2 STXBP2 
NLRP3 CYRIA CMTM7 TGFBI DIAPH1 VCAN MCTP1 IFNGR1 STX11 
CAPZA2 CD36 MTSS1 DENND3 ASAH1 TNFRSF10B BNIP3L NACC2 
MAMDC2 FBP1 

CEBPA CEBPD CEBPB 
CEBPE SPI1 VENTX JUND 
RXRA TCF7L2 

Macrophages CXCL12 PSAP P2RY6 SLCO2B1 CMKLR1 MMP19 LGMN CLEC10A 
C5AR1 FPR3 LILRB4 RGL1 SIGLEC1 MMP9 CD80 

STAT1 SPI1 FOSL2 FOS 
SPIC 

Endothelial FAM107B ROBO4 FLI1 ACVRL1 FLT1 DOCK9 ABCC1 S1PR1 ELOVL1 
PLPP3 ASAP2 SNRK ECSCR ARAP3 LAMA4 BMP6 SERPINE1 LAMB1 
DOCK4 NOS3 

ETV2 ELF1 FLI1 ELK3 
FOSB ETS1 ERG GATA2 
ZEB1 ETS2 FOXC1 SOX18 

Fibroblasts LOX CAV1 COL15A1 FOSL2 FOSB FLI1 HIF1A 
PBX1 

 194 

Table 1: List of nearest genes and enriched CBPs reported in the PanglaoDB or CellMarker databases.  195 

 196 

EPIC-ATAC accurately estimates immune cell fractions in PBMC ATAC-Seq samples  197 

The cell-type specific marker peaks and profiles derived from the reference samples were integrated 198 

to the EPIC deconvolution tool (Racle et al. 2017; Racle and Gfeller 2020). We will refer to this ATAC-199 

Seq deconvolution framework as EPIC-ATAC.  200 

To test the accuracy of EPIC-ATAC predictions, we first collected PBMCs from five healthy donors. In 201 

each donor, half of the cells was used to generate a bulk ATAC-Seq dataset and the other half was 202 

used to determine the cellular composition of each sample, i.e., the proportions of monocytes, B 203 

cells, CD4+ T cells, CD8+ T cells, NK cells and dendritic cells, by multiparametric flow cytometry 204 

(Figure 3A, see Materials and methods). We then applied EPIC-ATAC to the bulk ATAC-Seq data. The 205 

predicted cell fractions are consistent with the cell fractions obtained by flow cytometry (Figure 3B, 206 

Pearson correlation coefficient of 0.78 and root mean squared error (RMSE) of 0.10).  207 

As a second validation, we applied EPIC-ATAC to pseudo-bulk PBMC samples (referred to as the 208 

PBMC pseudobulk dataset, generated using three publicly available PBMC scATAC-Seq datasets 209 

(Satpathy et al. 2019; Granja et al. 2019; 10x Genomics 2021), see Material and methods). A high 210 

correlation (0.91) between EPIC-ATAC predictions and true cell-type proportions and a low RMSE 211 

(0.05) were observed for this dataset (Figure 3C).  212 

The accuracy of the predictions obtained with EPIC-ATAC was then compared with the accuracy of 213 

other deconvolution approaches which could be used with our reference profiles and marker peaks 214 
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(Figure 3D-E). To this end, we considered both the DeconPeaker method (H. Li et al. 2020) originally 215 

developed for bulk ATAC-Seq as well as several algorithms developed for bulk RNA-Seq (CIBERSORTx 216 

(Newman et al. 2019), QuanTIseq (Finotello et al. 2019), ABIS (Monaco et al. 2019), and MCPcounter 217 

(Becht et al. 2016)). To enable meaningful comparison across the cell types considered in this work 218 

and use the method initially developed for bulk RNA-Seq deconvolution, the marker peaks and 219 

profiles derived in this work were used in each of these methods. DeconPeaker and CIBERSORTx 220 

include the option to define cell-type specific markers and profiles from a set of reference samples. 221 

We thus fed our ATAC-Seq samples collection to both algorithms and used the resulting profiles and 222 

marker peaks to perform bulk ATAC-Seq deconvolution. The resulting predictions are referred to as 223 

DeconPeaker-Custom and CIBERSORTx-Custom.  224 

Many tools displayed high correlation and low RMSE values, similar to those of EPIC-ATAC, and no 225 

single tool consistently outperformed the others (Figure 3D-E, Supplementary Figure 2A-C). The fact 226 

that our marker peaks and reference profiles could be used with EPIC-ATAC and other existing tools 227 

demonstrates their broad applicability.  228 

Predictions accuracies were also evaluated in each cell type separately. Since the number of samples 229 

was low in each dataset, samples from both datasets were combined for this analysis. EPIC-ATAC 230 

demonstrated good accuracies across cell types with RMSE values ranging from 0.02 for B cells to 231 

0.13 for NK cells (Supplementary Figure 3). As expected, predictions with all tools were more 232 

accurate for frequent cell types with well-characterized markers (e.g., CD8/CD4 T cells, B cells) 233 

compared to less frequent cell types (e.g., NK cells, dendritic cells) (Supplementary Figure 2 and 3). 234 

Note that MCPcounter is a marker-based method that derives cell-type specific scores which cannot 235 

be compared between cell types. This method was thus only included in the benchmark considering 236 

each cell type separately.  237 

 238 

EPIC-ATAC accurately predicts fractions of cancer and non-malignant cells in tumor 239 

samples 240 
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We evaluated the ability of the EPIC-ATAC framework to predict not only immune and stromal cells 241 

proportions but also the proportion of cells for which reference profiles are not available (i.e., 242 

uncharacterized cells). For this purpose, we considered two previously published scATAC-Seq 243 

datasets containing basal cell carcinoma and gynecological cancer samples (Satpathy et al. 2019; 244 

Regner et al. 2021). We generated two pseudobulk datasets by averaging the chromatin accessibility 245 

signal across all cells of each sample (see Material and methods). Applying EPIC-ATAC to both 246 

datasets shows that this framework is able to simultaneously predict the proportions of both 247 

uncharacterized cells and immune, stromal and vascular cells (Figure 4A). In these cancer samples, 248 

the proportion of uncharacterized cells can be seen as a proxy of the proportion of cancer cells. 249 

As for the PBMC datasets, we compared EPIC-ATAC performances to other existing deconvolution 250 

tools. For both datasets, EPIC-ATAC led to the highest performances and was the only method to 251 

accurately predict the proportion of uncharacterized cells (Figure 4B, Supplementary Figure 4 and 5). 252 

Although quanTIseq also allows users to perform such predictions, the method resulted in lower 253 

correlation and higher RMSE values when comparing the estimated and true proportions of the 254 

uncharacterized cells (Figure 4B, Supplementary Figure 4). 255 

In the EPIC-ATAC and quanTIseq frameworks, predictions correspond to absolute cell-type fraction, 256 

i.e., proportions of all cells present in the bulk, while the estimations obtained from the other tools 257 

correspond to relative cell fractions, i.e., proportions of cells present in the reference profiles 258 

