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Artificial intelligence (AI) has been increasingly used to ana-
lyze optical coherence tomography (OCT) images to better un-
derstand physiology and genetic architecture of ophthalmic dis-
eases. However, to date, research has been limited by the in-
ability to transfer OCT phenotypes from one dataset to an-
other. In this work, we propose a new AI method for pheno-
typing and clustering of OCT-derived retinal layer thicknesses
using unsupervised and self-supervised methods in a large clini-
cal dataset using glaucoma as a model disease and subsequently
transfer our phenotypes to a large biobank. The model in-
cludes a deep learning model, manifold learning, and a Gaus-
sian mixture model. We also propose a correlation analysis for
the performance evaluation of our model based on Pearson cor-
relation coefficients. Our model was able to identify clinically
meaningful OCT phenotypes and successfully transfer pheno-
types from one dataset to another. Overall, our results will con-
tribute to stronger research methodologies for future research in
OCT imaging biomarkers, augment testing of OCT phenotypes
in multiple datasets, and ultimately improve our understanding
of pathophysiology and genetic architecture of ocular diseases.
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Introduction

Advances in artificial intelligence (AI), machine learning
(ML), and deep learning (DL) have allowed for more precise
analysis of medical imaging with the goals of better under-
standing disease pathogenesis and predicting disease burden.
In particular, image phenotyping has enabled the extraction
of complex patterns and subtle characteristics from medical
imaging data, thereby unlocking novel insights into disease
mechanisms and paving the way towards personalized diag-
nostic and therapeutic approaches. The majority of the medi-
cal images are unlabeled as the labeling task is expensive and
time-consuming. Hence, methods like unsupervised learning
or self-supervised learning are used for pattern recognition.
Unsupervised learning employs machine learning algorithms
to identify features of unlabeled datasets. These datasets are
analyzed and clustered without the necessity of explicit la-
bels or annotations. This allows the model to autonomously

recognize and learn patterns within the input data. Through
these methods, similarities and differences between data fea-
tures can be discerned directly from the data itself. Tech-
niques such as non-parametric instance discrimination (1),
DeepCluster (2), unsupervised deep embedding (3), autoen-
coders (4), and deep adaptive image clustering (5) serve as
examples of unsupervised learning for clustering tasks. Self-
supervised learning extracts the feature space by designing a
proxy task derived from the data itself, which is a noted limi-
tation of this approach (6–10). This challenge, mainly the de-
sign of the proxy task in self-supervised learning, is predom-
inantly addressed by contrastive learning (11). The objective
in contrastive learning is to optimize a function for similar
pairs in contrast to dissimilar pairs (12–21). The use of self-
supervised learning on medical images is well studied in the
literature (10, 22–26). Prior work has demonstrated the util-
ity of image phenotyping in various ophthalmic applications
such as glaucoma assessment (27), retinal disease diagnosis
(28), genome-wide analysis study (GWAS) for vertical cup
to disc ratio (VCDR) (29), as well as classification of age-
related macular degeneration (AMD), (30) and geographic
atrophy (31). Technological advances in AI and their appli-
cations to medical imaging have been fueled by the advent of
large-scale biobank studies with multimodal data (e.g., the
UK Biobank) (32). However, to date, image analysis has
largely been limited by the lack of data annotation by ex-
perts (33) and limited transferability from one dataset to an-
other. These limitations have consequences in settings where
datasets lack the information needed for specific studies. Im-
proving the ability to transfer phenotypes from dataset to
dataset may allow for more studies tying imaging phenotypes
to genetic studies; for example, making it possible to apply a
model trained on a large clinical dataset without genetic in-
formation to a population-based biobank study with limited
clinical data but a robust genetic repository. Optical coher-
ence tomography (OCT) is a non-invasive imaging technique
which segments retinal layers, is used in the screening, di-
agnosis, and management of multiple ophthalmic disease in-
cluding glaucoma. Glaucoma, a leading cause of irreversible
vision loss and blindness worldwide, is a complex multifac-
torial disease with high degrees of structural and functional
variation. Primary open-angle glaucoma (POAG), the most
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common subtype of glaucoma, is highly heritable (34). How-
ever, to date, POAG pathophysiology and genetic architec-
ture remains incompletely explained. Clinicians often strug-
gle with predicting which patients may progress to more se-
vere disease. This is likely due significant structural and
functional variation in glaucoma. While OCT has emerged as
a valuable tool in clinical and research contexts, contributing
significantly to our understanding of glaucoma (35), current
image analysis methods do not capture disease heterogeneity.
We propose that unsupervised and semi-supervised learning
algorithms can used to identify OCT-based endophenotypes
that reflect subtypes of glaucomatous optic neuropathy. The
purpose of this study therefore is to use glaucoma as a model
disease to describe a new AI method for phenotyping and
clustering of OCT-derived retinal layer thicknesses using un-
supervised and self-supervised methods. We also describe
a new method for transferring and testing OCT phenotypes
from one dataset to another. Our results will enhance fu-
ture research in OCT imaging biomarkers, augment testing
of OCT phenotypes in multiple datasets, and ultimately im-
prove our understanding of pathophysiology and possibly ge-
netic architecture of ocular diseases.

