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Abstract14

Immunotherapies can halt or slow down cancer progression by activat-15

ing either endogenous or engineered T cells to detect and kill cancer16

cells. For immunotherapies to be e↵ective, T cells must be able to infil-17

trate the tumor microenvironment. However, many solid tumors resist18

T-cell infiltration, challenging the e�cacy of current therapies. Here,19

we introduce Morpheus, an integrated deep learning framework that20

takes large scale spatial omics profiles of patient tumors, and com-21

bines a formulation of T-cell infiltration prediction as a self-supervised22

machine learning problem with a counterfactual optimization strat-23

egy to generate minimal tumor perturbations predicted to boost T-cell24

infiltration. We applied our framework to 368 metastatic melanoma25

and colorectal cancer (with liver metastases) samples assayed using26

40-plex imaging mass cytometry, discovering cohort-dependent, combi-27

natorial perturbations, involving CXCL9, CXCL10, CCL22 and CCL1828

for melanoma and CXCR4, PD-1, PD-L1 and CYR61 for colorec-29

tal cancer, predicted to support T-cell infiltration across large patient30
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cohorts. Our work presents a paradigm for counterfactual-based pre-31

diction and design of cancer therapeutics using spatial omics data.32

Introduction33

The immune composition of the tumor microenvironment (TME) plays34

a crucial role in determining patient prognosis and response to cancer35

immunotherapies [1–3]. Immunotherapies that alter the immune composition36

using transplanted or engineered immune cells (chimeric antigen receptor T37

cell therapy) or remove immunosuppressive signaling (checkpoint inhibitors)38

have shown exciting results in relapsed and refractory tumors in hematolog-39

ical cancers and some solid tumors. However, e↵ective therapeutic strategies40

for most solid tumors remain limited [4–6]. The TME is a complex mixture of41

immune cells, including T cells, B cells, natural killer cells, and macrophages,42

as well as stromal cells and tumor cells [1]. The interactions between these43

cells can either promote or suppress tumor growth and progression, and ulti-44

mately impact patient outcomes. For example, high levels of tumor-infiltrating45

lymphocytes (TILs) in the TME are associated with improved prognosis and46

response to immunotherapy across multiple cancer types [7, 8]. Conversely,47

an immunosuppressive TME characterized by low levels of TILs is associated48

with poor prognosis and reduced response to immunotherapy [9]. Durable,49

long-term clinical response of T-cell-based immunotherapies are often con-50

strained by a lack of T-cell infiltration into the tumor, as seen in classically51

“cold” tumors such as triple-negative breast cancer or pancreatic cancer, which52

have seen little benefit from immunotherapy [10–12]. The precise cellular and53

molecular factors that limit T-cell infiltration into tumors is an open question.54

Spatial omics technologies capture the spatial organization of cells and55

molecular signals in intact human tumors with unprecedented molecular detail,56

revealing the relationship between localization of di↵erent cell types and tens57

to thousands of molecular signals [13]. T-cell infiltration is modulated by58

a rich array of signals within the tumor microenvironment (TME) such as59

chemokines, adhesion molecules, tumor antigens, immune checkpoints, and60

their cognate receptors [14]. Recent advances in in situ molecular profiling61

techniques, including spatial transcriptomic [15, 16] and proteomic [17, 18]62

methods, simultaneously capture the spatial relationship of tens to thousands63

of molecular signals and T cell localization in intact human tumors with64

micron-scale resolution. Imaging mass cytometry (IMC) is one such technol-65

ogy that uses metal-labeled antibodies to enable simultaneous detection of up66

to 40 antigens and transcripts in intact tissue [17].67

Recent work on computational methods as applied to multiplexed tumor68

images have primarily focused on predicting patient-level phenotypes such as69

survival, by identifying spatial motifs from tumor microenvironments [19–22].70
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These methods have generated valuable insights into how the complex compo-71

sition of TMEs influences patient prognosis and treatment response, but they72

fall short of generating concrete, testable hypotheses for therapeutic interven-73

tions that may improve patient outcomes. Given the prognostic significance of74

T-cell infiltration into tumors, we need computational tools that can predict75

immune cell localization from environmental signals and systematically gener-76

ate specific, feasible tumor perturbations that are predicted to alter the TME77

to improve patient outcomes.78

Counterfactual explanations (CFEs) can provide important insight in79

image analysis applications [23], but have not been applied to multiplexed80

imaging data. Traditionally, CFEs help clarify machine learning model deci-81

sions by exploring hypothetical scenarios, showing how the model’s interpre-82

tation would change if a feature in an image were altered slightly [24]. For83

instance, slight pixel intensity variations or minor edge alterations in a tumor’s84

appearance on an X-ray might lead a diagnostic model to classify the scan85

di↵erently. Numerous CFE algorithms exist to elucidate a model’s decision86

boundaries and shed light on its sensitivity to specific image features [25]. In87

multiplexed tissue images where each pixel captures detailed molecular infor-88

mation, variations in pixel intensity directly correspond to specific molecular89

interventions. Thus, spatial omics data enables the extension of CFEs from90

understanding to predicting actionable interventions.91

In this work, we introduce Morpheus, an integrated deep learning frame-92

work that first leverages large scale spatial omics profiles of patient tumors to93

formulate T-cell infiltration prediction as a self-supervised machine learning94

(ML) problem, and combines this prediction task with counterfactual opti-95

mization to propose tumor perturbations that are predicted to boost T-cell96

infiltration. Specifically, we train a convolutional neural network to predict T-97

cell infiltration using spatial maps of the TME provided by IMC.We then apply98

a gradient-based counterfactual generation strategy to the infiltration neural99

network to compute changes to the signaling molecule levels that increase pre-100

dicted T-cell abundance. We apply Morpheus to melanoma [26] and colorectal101

cancer (CRC) with liver metastases [27] to discover tumor perturbations that102

are predicted to support T cell infiltration in tens to hundreds of patients.103

We provide further validation of ML-based T-cell infiltration prediction using104

an additional breast cancer data set [28]. For patients with melanoma, Mor-105

pheus predicts combinatorial perturbation to the CXCL9, CXCL10, CCL22106

and CCL18 levels can convert immune-excluded tumors to immune-inflamed107

in a cohort of 69 patients. For CRC liver metastasis, Morpheus discovered108

two cohort-dependent therapeutic strategies consisting of blocking di↵erent109

subsets of CXCR4, PD-1, PD-L1 and CYR61 that are predicted to improve110

T-cell infiltration in a cohort of 30 patients. Our work provides a paradigm111

for counterfactual-based prediction and design of cancer therapeutics based on112

classification of immune system activity in spatial omics data.113
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Results114