(CIBERSORTx, DeconPeaker) or to scores with arbitrary units (ABIS, MCPcounter). We thus conducted 259 

a second benchmark excluding the predictions of uncharacterized cell fractions and rescaling both 260 

estimations and true proportions to sum to 1 (see Material and methods). EPIC-ATAC outperformed 261 

most of the other methods also when excluding the uncharacterized cells (Figure 4C, Supplementary 262 

Figure 4 and 5).  263 

Supplementary Figure 6 reports the performances of each tool when considering each cell type 264 

separately. Overall, EPIC-ATAC showed comparable or higher correlation and lower RMSE values 265 

when compared to the other deconvolution tools.  266 
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 267 

T cell subtypes quantification reveals the ATAC-Seq deconvolution limits for closely related 268 

cell types. 269 

To explore the limitations of ATAC-Seq deconvolution, we next evaluated whether EPIC-ATAC could 270 

predict the proportions of T-cell subtypes. To this end, we considered naive and non-naive CD8+ as 271 

well as naïve, helper/memory and T regulatory CD4+ T cells. We redefined our list of cell-type specific 272 

marker peaks and reference profiles including also these five T-cell subtypes (Supplementary Tables 273 

8-9, Supplementary Figure 7A) and observed that the markers were conserved in external data 274 

(Supplementary Figure 7B). The annotations of the markers associated to the T-cell subtypes are 275 

available in Supplementary Tables 10-13. 276 

We capitalized on the more detailed cell-type annotation of the PBMC datasets as well as the basal 277 

cell carcinoma dataset to evaluate the EPIC-ATAC prediction of cell-subtype fractions using these 278 

updated markers and profiles. Overall, the correlations observed between the predictions and true 279 

proportions of T cells decreased when considering T-cell subtypes rather than CD4+ and CD8+ cell 280 

types only (Figure 5A). In particular, low accuracies were obtained for helper/memory CD4+ and 281 

naïve T-cell subtypes (Figure 5B). Similar results were obtained using other deconvolution tools 282 

(Supplementary Figure 8).  283 

 284 

EPIC-ATAC accurately infers the immune contexture in a bulk ATAC-Seq breast cancer 285 

cohort  286 

We applied EPIC-ATAC to a breast cancer cohort of 42 breast ATAC-Seq samples including samples 287 

from two breast cancer subtypes, i.e., 35 oestrogen receptor (ER)-positive human epidermal growth 288 

factor receptor 2 (HER2)-negative (ER+/HER2-) samples and 7 triple negative (TN) tumors (Kumegawa 289 

et al. 2023). No cell sorting was performed in parallel to the chromatin accessibility sequencing. We 290 

thus used EPIC-ATAC to estimate cell-type proportions. We observed a higher proportion of T cells, B 291 

cells, NK cells and macrophages in the TN samples in comparison to ER+/HER2- samples (Figure 6A). 292 
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We then compared the cellular composition of ER+/HER2- subgroups identified in the original study 293 

(clusters CA-A, CA-B and CA-C). A higher infiltration of T and B cells was observed in cluster CA-C and 294 

higher proportions of endothelial cells and fibroblasts were observed in cluster CA-B (Figure 6B). 295 

These predictions are consistent with the infiltration level estimations reported in the original 296 

publication, although no differences in macrophages infiltration was observed between the 297 

ER+/HER2- subgroups in our case (Kumegawa et al. 2023).  298 

 299 

EPIC-ATAC performs similarly to EPIC RNA-seq based deconvolution and better than gene 300 

activity based deconvolution 301 

We finally compared the accuracy of EPIC when applied on ATAC-Seq data and on RNA-Seq data. For 302 

this purpose, we used the 10X multiome PBMC dataset (10x Genomics 2021) which provides for each 303 

cell both its chromatin accessibility profile and its gene expression profile and simulated 100 304 

pseudobulks with diverse cellular compositions (see Material and methods). We used EPIC-ATAC to 305 

perform ATAC-Seq based deconvolution on the chromatin accessibility levels of the peaks and the 306 

original EPIC tool to perform standard RNA-seq deconvolution on the gene expression levels. ATAC-307 

Seq peaks can also be aggregated, based on peak distances to each gene, into gene activity (GA) 308 

variables as proxy for gene expression. We thus applied the GA transformation to the 10x multiome 309 

PBMC dataset and performed GA-based RNA deconvolution using the original EPIC tool (See Material 310 

and methods).   311 

Figure 7 shows that EPIC-ATAC performs similarly to the EPIC RNA-seq based deconvolution and 312 

outperforms the GA-based RNA deconvolution. The lower performances of GA based RNA 313 

deconvolution could be explained by the fact that GA features, by construction, do not perfectly 314 

match the transcriptomic data.  315 

 316 

Discussion 317 
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Bulk chromatin accessibility profiling of biological tissues like tumors represents a reliable and 318 

affordable technology to map the activity of gene regulatory elements across multiple samples in 319 

different conditions. Here, we collected ATAC-Seq data from pure cell populations covering major 320 

immune and non-immune cancer-relevant cell types from diseased, stimulated and healthy samples. 321 

This enabled us to identify reliable cell-type specific marker peaks and chromatin accessibility profiles 322 

for both PBMC and solid tumor sample deconvolution. We integrated these data in the EPIC 323 

deconvolution framework to accurately predict the fraction of both malignant and non-malignant cell 324 

types from bulk tumor ATAC-Seq samples.  325 

In cases where specific cell types are expected in a sample but are not part of our list of reference 326 

profiles (e.g., neuronal cells in brain tumors), custom marker peaks and reference profiles can be 327 

provided to EPIC-ATAC to perform cell-type deconvolution and we provide the code to generate such 328 

markers and profiles based on ATAC-Seq data from sorted cells, following the approach developed in 329 

this work (Figure 1, see Code availability).  330 

Solid tumors contain large and heterogeneous fractions of cancer cells for which it is 331 

challenging to build reference profiles. To our knowledge this work provides the first benchmark of 332 

deconvolution tools adapted to ATAC-Seq data in the context of solid tumor samples. We show that 333 

the EPIC-ATAC framework, in contrast to other existing tools, allows users to accurately predict the 334 

proportion of cells not included in the reference profiles (Figure 4 and Supplementary Figure 4). 335 

These uncharacterized cells can include cancer cells but also other non-malignant cells. Since the 336 

major cell types composing TMEs were included in our reference profiles, the proportion of 337 

uncharacterized cells approximates the proportion of the cancer cells in most cases.  338 

The pseudobulk approach provides unique opportunities to design benchmarks with known 339 

cell-type proportions but also comes with some limitations. Indeed, pseudobulks are generated from 340 

single-cell data which are noisy and whose cell-type annotation is challenging in particular for closely 341 

related cell types. These limitations might lead to chromatin accessibility profiles that deviates from 342 

true bulk data and errors in the true cell-type proportions. For this reason, we anticipate that the 343 
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newly generated benchmarking PBMCs dataset with ground truth cell proportions obtained by flow 344 

cytometry will nicely complement pseudobulk from scATAC-Seq data in future benchmarks of ATAC-345 

