Abstract
Glycosaminoglycan (GAG)-binding proteins regulating essential processes such as cell growth and migration are essential for cell homeostasis. As both GAGs and the lipid A disaccharide core of gram-negative bacteria contain negatively charged disaccharide units, we hypothesized that GAG-binding proteins could also recognize LPS and enclose cryptic antibiotic motifs. Here, we report novel antimicrobial peptides (AMPs) derived from heparin-binding proteins (HBPs), with specific activity against gram-negative bacteria and high LPS binding. We used computational tools to locate antimicrobial regions in 82% of HBPs, most of those colocalizing with putative heparin binding sites. To validate these results, we synthesized five candidates [HBP1-5] that showed remarkable activity against gram-negative bacteria, as well as a strong correlation between heparin and LPS binding. Structural characterization of these AMPs shows that heparin or LPS recognition promotes a conformational arrangement that favors binding. Among all analogs, HBP-5 displayed the highest affinity for both heparin and LPS, with antimicrobial activities against gram-negative bacteria at the nanomolar range. These results suggest that GAG-binding proteins are involved in LPS recognition, which allows them to act also as antimicrobial proteins. Some of the peptides reported here, particularly HBP-5, constitute a new class of AMPs with specific activity against gram-negative bacteria.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
We added several references to previous studies in the main text and attached the missing supplementary information file.