Counterfactual optimization for therapeutic prediction115

The general logic of Morpheus (Figure 1A) is to first train, in a self-supervised116

manner, a classifier to predict the presence of CD8+ T cells from multiplexed117

tissue images (Figure 1B). Then we compute counterfactual instances of the118

data by performing gradient descent on the input image, allowing us to dis-119

cover perturbations to the tumor image that increases the classifier’s predicted120

likelihood of CD8+ T cells being present (Figure 1C). The altered image rep-121

resents a perturbation of the TME predicted to improve T-cell infiltration. We122

mask CD8+ T cells from all images to prevent the classifier from simply mem-123

orizing T-cell expression patterns, guiding it instead to learn environmental124

features indicative of T-cell presence.125

We leverage IMC profiles of human tumors to train a classifier to predict126

the spatial distribution of CD8+ T cell in a self-supervised manner. Consider127

a set of images {I(i)}, obtained by dividing IMC profiles of tumor sections128

into local patches of tissue signaling environments, where I(i) 2 Rl⇥w⇥c is an129

array with l and w denoting the pixel length and width of the image and c130

denoting the number of molecular channels in the images (Figure 1B). Each131

image shows the level of c proteins across all cells within a small patch of132

tissue. From patch I(i), we obtain a binary label s(i) indicating the presence133

and absence of CD8+ T cells in the patch and a masked copy x(i) with all134

signals originating from CD8+ T cells removed (see Methods). The task for the135

model f is to classify whether T cells are present (s(i) = 1) or absent (s(i) = 0)136

in image I(i) using only its masked copy x(i). Specifically, f(x(i)) 2 [0, 1] is the137

predicted probability of T cells, and then we apply a classification threshold138

p to convert this probability to a predicted label ŝ(i) 2 {0, 1}. Since we obtain139

the image label s(i) from the image I(i) itself by unsupervised clustering of140

individual cells, our overall task is inherently self-supervised.141

Given a set of image patches, we train a model f to minimize the following
T cell prediction loss, also known as the binary cross entropy (BCE) loss,

L = � 1

N
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Fig. 1: An integrated counterfactual optimization framework for
discovering therapeutic strategies predicted to drive CD8+ T cell
infiltration in human tumors. (A) Overview of the Morpheus framework,
which consists of first (B) training a neural network classifier to predict the
presence of CD8+ T cells from multiplexed tissue images where CD8+ T cells
are masked. (C) The trained classifier is then used to compute an optimal per-
turbation vector �(i) per patch by jointly minimizing three loss terms (Lpred,
Ldist, Lproto). The perturbation �(i) represents a strategy for altering the level

of a small number of signaling molecules in patch x(i)
0 in a way that increases

the probability of T cell presence as predicted by the classifier. The optimiza-
tion also favors perturbations that shift the image patch to be more similar to
its nearest T-cell patches in the training data, shown as proto. Each perturba-
tion corresponds to adjusting the relative intensity of each imaging channel.
Taking the median across all perturbations produces a whole-tumor pertur-
bation strategy, which we assess by perturbing in silico tumor images from a
test patient cohort and examining the predicted T cell distribution after per-
turbation.
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The RMSE is a measure of the di↵erences between the observed and pre-144

dicted proportions of T cell patches in a tissue section averaged across a set of145

tissues ⌦, which we take to be the validation set.146

We evaluated the performance of various classifiers, including both tradi-147

tional convolutional neural networks (CNNs) and vision transformers. In all148

cases, we observed similar performance (Table S3). We settled on a U-Net149

architecture because of ease of extension of the model to multichannel data150

sets. Our U-Net classifier consists of a standard U-Net architecture [29] and151

a fully-connected layer with softmax activation (Methods). To increase the152

number of samples available for training, we take advantage of the spatial het-153

erogeneity of TMEs and divide each tissue image into 48 µm ⇥ 48 µm patches154

upon which the classifier is trained to predict T cell presence (Methods).155

Using our trained classifier and IMC images of tumors, we employ a coun-
terfactual optimization method to predict tumor perturbations that enhance

CD8+ T cell infiltration (Figure 1C). For each image patch x(i)
0 lacking CD8+

T cell, our optimization algorithm searches for a perturbation �(i) such that

our classifier f predicts the perturbed patch x(i)
p = x(i)

0 +�(i) as having T cells,

hence x(i)
p is referred to as a counterfactual instance. Ideally, we also want our

perturbation to be minimal in that it only requires targeting a small number
of molecule, and realistic in that the counterfactual instance is not far from
image patches in our training data so we can be more confident of the model’s
prediction. We can obtain a perturbation �(i) with these desired properties by
solving the following optimization problem adopted from [30],

�(i) = min
�

Lpred(x
(i)
0 , �) + Ldist(�) + Lproto(x

(i)
0 , �), (4)

such that

Lpred(x
(i)
0 , �) = cmax(�f(x(i)

0 + �), �p),

Ldist(�) = �k�k1 + k�k22,

Lproto(x
(i)
0 , �) = ✓kx(i)

0 + � � proto(i)k22

(5)

where �(i) is a 3D tensor that describes perturbation made to each pixel of the156

patch.157

The three loss terms in Equation (4) each correspond to a desirable prop-158

erty of the perturbation we aim to discover. The term Lpred encourages validity,159

in that the perturbation increases the classifier’s predicted probability of T160

cells to be larger than p, so the network will predict the perturbed tissue patch161

as having T cells when it previously did not contain T cells. Next, the term162

Ldist encourages sparsity, in that the perturbation does not require making163

many changes to the TME, by minimizing the distance between the original164

patch x(i)
0 and the perturbed patch x(i)

p = x(i)
0 + � using elastic net regulariza-165

tion. Lastly, the term proto(i) in the expression for Lproto refers to the nearest166

neighbour of x(i)
0 among all patches in the training set that are classified as167
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having T cells (see Methods). Thus the term Lproto explicitly guides the per-168

turbed image x(i)
p to lie close to the data manifold defined by our training set,169

making perturbed patches appear similar to what has been observed in TMEs170

infiltrated by T cells.171

Since drug treatments cannot act at the spatial resolution of individual
micron-scale pixels, we constrain our search space to only perturbations that
a↵ect all cells in the image uniformly. Specifically, we only search for pertur-
bations that change the level of any molecule by the same relative amount
across all cells in an image. We incorporate this constraint by defining �(i) in
the following way,