Seq deconvolution. The qualitative evaluation of our method on true bulk ATAC-Seq samples from 346 

breast cancer patients and the observation of similar immune compositions in TN and ER+/HER2- 347 

samples as the ones identified in the original paper (Figure 6) further support the accuracy of EPIC-348 

ATAC to deconvolve bulk ATAC-Seq data, without requiring additional scATAC-Seq data which are not 349 

always available for all cancer types. 350 

Overall the evaluation of the EPIC-ATAC deconvolution resulted in an average absolute error 351 

of 7% across cell types. This number is consistent with previous observations in RNA-Seq data 352 

deconvolution (Racle et al. 2017). Considering this uncertainty, the quantification of low frequency 353 

populations remains challenging (Jin and Liu 2021). While the estimated proportions of these 354 

populations by EPIC-ATAC are low (e.g., dendritic cells), comparing such estimations across samples 355 

should be performed with care due to the uncertainty of the predictions. 356 

Another limitation of cell-type deconvolution is often reached when closely related cell types 357 

are considered. In the reference-based methods used in this study, this limit was reached when 358 

considering T-cell subtypes in the reference profiles (Figure 5 and Supplementary figure 8). We thus 359 

recommend to use the EPIC-ATAC framework using the markers and reference profiles based on the 360 

major cell populations. We additionally provide the marker peaks of the T-cell subtypes which could 361 

be used to build cell-type specific chromatin accessibility signatures or perform “peak set enrichment 362 

analysis” similarly to gene set enrichment analysis (GSEA, (Subramanian et al. 2005)). Such 363 

application could be useful for the annotation of scATAC-Seq data, which often relies on matched 364 

RNA-Seq data and for which there is a lack of markers at the peak level (Jiang et al. 2023).  365 

Another possible application of our marker peaks relies on their annotation (Figure 2G, 366 

Supplementary Tables 4-5), which could be used to expand the list of genes and CBPs associated to 367 

each cell type or subtype. For example, the neutrophils marker peaks were enriched for motifs of TFs 368 

such as SPI1 (Supplementary Table 4), which was not listed in the neutrophil genes in the databases 369 
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used for annotation but has been reported in previous studies as involved in neutrophils 370 

development (Watt et al. 2021). The annotations related to the set of major cell types and T-cell 371 

subtypes are provided in Supplementary Tables 4-5 and 10-11. Finally, the annotation of marker 372 

peaks highlighted pathways involved in immune responses to tumoral environments (Figure 2G). 373 

Examples of these pathways are the toll-like receptor signaling pathway involved in pathogen-374 

associated and recognition of damage-associated molecular patterns in diverse cell types including B 375 

and T cells (Geng et al. 2010; Javaid and Choi 2020), glucan metabolic processes which are known to 376 

be related to trained immunity which can lead to anti-tumor phenotype in neutrophils (Kalafati et al. 377 

2020) or the Fc-receptor signaling observed in NK cells (Sanseviero 2019; Bonnema et al. 1994). 378 

These observations suggest that our marker peaks contain regulatory regions not only specific to cell 379 

types but also adapted to the biological context of solid tumors.  380 

 381 

Conclusion 382 

In this work, we identified biologically relevant cell-type specific chromatin accessibility markers and 383 

profiles for all major cancer-relevant cell types. We capitalized on these markers and profiles to 384 

predict cell-type proportions from bulk PBMC and solid tumor ATAC-Seq data 385 

(https://github.com/GfellerLab/EPIC-ATAC). Evaluated on diverse tissues, EPIC-ATAC shows reliable 386 

predictions of immune, stromal, vascular and cancer cell proportions. With the expected increase of 387 

ATAC-Seq studies in cancer, the EPIC-ATAC framework will enable researchers to deconvolve bulk 388 

ATAC-Seq data from tumor samples to support the analysis of regulatory processes underlying tumor 389 

development, and correlate the TME composition with clinical variables.  390 

 391 

Materials and methods 392 

Generation of an ATAC-Seq reference dataset of cancer relevant cell types. 393 

Pre-processing of the sorted ATAC-Seq datasets  394 
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We collected pure ATAC-Seq samples from 12 studies. The data include samples from (i) ten major 395 

immune, stromal and vascular cell types (B (Calderon et al. 2019; Corces et al. 2016; P. Zhang et al. 396 

2022), CD4+ (Corces et al. 2016; Liu et al. 2020; P. Zhang et al. 2022; Mumbach et al. 2017; Giles et al. 397 

2022), CD8+ (Calderon et al. 2019; Corces et al. 2016; Liu et al. 2020; P. Zhang et al. 2022; Giles et al. 398 

2022), natural killer (NK) (Calderon et al. 2019; Corces et al. 2016), dendritic (DCs) cells (Calderon et 399 

al. 2019; Leylek et al. 2020; Liu et al. 2020), macrophages (Liu et al. 2020; P. Zhang et al. 2022), 400 

monocytes (Calderon et al. 2019; Corces et al. 2016; Leylek et al. 2020; P. Zhang et al. 2022; Trizzino 401 

et al. 2021) and neutrophils (Ram-Mohan et al. 2021; Perez et al. 2020) as well as fibroblasts (Ge et 402 

al. 2021; Liu et al. 2020) and endothelial (Liu et al. 2020; Xin et al. 2020) cells (See Figure 2A), and (ii) 403 

eight tissues from distinct organs (i.e bladder, breast, colon, liver, lung, ovary, pancreas and thyroid) 404 

from the ENCODE data (The ENCODE Project Consortium et al. 2020; Rozowsky et al. 2023). The list 405 

of the samples and their associated metadata (including cell types and accession number of the study 406 

of origin) is provided in Supplementary Table 1. To limit batch effects, the samples were reprocessed 407 

homogeneously from the raw data (fastq files) processing to the peak calling. For that purpose, raw 408 

fastq files were collected from GEO using the SRA toolkit and the PEPATAC framework (Smith et al. 409 

2021) was used to process the raw fastq files based on the following tool: trimmomatic for adapter 410 

trimming, bowtie2 (with the PEPATAC default parameters) for reads pre-alignment on human 411 

repeats and human mitochondrial reference genome, bowtie2 (with the default PEPATAC 412 

parameters: --very-sensitive -X 2000) for alignment on the human genome (hg38), samtools 413 

(PEPATAC default parameters: -q 10) for duplicates removal and MACS2 (Y. Zhang et al. 2008) 414 

(PEPATAC default parameters: --shift -75 --extsize 150 --nomodel --call-summits --nolambda --keep-415 

dup all -p 0.01) for peak calling in each sample.  After alignment, reads mapping on chromosome M 416 

were excluded. TSS enrichment scores were computed for each sample and used to filter out 417 

samples with low quality (criteria of exclusion: TSS score < 5) (See Supplementary Table 1 containing 418 

the TSS score of each sample). 789 samples (including 564 from our ten reference cell-types) had a 419 

