Abstract
The protein dynamical transition at ∼ 200 K, where the biomolecule transforms from a harmonic, non-functional form to an anharmonic, functional state, has been thought to be slaved to the thermal activation of dynamics in its surface hydration water. Here, by selectively probing the dynamics of protein and hydration water using elastic neutron scattering and isotopic labelling, we found that the onset of anharmonicity in the two components around 200 K are decoupled. The one in protein is an intrinsic transition, whose characteristic temperature is independent of the instrumental resolution time, but varies with the biomolecular structure and the amount of hydration, while the one of water is merely a resolution effect.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
The authorship has been changed.