�(i) = �(i) �3 x
(i)
0 , (6)

where �(i) 2 Rc defines a single factor for each channel in the image and the172

circled dot operator represent channel-wise multiplication, so that within each173

channel, the scaling factor is constant across the spatial dimensions of the174

image. In practice, we directly optimize for �(i), where �(i)
j can be interpreted175

as the relative change to the mean intensity of the j-th channel. However,176

given our classifier does have fine spatial resolution, we can search for targeted177

therapies such as perturbing only a specific cell type or restricting the per-178

turbation to specific tissue locations by changing Equation (6) to match these179

di↵erent types of perturbation.180

Taken together, our algorithm obtains an altered image predicted to contain181

T cells from an original image which lacks T cells, by minimally perturbing the182

original image in the direction of the nearest training patch containing T cells183

until the classifier predicts the perturbed image to contain T cells. Since our184

strategy may find di↵erent perturbations for di↵erent tumor patches, we reduce185

the set of patch-wise perturbations {�(i)}i to a whole-tumor perturbation by186

taking the median across the entire set.187
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Convolutional neural networks predict T-cell distribution188

Fig. 2:U-Net classifiers accurately predict T cell distribution in IMC
images of melanoma, metastatic liver, and breast tumor. (A) His-
tograms showing the distribution of tumor cores per patient and CD8+ T cell
fractions per core across all three data sets and data splits. (B) Predicted and
actual T cell distribution of tissue sections from test cohorts in melanoma, liver
tumor, and breast tumor data set. (C) Predicted and true proportion of patches
with T cells within a tissue section, each dot corresponds to a tissue section,
diagonal black line indicates perfect prediction. (D) The RMSE (Equation (3))
across all (test) tissue sections for three di↵erent classes of models.

We applied Morpheus to two publicly available IMC data sets of tumors from189

patients with metastatic melanoma [26] and colorectal cancer (CRC) with190

liver metastases [27] (Figure 2A). We validate the infiltration prediction on an191
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additional breast cancer data set [28]. While this breast cancer data focuses192

on cell type markers over functional modulators of T-cell infiltration, making193

it unsuitable for therapeutic prediction, it serves to further validate our ML-194

based prediction of T-cell infiltration.195

The melanoma data set [26] was obtained by IMC imaging of 159 tumor196

cores from 69 patients with stage III or IV metastatic melanoma. Each tis-197

sue was imaged across 39 molecular channels, consisting of markers for tumor,198

immune, and stromal cells, as well as 11 di↵erent chemokines (RNA) (Meth-199

ods). The CRC data set [27] consists of 209 tissue sections taken from 30200

patients imaged across 42 channels, including 60 sections from primary CRC201

tumors, 89 sections CRC metastases to the liver and 60 “healthy” liver sections202

obtained away from the metastases (Methods). The breast cancer data set [28]203

was obtained by IMC imaging of 749 breast tumor cores from 693 patients.204

The tissues were imaged across 37 channels, consisting of markers for tumor,205

lymphoid, myeloid and stromal cells (Methods).206

For each of the three tumor data sets, we trained a separate U-Net clas-207

sifier that e↵ectively predicts CD8+ T cell infiltration level in unseen tumor208

sections (Methods). The two classifiers trained on melanoma and CRC data209

sets achieved the best performance with an AUROC of 0.77 and 0.8 respec-210

tively, whereas the classifier trained on breast tumors achieved a AUROC of211

0.71 (Table S2). Figure 2B shows examples of actual and predicted T cell212

distributions in tumor sections. For each tissue section of a cancer type, the pre-213

dictions were obtained by applying the corresponding U-Net classifier to each214

image patch independently. By visual inspection, our classifiers consistently215

captures the general distribution of T cells. Comparing the true proportion of216

T-cell patches in a tissue section against our predicted proportion also shows217

strong agreement (Figure 2C). The true proportion of patches with T cells218

is calculated by dividing the number of patches within a tissue section that219

contain CD8+ T cells by the total number of patches within that section.220

We quantify the performance of our U-Nets on the entire test data set using221

the RMSE (Equation (3)), which represents the mean di↵erence between our222

predicted proportion and the true proportion per tumor section (Figure 2D).223

Our classifiers performs well on liver tumor and melanoma, achieving a RMSE224

of only 6% and 8% respectively and a relatively lower performance of 11%225

on breast tumor. Taken together, these results suggest that our classifier can226

accurately predict the T cell infiltration status of multiple tumor types.227

In order to gain insight into the relative importance of non-linearity and228

spatial information in the performance of the U-Net on the T cell clasification229

task, we compared the U-nets’ performance to a logistic regression model (LR)230

and a multi-layer perceptron (MLP). Both the LR and MLP model are given231

only mean channel intensities as input, so neither have explicit spatial infor-232

mation. Furthermore, the LR model is a linear model with a threshold whereas233

the MLP is a non-linear model. Figure 2D shows that across all three cancer234

data sets, the MLP classifier consistently outperforms the logistic regression235

model, reducing RMSE by 20� 40% to suggest that there are significant non-236

linear interactions between di↵erent molecular features in terms of their e↵ect237
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on T cell localization. The importance of spatial features on the T cell pre-238

diction task, however, is less consistent across cancer types. Figure 2D shows239

that for predicting T cells in breast tumor, the U-Net model o↵ers negligible240

boost in performance relative to the MLP model (< 2% RMSE reduction),241

whereas for liver tumor, the U-Net model achieved a RMSE 50% lower com-242

pared to the MLP model. This result suggests that the spatial organization243

of signals may have a stronger influence on CD8+ T cell localization in liver244

tumor compared to breast tumor.245
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Applying Morpheus to metastatic melanoma samples246