TSS score > 5. 420 
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 421 

Generation of a consensus set of peaks 422 

Peak calling was performed in each sample individually. Peaks were then iteratively collapsed to 423 

generate a set of reproducible peaks. For each cell type, peaks collapse was performed adapting the 424 

iterative overlap peak merging approach proposed in the PEPATAC framework. A first peaks collapse 425 

was performed at the level of each study of origin, i.e., if peaks identified in distinct samples 426 

overlapped (minimum overlap of 1bp between peaks), only the peak with the highest peak calling 427 

score was kept. Also, only peaks detected in at least half of the samples of each study were 428 

considered for the next step. If a study had only two samples, only peaks detected in both samples 429 

were considered. After this first selection, a second round of peaks collapse was performed at the 430 

cell-type level to limit batch effects in downstream analyses. For each cell type, only peaks detected 431 

in all the studies of origin were considered. The final list of peaks was then generated by merging 432 

each set of reproducible peaks. Peaks located on chromosome Y were excluded from the rest of the 433 

analyses. ATAC-Seq counts were retrieved for each sample and each peak using featureCounts (Liao, 434 

Smyth, and Shi 2014). 435 

 436 

Identification of cell-type specific markers 437 

Differential accessibility analysis 438 

To identify cell-type specific markers, we split the samples collection in ten folds (created with the 439 

create_folds function from the R package splitTools (Mayer 2023)). For each fold, we performed 440 

pairwise differential accessibility analysis across the ten cell types considered in the reference 441 

samples as well as the ENCODE samples from diverse organs. The differential analysis was performed 442 

using limma ((Ritchie et al. 2015), version 3.56.2). Effective library sizes were computed using the 443 

method of trimmed mean of M-values (TMM) from the edgeR package in R ((Robinson, McCarthy, 444 

and Smyth 2010), version 3.42.4). Due to differences of library size across all samples collected, we 445 

used voom from the limma package (Law et al. 2014) to transform the data and model the mean-446 
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variance relationship. Finally, a linear model was fitted to the data to assess the differential 447 

accessibility of each peak across each pair of cell types. To identify our marker peaks, all peaks with 448 

log2 fold change higher than 0.2 were selected and ranked by their maximum adjusted p-value across 449 

all pairwise comparisons. The top 200 features (with the lowest maximum adjusted p-value) were 450 

considered as cell-type specific marker peaks. The marker peaks identified in at least three folds were 451 

considered in the final list of marker peaks. 452 

 453 

Marker peaks filtering 454 

Modules of open chromatin regions accessible in all (universal modules) or in specific human tissues 455 

have been identified in the study Zhang et al. (K. Zhang et al. 2021). These regions were used to 456 

refine the set of marker peaks and exclude peaks with residual accessibility in other cell types than 457 

those considered for deconvolution. More precisely, for immune, endothelial and fibroblasts specific 458 

peaks, we filtered out the peaks overlapping the universal modules as well as the tissue specific 459 

modules except the immune (modules 8 to 25), endothelial (modules 26 to 35) and stromal related 460 

modules (modules 41 to 49 and 139-150) respectively. As a second filtering step, we retained 461 

markers exhibiting the highest correlation patterns in tumor bulk samples from different cancer 462 

types, i.e., The Cancer Genome Atlas (TCGA) samples (Corces et al. 2018). We used the Cancer 463 

Genomics Cloud (CGC) (Lau et al. 2017) to retrieve the ATAC-Seq counts for each marker peaks in 464 

each TCGA sample (using featureCounts). For each set of cell-type specific peaks, we identified the 465 

most correlated peaks using the findCorrelation function of the caret R package ((Kuhn 2008), version 466 

6.0-94) with a correlation cutoff value corresponding to the 90th percentile of pairwise Pearson 467 

correlation values. 468 

 469 

Evaluation of the study of origin batch effect  470 

To identify potential batch effect issues, we run principal component analysis (PCA) based on the 471 

cell-type specific peaks after normalizing ATAC-Seq counts using full quantile normalization (FQ-FQ)  472 
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implemented in the EDASeq R package (Risso et al. 2011) to correct for depth and GC biases. These 473 

data were used to visualize the data in two-dimensional space running Uniform Manifold 474 

Approximation (UMAP) based on the PBMC and TME markers (Figure 2B). We also run PCA and used 475 

the ten first principal components to evaluate distances between samples and compute silhouette 476 

coefficients based on the cell type and study of origin classifications. 477 

 478 

Building the reference profiles 479 

It has been previously demonstrated in the context of RNA-Seq based deconvolution approaches 480 

(Racle et al. 2017; Sturm et al. 2019) that the transcripts per million (TPM) transformation is 481 

appropriate to estimate cell fractions from bulk mixtures. We thus normalized the ATAC-Seq counts 482 

of the reference samples using a TPM-like transformation, i.e., dividing counts by peak length, 483 

correcting samples counts for depth and rescaling counts so that the counts of each sample sum to 484 

106. We then computed for each peak the median of the TPM-like counts across all samples from 485 

each cell type to build the reference profiles of the ten cell types considered in the EPIC-ATAC 486 

framework (Figure 2C). In the EPIC algorithm, weights reflecting the variability of each feature of the 487 

reference profile can be considered in the constrained least square optimization. We thus also 488 

computed the inter-quartile range of the TPM-like counts for each feature in each cell type. Two 489 

ATAC-Seq reference profiles are available in the EPIC-ATAC framework: (i) a reference profile 490 

containing profiles for B cells, CD4+ T cells, CD8+ T cells, NK, monocytes, dendritic cells and 491 

neutrophils to deconvolve PBMC samples, and (ii) a reference profile containing profiles for B cells, 492 

CD4+ T cells, CD8+ T cells, NK, dendritic cells, macrophages, neutrophils, fibroblasts and endothelial 493 

cells to deconvolve tumor samples. The reference profiles are available in the EPICATAC R package 494 

and the reference profiles restricted to our cell-type specific marker peaks are available in the 495 

Supplementary Tables 2 and 3.  496 

 497 

Assessing the reproducibility of the marker peaks signal in independent samples 498 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 29, 2024. ; https://doi.org/10.1101/2023.10.11.561826doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.11.561826
http://creativecommons.org/licenses/by-nc/4.0/


   
 

21 
 

We evaluated the chromatin accessibility level of the marker peaks in samples that were not included 499 

in the peak calling step. Firstly, we considered samples from two independent studies (Ucar et al. 500 

2017; Carvalho et al. 2021) providing pure ATAC-Seq data for five immune cell types (i.e., B, CD4+ T 501 

cells, CD8+ T cells, Monocytes, Macrophages) (Figure 2D). To consider the other cell types, samples 502 

that were excluded from the reference dataset due to a low TSS enrichment score were also 503 

considered in this validation dataset (Supplementary Table 1). Secondly, we collected the data from a 504 

single-cell atlas chromatin accessibility from human tissues and considered the cell types included in 505 

our reference data (K. Zhang et al. 2021) (Figure 2E). We used the cell-type annotations provided in 506 

the original study (GEO accession number: GSE184462). The Signac R package ((Stuart et al. 2021), 507 

1.9.0) was used to extract fragments counts for each cell and each marker peak and the ATAC-Seq 508 

signal of each marker peak was averaged across all cells of each cell type. 509 

 510 

Annotation of the marker peaks 511 

The cell-type specific markers were annotated using ChIPseeker R package ((Yu, Wang, and He 2015), 512 

version 1.34.1) and the annotation from TxDb.Hsapiens.UCSC.hg38.knownGene in R to identify the 513 

regions in which the marker peaks are (i.e., promoter, intronic regions, etc.) and ChipEnrich to 514 

associate each peak to the nearest gene TSS (Welch et al. 2014). The nearest genes identified were 515 

then compared to cell-type marker genes listed in the PanglaoDB (Franzén, Gan, and Björkegren 516 

2019) and CellMarker databases (Hu et al. 2023). PanglaoDB provides an online interface to explore a 517 

large collection on single-cell RNA-Seq data as well as a community-curated list of cell-type marker 518 

genes. CellMarker is a database providing a large set of curated cell-type markers for more than 400 519 

cell types in human tissues retrieved from a large collection of single-cell studies and flow cytometry, 520 

immunostaining or experimental studies. ChipEnrich was also used to perform gene set enrichment 521 

and identify for each set of cell-type specific peaks potential biological pathways regulated by the 522 

marker peaks. The enrichment analysis was performed using the chipenrich function (genesets = 523 

"GOBP" , locusdef = "nearest_tss") from the chipenrich R package (v2.22.0). 524 
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Chromatin accessibility peaks can also be annotated for chromatin binding proteins (CBPs) such as 525 

transcription factors (TFs), whose potential binding in the peak region is reported in databases. In our 526 

study we chose the JASPAR2022 (Castro-Mondragon et al. 2022) database and the ReMap database 527 

(Hammal et al. 2022).  528 

Using the JASPAR2022 database, we assessed, for each cell type, whether the cell-type specific 529 

marker peaks were enriched in specific TFs motifs using two TFs enrichment analysis frameworks: 530 

Signac (Stuart et al. 2021) and MonaLisa (Machlab et al. 2022). For the MonaLisa analysis, the cell-531 

types specific markers peaks were categorized in bins of sequences, one bin per cell type (use of the 532 

calcBinnedMotifEnrR function). To test for an enrichment of motifs, the sequences of each bin were 533 

compared to a set of background peaks with similar average size and GC composition obtained by 534 

randomly sampling regions in all the peaks identified from the reference dataset. The enrichment 535 

test was based on a binomial test. For the Signac analysis, we used the FindMotif function to identify 536 

over-represented TF motifs in each set of cell-type specific marker peaks (query). This function used a 537 

hypergeometric test to compare the number of query peaks containing the motif with the total 538 

number of peaks containing the motif in the background regions (matched to have similar GC 539 

content, region length and dinucleotide frequencies as the query regions), corresponding in our case 540 

to the peaks called in the reference dataset.   541 

The ReMap database associates chromatin binding proteins (CBPs), including TFs, transcriptional 542 

coactivators and chromatin-remodeling factors, to their DNA binding regions based on DNA-binding 543 

experiments such as chromatin immunoprecipitation followed by sequencing (ChIP-seq). For each 544 

association of a CBP to its binding region, the cell type in which the binding has been observed is 545 

reported in the ReMap database (biotype). We used the ReMapEnrich R package (version 0.99) to 546 

test if the cell-type specific marker peaks are significantly enriched in CBPs-binding regions listed in 547 

the Remap 2022 catalog. We considered the non-redundant peaks catalog from Remap 2022, 548 

containing non-redundant binding regions for each CBP in each biotype.  Similarly to the previously 549 

mentioned enrichment methods, we chose the consensus peaks called in the reference samples as 550 
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universe for the enrichment test. Note that, for each cell type, an enrichment was retained only if the 551 

biotype in which the CBP-regions were identified matched the correct cell-type. 552 

 553 

Running EPIC-ATAC on bulk ATAC-Seq data 554 

The samples used to generate the reference profiles were aligned using the hg38 reference genome. 555 

To assure the compatibility of any input bulk ATAC-Seq dataset with the EPIC-ATAC marker peaks and 556 

reference profiles, we provide an option to lift over hg19 datasets to hg38 (use of the liftOver R 557 

package). Subsequently, the features of the input bulk matrix are matched to our reference profiles 558 

features. To match both sets of features, we determine for each peak of the input bulk matrix the 559 

distance to the nearest peak in the reference profiles peaks. Overlapping regions are retained and 560 

the feature IDs are matched to their associated nearest peaks.  If multiple features are matched to 561 

the same reference peak, the counts are summed. In RNA-Seq based deconvolution, EPIC uses an 562 

estimation of the amount of mRNA in each reference cell type to derive cell proportions. For the 563 

ATAC-Seq based deconvolution these values were set to 1 to give similar weights to all cell-types 564 

quantifications. 565 

 566 

Datasets used for the evaluation of ATAC-Seq deconvolution  567 

PBMCs ATAC-Seq data from healthy donors 568 

Peripheral blood mononuclear cell (PBMC) isolation 569 

Venous blood from five healthy donors was collected at the local blood transfusion center of Geneva 570 

in Switzerland, under the approval of the Geneva University Hospital’s Institute Review Board, upon 571 

written informed consent and in accordance with the Declaration of Helsinki. PBMCs were freshly 572 

isolated by Lymphoprep (Promega) centrifugation (1800 rpm, 20 minutes, without break, room 573 

temperature). Red blood cell lysis was performed using red blood lysis buffer (Qiagen) and platelets 574 

were removed by centrifugation (1000 rpm, 10 minutes without break, room temperature). Cells 575 

were counted and immediately used. 576 
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 577 

Flow cytometry 578 

Immune cell populations were identified using multiparameter flow cytometry and the following 579 

antibodies: FITC anti-human CD45RA (HI100, Biolegend), PerCP-Cyanine5.5 anti-human CD19 (H1B19, 580 

Biolegend), PE anti-human CD3 (SK7, Biolegend), PE-Dazzle anti-human CD14 (M0P9, BD 581 

Biosciences), PE-Cyanine7 anti-human CD56 (HCD56, Biolegend), APC anti-human CD4 (RPA-T4, 582 

Biolgend), APC-Cyanine7 anti-human CCR7 (G043H7, Biolegend), Brilliant Violet 421 anti-human CD8 583 

(RPA-T8, Biolegend), Brilliant Violet 510 anti-human CD25 (BC96, Biolegend), Brilliant Violet 711 anti-584 

human CD16 (3G8, Biolegend), Brilliant Violet 786 anti-human CD127 (A019D5, Biolegend), Ultra-585 