Fig. 3: Combinatorial chemokine therapy predicted to drive T cell
infiltration in patients with metastatic melanoma (A) Whole-tumor
perturbations optimized across IMC images of patients (row) from the training
cohort, with bar graph showing the median relative change in intensity for
each molecule.
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Fig. 3: (continued) (B) Distribution of cancer stages among patients within
two clusters, gray indicates unknown stage, chance probability from hyper-
geometric distribution. (C) Volcano plot comparing chemokine level and cell
type abundance from patient cluster 1 and 2, computed using mean values
and Wilcoxon rank sum test. Gray indicates non-statistical significance. (D)
Patch-wise chemokine profile (left); 1-D heatmap (right): infiltration status
(light/dark = from infiltrated/deserted tumor), tumor cell (light/dark = pre-
sent/absent), CD8+ T cells (light/dark = present/absent). (E) Patch-wise
correlation between chemokine signals and the presence of CD8+ T cells. (F)
(Top) UMAP projection of tumor patches (chemokine channels) show a clear
separation of masked patches with and without T cells. (Bottom) colored
arrows connect UMAP projection of patches without T cells and their cor-
responding counterfactual (perturbed) patch, where the colors correspond to
k-nearest neighbor clusters (i-iv) of the counterfactual patches, highlighting
the minimal nature of the perturbations. Pie charts (i-iv) shows the distribu-
tion of patients whose original tumor patches are found in the corresponding
cluster regions in the UMAP. (G) Cell maps computed from a patient’s IMC
image, showing the distribution of T cells before and after perturbation. (H)
Original vs. perturbed (predicted) mean infiltration level across all patients
(test cohort) with 95% confidence interval (only shown for patients with more
than 2 samples). Stage IV patients received perturbation strategy 1 (yellow),
stage III patients received perturbation strategy 2 (green). (I) Mean infiltra-
tion level across all patients (test cohort) for optimized perturbation strategies
of varying sparsity, error bar represents 95% CI.

Applying our counterfactual optimization procedure using the U-Net classifier247

trained on melanoma IMC images, we discovered a combinatorial therapy pre-248

dicted to be highly e↵ective in improving T cell infiltration in patients with249

melanoma. We restricted the optimization algorithm to only perturb the level250

of chemokines, which are a family of secreted proteins that are known for their251

ability to stimulate cell migration [31] and have already been harnessed to aug-252

ment T-cell therapy [32]. By optimizing over multiple chemokines, Morpheus253

opens the door to combinatorial chemokine therapeutics that has the poten-254

tially to more e↵ectively enhance T cell infiltration into tumors. Figure 3A255

shows that patients from the training cohort separate into two clusters based256

on hierarchical clustering of perturbations computed for each patient. Tak-257

ing median across all patients in cluster 1, the optimized perturbation is to258

increase CXCL9 level by 370%, whereas in patient cluster 2, the optimized259

perturbation consists of increasing CXCL10 level by 280% while decreasing260

CCL18 and CCL22 levels by 100% and 70% respectively (Figure 3A). Both261

CXCL9 and CXCL10 are well-known for playing a role in the recruitment262

of CD8+ T cells to tumors. On the other hand, CCL22 is known to be a263

key chemokine for recruiting regulatory T cells [33] and CCL18 is known to264

induce an M2-macrophage phenotype [34], so their expression likely promotes265
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an immunosuppressive microenvironment inhibitory to T cell infiltration and266

function.267

Figure 3B shows that the choice of which of these two strategies was268

selected for a patient appears to be strongly associated with the patient’s can-269

cer stage, with strategy 1 being significantly enriched for patients with stage IV270

metastatic melanoma and strategy 2 being significantly enriched for patients271

with stage III cancer, with a probability of 0.053 of such di↵erence being due272

to chance. Probing deeper into the di↵erence between these two patient clus-273

ters, we find that all chemokines have lower mean expression in the tumors of274

patients in cluster 1 compared to cluster 2, while there are no significant dif-275

ferences between the two groups in terms of the cell type compositions within276

tumors (Figure 3C). Since the levels of CCL22 and CCL18 is 37% and 31%277

higher in patients from cluster 2 and both chemokines have been implicated in278

having an inhibitory e↵ect on T-cell infiltration, it is reasonable that the opti-279

mization algorithm suggests inhibiting CCL18 and CCL22 only for patients280

in cluster 2. However, the switch from boosting CXCL9 to CXCL10 is not as281

straightforward. A possible explanations is that boosting CXCL10 is impor-282

tant when blocking CCL18 and CCL22 in order for the perturbed patches to283

stay close to the data manifold, leading to more realistic tissue environments.284

Morpheus selected perturbations that would make the chemokine composi-285

tion of a TME more similar to T cell rich regions of immune-infiltrated tumors.286

Figure 3D shows that melanoma tissue patches can be clustered into distinct287

groups based on their chemokine concentration profile. One cluster (high-288

lighted in blue) contains exactly the patches from immune-infiltrated tumors289

that contain both tumor and T cells, which likely represents a chemokine290

signature that is suitable for T cell infiltration. Alternately, a second cluster291

(highlighted in red) which contains patches from immune-desert tumors that292

have tumor cells but no T cells likely represents an unfavorable chemokine sig-293

nature. In comparison to the cluster highlighted in red, Figure 3D shows the294

cluster highlighted in blue contains elevated levels of CXCL9, CXCL10 and295

reduced levels of CCL22 which partially agrees with the perturbation strat-296

egy (Figure 3A) discovered by Morpheus. Lastly, Figure 3E shows that our297

four selected chemokine targets cannot simply be predicted from correlation298

of chemokine levels with the presence of CD8+ T cells, as both CCL18 and299

CCL22 are weakly correlated (< 0.1) with CD8+ T cells even though the300

optimized perturbations requires inhibiting both chemokines, suggesting the301

presence of significant nonlinear e↵ects not captured by correlations alone.302

We can directly observe how Morpheus searches for e�cient perturbations303

by viewing both the original patch and perturbed patches in a dimensionally-304

reduced space. Figure 3F (top) shows a UMAP projection where each point305

represents the chemokine profile of an IMC patch. T-cell patches (with their306

CD8+ T cells masked) are well-separated from patches without CD8+ T cells.307

The colored arrows in the bottom UMAP of Figure 3F illustrate the pertur-308

bation for each patch as computed by Morpheus, and demonstrate two key309
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features of our algorithm. First, optimized perturbations push patches with-310

out T cells towards the region in UMAP space occupied by T-cell-infiltrated311

patches. Second, the arrows in Figure 3C are colored to show that optimized312

perturbations seem e�cient in that patches are perturbed just far enough to313

land in the desired region of space. Specifically, red points that start out on314