Brilliant Violet anti-human CD45 (HI30, BD Biosciences), FITC anti-human Celc9a (8F9, Miltenyi) , PE 586 

anti-human XCR1 (S15046E, Biolegend), PE-Dazzle anti-human BDCA-2 (201A, Biolegend), APC anti-587 

human BDCA-3 (AD5-14H12, Miltenyi), Brilliant Violet 421 anti-human CD3 (UCHT1, Biolegend), 588 

Brilliant Violet 421 anti-human CD14 (M5E2, BD Pharmingen), Brilliant Violet 421 anti-human CD19 589 

(SJ25C1, Biolegend), Brilliant Violet 510 anti-human BDCA-1 (L161, Biolegend), Brilliant Violet 650 590 

anti-human CD11c (3.9, Biolegend), Brilliant Violet 711 anti-human CD11c (N418, Biolegend) and 591 

Brilliant Violet 711 anti-human HLA-DR (L243, Biolegend). Dead cells were excluded using the Zombie 592 

UV™ Fixable Viability Kit (Biolegend). Intracellular staining was performed after fixation and 593 

permeabilization of the cells with the FoxP3 Transcription Factor Staining Buffer Set (00-5523-00, 594 

Invitrogen) using Alexa 700 anti-human FoxP3 antibody (259D/C7, BD Biosciences). Data were 595 

acquired on LSRFortessa flow cytometer and analysed using FlowJo software (v10.7.1). 596 

 597 

Cell preparation for ATAC-Sequencing 598 

50000 CD45+ cells were sorted from total PBMCs using anti-human Ultra-Brilliant Violet (BUV395) 599 

CD45 (HI30, BD Biosciences) with a FACSAria II (Becton Dickinson) and were collected in PBS with 600 

10% Foetal Bovine Serum (FBS). Cell pellets were resuspended in cold lysis buffer (10mM Tris-Cl pH 601 

7.4, 10mM NaCl, 3mM MgCl2, 0,1% NP40 and water) and immediately centrifuged at 600g for 30min 602 
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at 4°C. Transposition reaction was performed using the Illumina Tagment DNA Enzyme and Buffer kit 603 

(20034210, Illumina) and transposed DNA was eluted using the MinElute PCR Purification Kit 604 

(Qiagen). Libraries were generated by PCR amplification using indexing primers and NEBNext High-605 

Fidelity Master Mix (New England BioLabs) and were purified using AMPure XP beads (A63880, 606 

Beckman Coulter). Libraries were quantified by a fluorometric method (QubIT, Life Technologies) and 607 

their quality assessed on a Fragment Analyzer (Agilent Technologies). Sequencing was performed as a 608 

paired end 50 cycles run on an Illumina NovaSeq 6000 (v1.5 reagents) at the Genomic Technologies 609 

Facility (GTF) in Lausanne, Switzerland. Raw sequencing data were demultiplexed using the 610 

bcl2fastq2 Conversion Software (version 2.20, Illumina). 611 

 612 

Data processing  613 

The same steps as for the processing of the reference ATAC-Seq samples were followed. (See Pre-614 

processing of the ATAC-Seq datasets).  615 

 616 

ATAC-Seq pseudobulk data from PBMCs and cancer samples 617 

To evaluate the accuracy of our ATAC-Seq deconvolution framework, we generated pseudo-bulk 618 

datasets from 5 single-cell datasets: 619 

• PBMC pseudobulk dataset: combination of three single-cell datasets for PBMCs. 620 

o Dataset 1 corresponds to a scATAC-Seq dataset obtained from Satpathy et al. 621 

(Satpathy et al. 2019) (GEO accession number: GSE129785). This dataset contains 622 

FACS-sorted populations of PBMCs. Since the cells of some cell types came from a 623 

unique donor, all the cells of this dataset were aggregated to form one pseudobulk. 624 

Ground truth cell fractions were obtained by dividing the number of cells in each cell 625 

type by the total number of cells. 626 

o Dataset 2 (included in the PBMC pseudobulk dataset) was retrieved from Granja et 627 

al. (Granja et al. 2019) (GEO accession number GSE139369).  B cells, monocytes, 628 
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dendritic, CD8+, CD4+ T, NK cells, neutrophils from healthy donors were considered. 629 

The neutrophil cells came from a single donor. As for dataset 1, we thus aggregated 630 

all the cells to generate one pseudobulk. Ground truth cell fractions were obtained 631 

by dividing the number of cells in each cell type by the total number of cells. 632 

o Dataset 3 (included in the PBMC pseudobulk dataset) corresponds to the 10X 633 

multiome dataset of PBMC cells (10x Genomics 2021). Since these data come from 634 

one donor, one pseudobulk sample was generated for this dataset. The pseudobulk 635 

was generated by averaging the ATAC-Seq signal from all cells from the following cell 636 

types: B cells, CD4+ T cells , CD8+ T cells, NK cells, Dendritic cells and monocytes. 637 

• Basal cell carcinoma dataset: obtained from the study of Satpathy et al. (Satpathy et al. 638 

2019). This dataset is a scATAC-Seq dataset composed of 13 basal cell carcinoma samples 639 

composed of immune (B cells, plasma cells, CD4+ T cells, CD8+ T cells, NK cells, myeloid cells), 640 

stromal (endothelial and fibroblasts) and cancer cells. Plasma cells and cancer cells were both 641 

considered as uncharacterized cells (i.e., cell types not included in the reference profiles). 642 

Cell annotations were retrieved from the original study.  643 

• Gynecological cancer dataset: obtained from the study of Regner et al. (Regner et al. 2021) 644 

(GEO accession number GSE173682). In this study, the authors performed scATAC-Seq on 11 645 

gynecological cancer samples from two tumor sites (i.e endometrium and ovary) and 646 

composed of immune (B cells, NK and T cells grouped under the same cell-type annotation, 647 

macrophages, mast cells), stromal (fibroblast, endothelial, smooth muscle) and cancer cells. 648 

Mast cells, smooth muscle and cancer cells were considered as uncharacterized cells. Cell 649 

annotations were retrieved from the original study.  650 

For Basal cell carcinoma and Gynecological cancer datasets, one pseudobulk per sample was 651 

generated and ground truth cell fractions were obtained for each sample by dividing the number of 652 

cells in each cell type by the total number of cells in the sample. 653 
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For each dataset, raw fragments files were downloaded from the respective GEO accession numbers 654 

and data were preprocessed using ArchR ((Granja et al. 2021), ArchR R package 1.0.2). Cells with TSS 655 

score below four were removed. Doublets removal was performed using the doubletsRemoval 656 

function from ArchR. To match as much as possible real bulk ATAC-seq data processing, peak calling 657 

was not performed on each cell type or cell cluster as usually done in scATAC-Seq studies but using 658 

all cells for each dataset from the PBMC pseudobulk data or grouping cells by sample for the Basal 659 

cell carcinoma and Gynecological cancer datasets. Peak calling was performed using MACS2 within 660 

the ArchR framework. Fragments counts were extracted using ArchR for each peak called to generate 661 

single-cell peak counts matrices. These matrices were normalized using a TPM-like transformation, 662 

i.e., dividing counts by peak length and correcting samples counts for depth. Finally, for each peak, 663 

the average of the normalized counts was computed across all the cells for each dataset from the 664 

PBMC pseudobulk data and across all the cells of each sample for the Basal cell carcinoma and 665 

Gynecological cancer datasets. Averaged data were then rescaled so that the sum of counts of each 666 

sample sum to 106.  667 

 668 

Bulk ATAC-Seq data from a breast cancer cohort  669 

Bulk ATAC-Seq samples from a breast cancer cohort was obtained from Kumegawa et al. (Kumegawa 670 

et al. 2023). These data include 42 breast cancer samples which can be classified based on two 671 

features: (i) the breast cancer subtype ER+/HER2- or triple negative, and (ii) the molecular 672 

classification provided by the original study (CA-A, CA-B and CA-C). The ATAC-Seq raw counts and the 673 

samples metadata were retrieved from figshare (Kumegawa 2023). As for the previously mentioned 674 

datasets, raw counts were normalized using the TPM-like transformation prior to bulk deconvolution. 675 

 676 

Benchmarking of the EPIC-ATAC framework against other existing deconvolution tools 677 

The performances of the EPIC-ATAC framework were benchmarked against the following 678 

deconvolution tools: 679 
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• quanTIseq (Finotello et al. 2019) is a deconvolution tool using constrained least square 680 

regression to deconvolve RNA-Seq bulk samples. No reference profiles are available in this 681 

framework to perform ATAC-Seq deconvolution and quanTIseq does not provide the option 682 

to automatically build reference profiles from pure bulk samples. quanTIseq was thus run 683 

using the reference profiles derived in this work for the EPIC-ATAC framework and the 684 

quanTIseq function from the quantiseqr R package (parameters: scaling set to 1 for all cell 685 

types and method set to "lsei").  686 

• DeconPeaker (H. Li et al. 2020) relies on SIMPLS, a variant of partial least square regression 687 

to perform bulk RNA-Seq and bulk ATAC-Seq deconvolution. ATAC-Seq reference profiles are 688 

available in this deconvolution framework however not all cell types considered in the EPIC-689 

ATAC framework are included in the DeconPeaker reference profiles. This tool was thus run 690 

using different reference profiles: (i) the reference profiles derived in this work for the EPIC-691 

ATAC framework (corresponds to “DeconPeaker” or “DeconPeaker_ourmarkers” in our 692 

analyses), and (ii) reference profiles automatically generated by DeconPeaker from the 693 

sorted reference samples collected in this work (corresponds to “DeconPeaker_cust.” in our 694 

analyses). The results of DeconPeaker obtained using its original markers and profiles are 695 

also provided for the cell types in common with the cell types considered in this work in 696 

Supplementary Figures 3 and 5. Deconvolution was run using the deconvolution module 697 

deconPeaker (using findctsps with the following parameter: --lib-strategy=ATAC-Seq). 698 

DeconPeaker outputs cell-type proportions relative to the total amount of cells from the 699 

reference cell types.  700 

• CIBERSORTx (Newman et al. 2019) is a deconvolution algorithm based on linear support 701 

vector regression.  CIBERSORTx does not provide ATAC-Seq reference profiles, however it is 702 

possible to automatically generate new profiles from a set of pure bulk samples. This tool 703 

was thus run using different reference profiles: i) the reference profiles derived in this work 704 

for the EPIC-ATAC framework (corresponds to “CIBERSORTx” or “CIBERSORTx_ourMarkers” 705 
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in our analyses), and ii) reference profiles automatically generated by CIBERSORTx from the 706 

sorted reference samples collected in this work (corresponds to “CIBERSORTx_cust.” in our 707 

analyses). To run CIBERSORTx, we used the docker container provided by the authors of 708 

CIBERSORTx on their website. The algorithm was run using the default options (i.e --absolute 709 

FALSE, --rmbatchBmode FALSE and –rmbatchSmode FALSE), which results in cell-type 710 

proportions relative to the total amount of cells from the reference cell types. 711 

• ABIS (Monaco et al. 2019) uses robust linear modeling to estimate cell-type proportions in 712 

bulk RNA-Seq samples. No ATAC-Seq reference profiles are available in the deconvolution 713 

framework. ABIS was run using the EPIC-ATAC reference profiles by using the rlm function 714 

from the MASS R package (as performed in the deconvolute_abis function from the 715 

immunedeconv R package (Sturm et al. 2019) was used to quantify each cell type from the 716 

reference profiles. The cell-types quantifications returned by this approach are in arbitrary 717 

units. To compare the estimations and the true cell proportions, we scaled the estimations of 718 

each sample between 0 and 1 to obtained relative proportions.  719 

• MCPcounter (Becht et al. 2016): MCPcounter returns scores instead of cell type proportions. 720 

The scores were obtained using the appendSignatures function from the MCPcounter R 721 

package by providing the list of marker peaks specific to each cell type. The cell-type scores 722 

are not comparable between cell type, MCPcounter was thus included only in the evaluation 723 

of the performances in each cell type separately. 724 

 725 

For all the tools, TPM-like data were used as input bulk samples for the deconvolution. 726 

Since CIBERSORTx, ABIS and DeconPeaker do not predict proportions of uncharacterized cells, we 727 

performed two benchmarking analyses: (i) including all cell types and (ii) excluding the cell types that 728 

are absent from the reference profiles (uncharacterized cells) and rescaling the estimated and true 729 

proportions of the immune cells, endothelial cells and fibroblasts so that their sum equals 1. 730 

 731 
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Comparing deconvolution based on RNA-Seq, gene activity or peaks features. 732 

100 pseudobulks were generated from the 10X PBMC multiome dataset (10x Genomics 2021) based 733 

on 3000 cells for each pseudobulk. Cell fractions were defined using the rdirichlet function from the 734 

gtools R package. Three sets of features were extracted from the data, i.e., gene expression features 735 

extracted from the RNA-Seq layer, ATAC-Seq peaks and gene activity derived from the ATAC-Seq 736 

layer. The same cells sampling was considered for each modality.  737 

Gene activity features were extracted from the single-cell data using ArchR (1.0.2), which considers 738 

distal elements and adjusts for large differences in gene size in the gene activity score calculation. 739 

Gene activity pseudobulks were built by averaging the gene activity scores across all cells belonging 740 

to the pseudobulk. For ATAC-Seq pseudobulk, peaks called using ArchR on all cells form the 10X 741 

dataset were considered (see the method section “ATAC-Seq pseudobulk data from PBMCs and 742 

cancer samples”) and counts were averaged across all cells of each pseudobulk. For RNA-Seq 743 

pseudobulks, counts were also averaged across all cells of each pseudobulk. All aggregated data were 744 

depth normalized across each features to 106. Cell-type deconvolution was performed on each 745 

pseudobulk using EPIC-ATAC on the peak matrix using our ATAC-Seq marker peaks and reference 746 

profiles. The RNA-Seq and gene activity pseudobulks were deconvolved with EPIC. 747 