the right edge end up closer to the right after perturbation (region ii and iii),315

while points that start on the left/bottom edge end up closer to the left/bot-316

tom (region i and iv), respectively. We make this observation while noting317

that UMAP, though designed to preserve the topological structure of the data,318

is not a strictly distance-preserving transformation [35]. Furthermore, the pie319

charts (i-iv) are colored by the patient of origin to show the region of space320

where points are being perturbed to are not occupied by tissue samples from321

a single patient with highly infiltrated tumor. Rather, these regions consist of322

tissue samples from multiple patients, suggesting that our optimization pro-323

cedure can synthesize information from di↵erent patients when searching for324

therapeutic strategies.325

After applying the second perturbation strategy from Figure 3A in sil-326

ico to IMC images of a tumor, Figure 3G shows that T cell infiltration level327

(defined as the proportion of tumor patches with T cells) is predicted to328

increase by 20 fold. We applied our two perturbation strategies on patients329

in our test cohort in silico after stratifying by cancer stage, using strategy 1330

on patients with stage IV melanoma and strategy 2 on patients with stage331

III melanoma.Figure 3H shows that this predicted improvement holds across332

nearly all 14 patients from the test group, boosting T cell infiltration level333

from an average of 23% across samples to a predicted 63% post perturbation.334

For the three test patients with multiple tumor sections (patient 64, 57, 89),335

we see small to moderate variation in predicted improvement across samples.336

The combinatorial nature of our optimized perturbation strategy is crucial337

to its predicted e↵ectiveness. We systematically explored the importance of338

combinatorial perturbation by changing parameter � of Equation (4) which339

adjusts the sparsity of the strategy, where a more sparse strategy means fewer340

molecules are perturbed. Figure 3I shows that perturbing multiple targets341

is predicted to be necessary for driving significant T cell infiltration across342

multiple patients, with the best perturbation strategy involving two targets343

predicted to generate only 60% of the infiltration level achieved by the best344

perturbation strategy involving four targets. In conclusion, within the scope345

of the chemokine targets considered, combinatorial perturbation of the TME346

appears necessary for improving T cell infiltration in metastatic melanoma.347
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Applying Morpheus to CRC with liver metastases348

samples349

Fig. 4: Blocking subsets of PD-L1, CXCR4, PD-1, and CYR61 pre-
dicted to drive T cell infiltration in CRC cohort. (A) Optimized tumor
perturbations aggregated to the patient (row) level (train cohort). Bar graph
shows the median relative change in intensity for each molecule across all
patients within their cluster.
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Fig. 4: (continued) (B) Patch-wise correlation between the levels of di↵erent
molecules and the presence of CD8+ T cells. (C) Pie charts show proportion of
patients in each cluster that have fatty liver disease (FLD), chance probability
from hypergeometric distribution. (D) Volcano plot comparing molecule levels
and cell type abundance between the two patient cluster using tumor tissues,
computed using mean values and Wilcoxon rank sum test with Bonferroni cor-
rection. (E) Optimized perturbations aggregated to the level of tissue samples
(row). (F) UMAP projection of IMC patches, left UMAP shows T cell patches
colored by the tissue samples they are taken from. right UMAP shows coun-
terfactual (perturbed) instances optimized for tumor patches without T cells
(red). (G) Line plots shows T-cell infiltration level for each tissue section from
the test cohort, before and after perturbation. Bar plots show predicted mean
T-cell infiltration level for each test patient. (H) Mean infiltration level across
all test patients using perturbation strategies of varying sparsity, obtained by
varying � in Equation (4), error bar represents 95% CI.

Applying Morpheus to IMC images from the CRC cohort, we discovered two350

patient-dependent therapies predicted to be highly e↵ective in improving T351

cell infiltration. Figure 4A shows the optimal perturbations computed for every352

patient from the training cohort, aggregated over all tumor samples for each353

patient. Our method consistently discovered two distinct patient-dependent354

strategies for improving T cell infiltration, as revealed by hierarchical clustering355

of all patient-level perturbations (Figure 4A). Taking median over patients in356

the first cluster, the optimized strategy involves completely inhibiting PD-1,357

PD-L1, and CXCR4. While for the second group of patients, the optimized358

strategy involves completely inhibiting CYR61, PD-1, PD-L1, and CXCR4359

(Figure 4A). Interestingly, all four of the perturbation targets correlated poorly360

with the presence of CD8+ T cells compared to the other proteins that were361

not selected as perturbation targets (Figure 4B), suggesting the presence of362

significant spatial and nonlinear e↵ects not captured by correlations alone.363

All perturbation targets identified by our optimization procedure have been364

found to play crucial roles in suppressing T cell function in the TME, and treat-365

ing patients with inhibitors against subsets of the selected targets have already366

improved T cell infiltration in human CRC liver metastases. Regulatory T367

cells (Tregs) are recruited into tumor through CXCL12/CXCR4 interaction368

[36], and the PD-1/PD-L1 pathway inhibits CD8+ T cell activity and infil-369

tration in tumors. In addition, CYR61 is a chemoattractant and was recently370

shown to drive M2 TAM infiltration in patients with CRC liver metastases371

[27]. Inhibition of both PD-1 and CXCR4, which were consistently selected372

by our algorithm as targets, have already been shown to increase CD8+ T373

cell infiltration in both patients with CRC and mouse models [37–39]. Finally,374

Figure 4A shows that the fifth most common proposed perturbation involves375

inhibiting IL-10. Indeed, blockade of IL-10 was recently shown to increase the376
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frequency of non-exhausted CD8+ T cell infiltration in slice cultures of human377

CRC liver metastases [40].378

The emergence of the two distinct perturbation strategies may be explained379

by variation in liver fat build-up among patients. Patient cluster 1 is made up380

of significantly more patients with fatty liver disease (70% FLD) compared to381

patient cluster 2 (22%), where the probability of this due purely to chance is382