 748 

Code availability 749 

The code to download and preprocess publicly available ATAC-Seq samples as well as the code used 750 

to identify our cell-type specific marker peaks and generate the reference profiles is available on 751 

GitHub (https://github.com/GfellerLab/EPIC-ATAC_Manuscript). A README file is provided on the 752 

GitHub repository with more details on how to use the code.  753 

The code to perform ATAC-Seq deconvolution using the EPIC-ATAC framework is available as an R 754 

package called EPICATAC and is available on GitHub (https://github.com/GfellerLab/EPIC-ATAC).  755 

 756 

Data availability 757 
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The newly generated ATAC-Seq data have been deposited on Zenodo (doi: 758 

10.5281/zenodo.8431792). The other data related to this work are available in the supplementary 759 

tables and on the Zenodo deposit (doi: 10.5281/zenodo.8431792). 760 
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 775 

Figure legends: 776 

Figure 1: Graphical description of the identification of cell-type specific marker peaks and reference 777 

ATAC-Seq profiles included in the EPIC-ATAC framework. 1) 564 pure ATAC-Seq data of sorted cells 778 

were collected to build reference profiles for cancer-relevant cell populations. 2) Cell-type specific 779 

marker peaks were identified using differential accessibility analysis. 3) Markers with previously 780 

observed chromatin accessibility in human healthy tissues were then excluded. 4) For tumor bulk 781 

deconvolution, the set of remaining marker peaks was refined by selecting markers with correlated 782 

behavior in tumor bulk samples. 5) The cell-type specific marker peaks and reference profiles were 783 
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finally integrated in the EPIC-ATAC framework to perform bulk ATAC-Seq deconvolution. Parts of this 784 

figure were created with BioRender.com.    785 

 786 

Figure 2: ATAC-Seq data from sorted cell populations reveal cell-type specific marker peaks and 787 

reference profiles. A) Number of samples collected for each cell type. The colors correspond to the 788 

different studies of origin. B) Representation of the collected samples in 2D using UMAP based on the 789 

PBMC markers (left) and TME markers (right). Colors correspond to cell types. C) Scaled averaged 790 

chromatin accessibility of the cell-type specific marker peaks (rows) in each cell type (columns) in the 791 

ATAC-Seq reference samples used to identify the marker peaks. D) Scaled averaged chromatin 792 

accessibility of the marker peaks in external ATAC-Seq data from samples of pure cell types excluded 793 

from the reference samples (see Material and Methods). E) Scaled averaged chromatin accessibility of 794 

the marker peaks in an external scATAC-Seq dataset (Human Atlas (K. Zhang et al. 2021)). F) 795 

Distribution of the marker peak distances to the nearest transcription start site (TSS) (left panel) and 796 

the ChiPSeeker annotations (right panel). G) Significance (-log10(q.value)) of pathways (columns) 797 

enrichment test obtained using ChIP-Enrich on each set of cell-type specific marker peaks (rows). A 798 

subset of relevant enriched pathways is represented. Colors of the names of the pathways correspond 799 

to cell types where the pathways were found to be enriched. When pathways were significantly 800 

enriched in more than one set of peaks, pathways names are written in bold. 801 

 802 

Figure 3: EPIC-ATAC accurately estimates immune cell fractions in PBMC ATAC-Seq samples. A) 803 

Schematic description of the experiment designed to validate the ATAC-Seq deconvolution on PBMC 804 

samples. B) Comparison between cell-type proportions predicted by EPIC-ATAC and the true 805 

proportions in the PBMC bulk dataset. Symbols correspond to donors. C) Comparison between the 806 

proportions of cell-types predicted by EPIC-ATAC and the true proportions in the PBMC pseudobulk 807 

dataset. Symbols correspond to pseudobulks. D) Pearson correlation (left) and RMSE (right) values 808 

obtained by each deconvolution tool on the PBMC bulk dataset. The EPIC-ATAC results are highlighted 809 
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in red. E) Pearson correlation (left) and RMSE (right) values obtained by each deconvolution tool on 810 

the PBMC pseudobulk dataset. Parts of this figure (panel 1) were created with BioRender.com.    811 

 812 

Figure 4: EPIC-ATAC accurately predicts fractions of cancer and non-malignant cells in tumor 813 

samples. A) Comparison between cell-type proportions estimated by EPIC-ATAC and true proportions 814 

for the basal cell carcinoma (top) and gynecological (bottom) pseudobulk datasets. Symbols 815 

correspond to pseudobulks. B) Pearson’s correlation and RMSE values obtained for the deconvolution 816 

tools included in the benchmark. EPIC-ATAC is highlighted in red. C) Same analyses as in panels B, 817 

with the uncharacterized cell population excluded for the evaluation of the predictions accuracy. The 818 

predicted and true proportions of the immune, stromal and vascular cell types were rescaled to sum 819 

to 1.  820 

 821 

Figure 5: T cell subtypes quantification reveals the ATAC-Seq deconvolution limits for closely 822 

related cell types. A) Comparison of the proportions estimated by EPIC-ATAC and the true proportions 823 

for PBMC samples (PBMC experiment and PBMC pseudobulk samples combined) (top) and the basal 824 

cell carcinoma pseudobulks (bottom). Predictions of the proportions of CD4+ and CD8+ T-cells were 825 

obtained using the reference profiles based on the major cell types and subtype predictions using the 826 

reference profiles including the T-cell subtypes. B) Pearson’s correlation values obtained by EPIC-ATAC 827 

in each cell type.  828 

 829 

Figure 6: EPIC-ATAC accurately infers the immune contexture in a bulk ATAC-Seq breast cancer 830 

cohort. A) Proportions of different cell types predicted by EPIC-ATAC in the samples stratified based 831 

on two breast cancer subtypes. B) Proportions of different cell types predicted by EPIC-ATAC in the 832 

samples stratified based on three ER+/HER2- subgroups. Wilcoxon test p-values are represented at 833 

the top of the boxplots.  834 
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Figure 7: EPIC-ATAC performs similarly to EPIC RNA-seq based deconvolution and better than gene 836 

activity based deconvolution. Pearson’s correlation (left) and RMSE (right) values comparing the 837 

proportions predicted by the ATAC-Seq deconvolution, the RNA-Seq deconvolution and the GA-based 838 

RNA deconvolution and true cell-type proportions in the 100 pseudobulks simulated form the 10x 839 

multiome PBMC dataset (10x Genomics 2021). Dots correspond to outlier pseudobulks.   840 

 841 
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subtypes included).  852 

Sup. Table 9: Averaged chromatin accessibility of the TME marker peaks in each cell-type (T cells 853 

subtypes included).  854 

Sup. Table 10: Annotations of the cell-type specific PBMC marker peaks (T cells subtypes included).  855 

Sup. Table 11: Annotations of the cell-type specific TME marker peaks (T cells subtypes included).  856 

Sup. Table 12: GO pathways enriched in each set of cell-type specific PBMC marker peaks (T cell 857 
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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