0.047 (Figure 4C). Furthermore, Figure 4D shows that both YAP and CYR61383

levels are significantly higher in tumors from patient cluster 1, by 50% and384

15% respectively. Indeed, CYR61 is known to be associated with non-alcoholic385

fatty liver disease [27] and YAP is a transcription coregulator that induces386

CYR61 expression [41]. However despite patients in cluster 1 having higher387

levels of CYR61, it is only for patients in cluster 2 where the optimal strategy388

involves blocking CYR61. We postulate that this seemingly paradoxical find-389

ing may arise because removing CYR61 from patients in cluster 1 represents390

a more pronounced perturbation, given their inherently higher concentration.391

A perturbation of this magnitude would likely shift the tumor profile signifi-392

cantly away from the data manifold, where the classifier’s prediction about the393

perturbation’s e↵ect becomes less reliable, hence such a perturbation would394

be heavily penalized during optimization due to the Lproto term.395

Using only raw image patches, Morpheus discovers tissue-dependent per-396

turbation strategies (Figure 4E). As depicted in Figure 4E, by aggregating397

perturbations at the individual tissue level, we observe that the optimized398

perturbation for “healthy” liver sections is straightforward, necessitating only399

the inhibition of CXCR4. Recall “healthy” sections are samples obtained away400

from sites of metastasis. In contrast, promoting T cell infiltration into primary401

colon tumors is anticipated to involve targeting a minimum of three signals.402

Our method finds that liver metastases appears to fall between these two tissue403

types. The optimized perturbation strategy for some liver metastases samples404

is to block CXCR4, while requiring the inhibition of the same set of signals as405

primary tumors for others. Furthermore, direct comparison between pertur-406

bations optimized for metastatic tumor and primary tumor samples does not407

reveal a significant di↵erence in strategy (Figure S2). We can partly under-408

stand the discrepancy between tissues by plotting a UMAP projection of all409

T cell patches from the three tissue types (Figure 4F, left). The clear sepa-410

ration between T cell patches from ”healthy” tissue and those from primary411

tumors underscores that the signaling compositions driving T cell infiltration412

likely di↵er substantially between the two tissue types. This distinction is413

likely what prompted our method to identify markedly di↵erent perturbation414

strategies. Furthermore, some patches from metastatic tumors co-localize with415

“healthy” tissue patches in UMAP space, while other patches co-localizes with416

primary tumor patches. This observation again aligns with our previous result,417

where optimized perturbations for metastases samples can bear similarities to418

strategies for either “healthy” tissue or primary tumor (Figure 4E).419

Despite the CRC data set comprising a complex blend of healthy, tumor,420

and hybrid metastatic samples, Morpheus targets the most pertinent tissue421
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type when optimizing perturbations. During both the model training and coun-422

terfactual optimization phases, we did not make specific e↵orts to segregate423

the three tissue types. Furthermore, we did not provide tissue type labels or424

any metadata. Despite these nuances, Figure 4F shows that the counterfactual425

instances for tumor patches (dark blue) from primary and metastases sam-426

ples are mostly perturbed to be near T cell patches from primary (cyan) and427

metastatic tumor (gold), instead of being perturbed to be similar to T cell428

patches from “healthy” tumors (purple). This result is partly a consequence of429

our prototypical constraint which encourages patches to be perturbed towards430

the closest T-cell patch. For a patch from a metastatic tumor without T cells,431

the closest (most similar) T cell patch is likely also from a metastatic tumor432

than from a “healthy” tissue. However, there are occasional exceptions where433

T cell patches from ”healthy” tissues can influence the optimization of tumor434

tissues, as outlined by the dashed ellipse in Figure 4F, especially if they share435

similar features as tumor regions.436

The two therapeutic strategies we discovered generalize to patients in our437

test cohort (Figure 4G,H). Given that we have two therapeutic strategies, one438

enriched for patients with FLD and another for patients without FLD, we439

apply di↵erent perturbation strategies in silico across all test patients depend-440

ing on their FLD status. Aggregated to the patient level, Figure 4G shows that441

CD8+ T cell infiltration level is predicted to increase for nearly all patients,442

with the exception of patient 28. Furthermore, aggregating to the entire test443

cohort, Figure 4H shows a statistically significant boost to mean infiltration444

level from 15% to a predicted 35% post perturbation. However, when com-445

paring individual tissue samples, Figure 4G reveals significant variation in the446

predicted response to perturbation among samples from the same patient and447

tissue types. In patient 7, one primary tumor sample is predicted to see a448

nearly three-fold increase in T cell infiltration after perturbation, yet almost449

no change is expected for patient 7’s other two primary and three metastatic450

samples. Similar patterns are observed in patients 14 and 17. This marked451

variability in response among a significant portion of test patients underscores452

the challenges posed by intra-tumor and inter-patient heterogeneity in devising453

therapies for CRC with liver metastases. This result further implies that, for454

studying CRC with liver metastases, collecting numerous tumor sections per455

patient could be as crucial as establishing a large patient cohort. Lastly, com-456

binatorial perturbation is again predicted to be necessary to drive significant457

T-cell infiltration in large patient cohorts. By increasing � in Equation (4), we458

generated strategies with between one and four total targets, where our four-459

target perturbation is the only strategy predicted to produce a statistically460

significant boost to T-cell infiltration (Figure 4H).461

Discussion462

Our integrated deep learning framework, Morpheus, combines deep learn-463

ing with counterfactual optimization to directly predict therapeutic strategies464
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from spatial omics data. One of the major strengths of Morpheus is that it465

scales e�ciently to deal with large diverse sets of patients samples including466

metachronous tissue from the same patients but di↵erent sites, which will be467

crucial as more spatial transcriptomics and proteomics data sets are quickly468

becoming available [42]. Larger data sets could allow us to train more com-469

plex models such as vision transformers, capturing long range interactions in470

tissues to improve prediction of T-cell localization. Furthermore, a large set of471

diverse patient samples will more accurately capture the extent of tumor het-472

erogeneity, enabling Morpheus to discover therapeutic strategies for di↵erent473

sub-classes of patients.474

For future work, we would like to apply Morpheus to spatial transcrip-475

tomics data sets with hundreds to thousands of molecular channels. Although476

spatial transcriptomics can profile significantly more molecules compared to477

spatial proteomic techniques [15, 16], the number of spatial transcriptomic478

profiles of human tumors is currently limited due to the cost, with most pub-479

lic data sets containing single tissue sections from 1-5 patients which is far480

too small to apply Morpheus. However, spatial transcriptomics is likely to be481

more standardized compared to proteomics, which use customized panels. As482

commercial platforms for spatial transcriptomics start to come online [43], we483

will likely be seeing large scale spatial transcriptomics data sets in the near484

future, with ⇠ 70-90% of the same probes shared between experiments.485

A technical extension of Morpheus involves incorporating prior knowl-486

edge of gene-gene interactions to model the causal relations between genes.487

Molecular features in tissue profiles can exhibit strong dependencies, there-488

fore, changing the level of one molecule can a↵ect the expression of others. For489

example, increased levels of interferon-gamma (IFN-�) in the tumor microen-490

vironment, can upregulate the expression of PD-L1 on tumor cells [44]. In491

order to be more realistic and actionable, a counterfactual should maintain492

these known causal relations. We can apply a regularizer to penalize counter-493

factuals that are less feasible according to established gene interactions from494

knowledge graphs, such as Gene Ontology [45].495

Other extensions of Morpheus includes predicting cell-type specific pertur-496

bations, which can be done by directly restricting the perturbation to only497

alter signals within specific cell types. Additionally, although we applied Mor-498

pheus to the specific problem of driving T cells to infiltrate solid tumors, we499

can generalize our framework to predict candidate therapeutics that alter the500

localization of other cell types. For example, Morpheus can train a classifier501

model to predict localization of TAMs and compute perturbations predicted502

to reduce their abundance in the TME.503

In this work, we focused on identifying generalized therapies by pooling504

predictions across multiple patient samples, but we can also apply Morpheus505

to find personalized therapy for treating individual patients. The variation in506

the optimized perturbations we observe among patients in both melanoma and507

liver data sets suggest personalize treatments could be significantly more e↵ec-508

tive compared to generalized therapies (Figure 3A, Figure 4A). Furthermore,509
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Figure 4G shows that a therapeutic strategy could have highly variable e↵ect510

even across di↵erent tissue samples from the same patient. This variability sug-511

gests that to generate therapy for an individual patient, it may be necessary to512

acquire significant quantities of biopsy data. We can then apply our optimiza-513

tion procedure to a random subset of the samples, and then test the resulting514

perturbation strategy on the remaining samples to see how well the strategy515

is predicted to perform across an entire tumor or other primary/secondary516

tumors.517

Incorporating Morpheus in a closed loop with experimental data collection518

is another promising direction for future work. Data can be collected from519

patients or animal models with perturbed/engineered signaling context, and520

this data can be easily fed back into the classifier model to refine the model’s521

prediction. The perturbation could be based on what the model predicts to be522

e↵ective interventions, as is the case with Morpheus. We can also study tissue523

samples on which the model tends to make the most mistake and train the524

model specifically using samples from similar sources, such as similar patient525

strata or disease state.526

Methods527

IMC data sets528

All data sets used in this paper are publicly available. Metastatic melanoma529

data set from Hoch et al. [26] contains 159 images or cores taken from 69530

patients, collected from sites including skin and lymph-node. CRC liver metas-531

tases data set from Wang et al. [27] contains 209 images or cores taken from532

30 patients. Breast tumor data set from Danenberg et al. [28] contains 693533

images or cores taken from 693 patients. The RNA and protein panels used534

for each of the three data sets are listed in Table 1.535

Data split536

For all three IMC data sets, we followed the same data splitting scheme to537

divide patients into three di↵erent groups (training, validation, testing) while538

ensuring similar class balance across the groups, which in our case means that539

the proportion of image patches with and without T cells are roughly equal540

across the three groups for each data set. Specifically, each image within a data541

set was divided into 48 µm ⇥ 48 µm patches and the number of patches with542

and without CD8+ T cells was computed for each image. Furthermore, each543

patch was downsampled from 48⇥ 48 pixels to 16⇥ 16 pixel dimension where544

each pixel now represents a 3µm ⇥ 3 µm region. We applied spectral analysis545

to study the e↵ect of using di↵erent patch size to predict T cell infiltration546

and found that our selected patch size remains highly informative of T cell547

presence (Figure S1). Next, the patients are shu✏ed between the three groups548

until three criteria are met: 1) the number of patients across the three groups549

follow a 65/15/20 ratio, 2) the di↵erence in class proportion between any two550
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Metastatic melanoma CRC with liver metastases Breast tumor

Vimentin DapB CD45 Glnsynthetase Histone H3 SMA
CD163 CCL4 CD163 NKG2D CK5 CD38
B2M CCL18 CCR4 PD-L1 HLA-DR CK8-18
CD134 CXCL8 FAP CD11c CD15 FSP1
CD68 CXCL10 LAG3 HepPar1 CD163 ICOS
GLUT1 CXCL12 FOXP3 ↵SMA OX40 CD68
CD3 CXCL13 CD4 CD105 HER2 (3B5) CD3
LAG3 CCL2 CD68 VISTA Podoplanin CD11c
PD-1 CCL22 CD20 CD8↵ PD-1 GITR
HistoneH3 CXCL9 TIM3 CXCR4 CD16 c-Caspase3
CCR2 CCL19 PD-1 iNOS CD45RA B2M
PD-L1 CCL8 CD31 CYR61 CD45RO FOXP3
CD8 SMA CDX2 CAIX CD20 ER
SOX10 CD31 CD3 CD44 CD8 CD57
Mart1 pRB CD15 CD11b Ki-67 PDGFR�
cleavedPARP MPO HLA-DR IL10 Caveolin-1 CD4
CD15 CK5 CXCL12 HLA-ABC CD31-vWF CXCL12
CD38 HLA-DR GranzymeB Ki67 HLA-ABC panCK
S100 Cadherin11 HistoneH3 CXCR3 HER2 (D8F12)
FAP Galectin9 YAP

CD14 CK19

Table 1: Protein and RNA panels imaged for each of the IMC data sets, with
RNA targets bolded

of the three groups is less than 2%, and 3) the training set contains at least551

65% of total patches. The actual data splits used in the paper are described552

in Table 2.553

Data set Group Patient count Patch count Proportion of patches
with CD8+ T cells

Metastatic Training 102 23741 29.6%
melanoma Validation 28 6045 30.3%

Testing 29 5950 30.4%

CRC with Training 19 44449 15.9%
liver metastases Validation 4 6957 14.4%

Testing 7 14907 15.9%

Breast cancer Training 485 41104 23.7%
Validation 113 9015 23.4%
Testing 151 12987 23.8%

Table 2: Data split for Melanoma, CRC cohort, and breast tumor IMC data
set
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Single-cell phenotyping554

For each data set, we used the cell type classification (tumor and CD8+ T555

cells) from the original paper. For the melanoma data set, cell phenotyping556

was performed using the Shiny application of the R package cytomapper [46],557

which allows labeling of cell populations using multiple gates. CD8+ T cells558

were defined using CD3 and CD8, tumor cells are positive for any or multiple559

of SOX9, SOX10, MITF, Mart1, S100A1, and p75. For the CRC and breast560

cancer data set, cell type labeling was performed using PhenoGraph [47].561

Classifier training562

In this work, we trained three classes of models to perform our T cell prediction563

task. All models presented in this paper were trained with early stopping564

based on the validation Matthews Correlation Coe�cient (MCC) for 10-20565

epochs. All models were trained on an NVIDIA GeForce RTX 3090 Ti GPU566

using PyTorch version 1.13.1 [48]. More details about hyperparameters and567

implementations can be found in our Github repository.568

T cell masking strategy569

The purpose of model training is for the model to learn molecular features570

of the CD8+ T cell’s environment that is indicative of its presence, so it is571

important for us to remove features of the image that are predictive of CD8+572

T cell presence but are not part of the cell’s environment. We devised a non-573

trivial cell masking strategy in order to remove T-cell expression patterns574

without introducing new features that are highly predictive of T cell presence575

but are not biologically relevant. A simple masking strategy of zeroing out all576

pixels belonging to CD8+ T cells will introduce contiguous regions of zeros to577

image patches with T cells, which is an artificial feature that is nonetheless578

highly predictive of T-cell presence and hence will likely be the main feature579

learned by a model during training. To circumvent this issue, we first apply a580

cell “pixelation” step to the original IMC image where we reduce each cell to a581

single pixel positioned at the cell’s centroid. The value of this pixel is the sum of582

all pixels originally associated with the cell, representing the total signal from583

each channel within the cell. We then mask this “pixelated” image by zeroing584

all pixels representing CD8+ T cells. Since there are usually at most two T585

cell pixels in an image patch, zeroing them in a 16⇥16 pixel image where most586

(> 90%) of the pixels are already zeroes is not likely to introduce a significant587

signal that is predictive T cell presence. We show that our strategy is e↵ective588

at masking T cells without introducing additional features through a series of589

image augmentation experiments ( Supplemental Note 1 Assessement of T-cell590

masking strategy).591

Logistic regression models592

We trained a single-layer neural network on the average intensity values from593

each molecular channel to obtain a logistic regression classifier, predicting the594
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probability of CD8+ T cell presence in the image patch. This model represents595

a linear model where only the average intensity of each molecule is used for596

prediction instead of their spatial distribution within a patch.597

MLP models598

Similar to a logistic regression model, the Multilayer Perceptron (MLP) also599

uses averaged intensity as input features for prediction but is capable of learn-600

ing nonlinear interactions between features. The MLP model consists of two601

hidden layers (30 and 10 nodes) with ReLU activation.602

U-Net models603

To train networks that can make full use of the spatial information, we used604

a fully convolutional neural network with the U-Net architecture. The U-Net605

architecture consists of a contracting path and an expansive path, which gives606

it a U-shaped structure [29]. The contracting path consists of four repeated607

blocks, each containing a convolutional layer followed by a Rectified Lin-608

ear Unit (ReLU) activation and a max pooling layer. The expansive path609

mirrors the contracting path, where each block contains a transposed convolu-610

tional layer. Skip connections concatenates the up-sampled features with the611

corresponding feature maps from the contracting path to include local infor-612

mation. The output of the expansive path is then fed to a fully-connected layer613

with softmax activation to produce a predicted probability. The model was614

trained from scratch using image augmentation to prevent over-fitting, includ-615

ing random horizontal/vertical flips and rotations, in addition to standard616

channel-wise normalization. We train our U-net classifiers using stochastic gra-617

dient descent with momentum and a learning rate of 10�2 on mini-batches of618

size 128.619

Counterfactual optimization620

Given an IMC patch x(i) without T cells, and a classifier f , our goal is to find621

a perturbation �(i) for the patch such that f classifies the perturbed patch as622

having T cells. For CNN models, �(i) 2 Rw⇥l⇥d is a 3D tensor that describes623

changes made for every channel, at each pixel of the patch.624

Given a CNN classifier f and a IMC patch x(i) such that f(x(i)
0 ) =625

P(T cells present) < p, where p > 0 is the classification threshold below which626

the classifier predicts no T-cell, we aim to obtain a perturbation �(i) such that627

f(x(i)
0 + �(i)) > p, by solving the following optimization problem adopted from628

[30],629

�(i) = min
�

Lpred(x
(i)
0 , �) + Ldist(�) + Lproto(x

(i)
0 , �), (7)

such that

Lpred(x
(i)
0 , �) = cmax(�f(x(i)

0 + �), �p), (8)
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Ldist(�) = �k�k1 + k�k22, (9)

Lproto(x
(i)
0 , �) = ✓kx(i)

0 + � � proto(i)k22, (10)

�(i) = �(i) �3 x
(i)
0 (11)

where proto(i) is an instance of the training set classified as having T cells,630

defined by first building a k-d tree of training instances classified as having T631

cells and setting the k-nearest item in the tree (in terms of euclidean distance632

to x(i)
0 ) as proto. We use k = 1 for all counterfactual optimization. For all other633

parameters, we list their values in Table 3. During optimization, the weight c634

of the loss term Lpred is updated for n iterations, starting at c0. If we identify635

a valid counterfactual for the present value of c, we will then decrease c in636

the subsequent optimization cycle to increase the weight of the additional loss637

components, thereby enhancing the overall solution. If, however, we do not638

identify a counterfactual, c is increased to put more emphasis on increasing639

the predicted probability of the counterfactual. The parameter smax sets the640

maximum number of optimization steps for each value of c.641

Parameters Melanoma CRC

� 2 80
✓ 60 40
p 0.5 0.43
c0 1000 1000
n 5 5

smax 1000 1000

Table 3: Parameter values used for counterfactual optimization

Code Availability642

Code for model training, perturbation optimization and analysis are publicly643

available at https://github.com/neonine2/morpheus. Our optimization code644

was implemented in Python and was built upon the open source Python library645

Alibi [49].646

Data Availability647

All data sets used in this study are published and publicly available.648
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