Methods
Massachusetts Eye and Ear and the UK Biobank. We
used data from Massachusetts Eye and Ear Infirmary (MEE),
a large tertiary-care center in the United States, and the UK
Biobank (UKBB), a prospective cohort study of UK resi-
dents. The MEE dataset is a large collection of macular OCTs
and associated clinical data from a diverse patient popula-
tion with glaucoma. Individuals with glaucoma were iden-
tified by the International Classification of Diseases, Ninth
or Tenth Revision (ICD 9/10) diagnosis code for glaucoma
(ICD9: 365.x, ICD10: H40.x). The UKBB includes de-
tailed genotypic and phenotypic information on over 500,000
participants from across the United Kingdom, including oph-
thalmic testing and OCT imaging on a subset of participants
(32).
In the MEE dataset, we used data from subset of patient
with Cirrus OCT scans of the macula (Zeiss, Inc, Germany).
Three-dimensional macular volume scans (128 or 200
B-scans, with a configuration of 512 or 200 horizontal
A-scans in a 6x6-mm raster pattern) were obtained. Images
and OCT thickness layers were reconstructed using Zeiss’s
automated boundary segmentations. This algorithm operates
by analyzing the intensity and reflectance patterns of the
incoming OCT scans. This algorithm uses complex image
processing techniques, such as edge detection and pattern
recognition, to identify and precisely delineate the bound-
aries between various retinal layers (36). In the UKBB,
spectral-domain OCT scans of the macula were obtained on
a subset of participants using Topcon 3D OCT 1000 Mk2
(Topcon, Inc, Japan). Three-dimensional macular volume
scans were obtained (512 horizontal A-scans/B-scans; 128
B-scans in a 6x6-mm raster pattern). All OCT images
were stored in .fda image files and the Topcon Advanced
Boundary Segmentation (TABS) algorithm was used to

automatically segment all scans. TABS uses dual-scale
gradient information to allow for automated segmentation of
the inner and outer retinal boundaries and retinal sublayers.
For the MEE dataset, poor-quality images were identified.
Missing pixels were imputed by the MissForest algorithm in
Python (37). Also, the images with more than 5% missing
values were excluded. The OCT scans in the UKBB have all
pixels available.

A. Unsupervised Artificial Intelligence Model. Our AI
model is comprised of a DL model, manifold learning for
dimensionality reduction, Gaussian Mixture Model (GMM)
for clustering and defining components coefficients for each
image, and a visualization tool that samples representative
images for each cluster (Figure 1). The input for the models
included (1) RNFL thickness maps and (2) GCC thickness
maps. Unsupervised deep learning (DL) models developed
in this work include a deep autoencoder and an encoder
trained using unsupervised representation method. All
models were trained on the MEE dataset and tested on both
the MEE and UKBB datasets.

A.1. Deep Learning Models. We use two deep learning model
in our study:

• Unsupervised Autoencoder based Visual Feature Ex-
traction

• Encoder based on Self-Supervised Representation
Learning

Unsupervised Autoencoder based Visual Feature Extraction
Since the scans do not have labels, we use unsupervised
learning as one method for feature extraction. An autoen-
coder is a type of DL model used for It consists of an
encoder and a decoder and works based on unsupervised
learning. The encoder takes input data and maps it to a
lower-dimensional latent space representation, while the
decoder takes the latent space representation and reconstructs
the original input. The autoencoder is trained by minimizing
the difference between the input and the reconstructed out-
put, using techniques such as backpropagation and stochastic
gradient descent (38). Figure 2 shows the schematic of
the autoencoder we used in our work and Supplemental
Table S1 shows its parameters. The autoencoder model was
implemented in the Keras framework.

Encoder based on Self-Supervised Representation Learning
Another way of feature extraction of the dataset is self-
supervised learning. We use momentum contrast (MOCO)
(12) in which a feature model (e.g., an encoder) is trained
based on a self-supervised learning method with contrastive
learning as the proxy task. In this method, a dynamic dic-
tionary for contrastive unsupervised learning is built using a
queue and moving-averaged encoder. In MOCO, two random
transformations of the same image are fed into two branches
in which each branch includes an encoder and a projection
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Fig. 1. The proposed artificial intelligence (AI) model for macular OCT retinal layer thickness map phenotyping.
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Fig. 2. The autoencoder model for feature extraction of retina layers with unsuper-
vised learning method.

head that is a two-layer perceptron. The encoder in the lower
branch is only optimized during training and the encoder in
the upper branch is considered a moving average of the en-
coder in the lower branch.
For training the encoder, let’s denote two transformations, x′

and x′′ from the input image x. The outputs of the upper
and lower branches are denoted as u+ = M (F (x′;θ′F );θ′M )
and u = M (F (x;θF );θM ), respectively. θ′F and θ′M are
the parameters of the feature model and projection head of
the upper branch whereas θF and θM are the parameters for
feature model and projection head of the lower branch. The
loss function for this model is as follows:

L =− log eu
Tu+/τ∑b

i=1 e
uTu−

i
/τ +eu

Tu+/τ
(1)

Where b is the batch size, and u− is the output of lower
branch for any image other than the image x. τ is the softmax

temperature and is set to 0.2. The parameters of the models
are updated in each iteration as θ′F ← µθ′F + (1− µ)θF

and θ′M ← µθ′M + (1−µ)θM . µ is momentum coefficient
and is set to 0.999. After training, the feature model and a
projection head are accessible that transform the input image
to a feature vector. S2 shows the parameters of the mod-
els and the hyperparameters for training based on the MOCO.

A.2. Manifold Learning for Dimensionality Reduction. Given
that the features extracted from the previous DL models are
high-dimensional, we used uniform manifold approximation
and projection (UMAP) to project outputs from the previous
model to a lower dimensional space (39, 40). The UMAP
algorithm is a non-linear dimensionality reduction technique
(41). It provides a unique representation of high-dimensional
data, with underlying assumptions that the data is distributed
uniformly on Riemannian manifold with a metric that is
locally constant, and that the manifold is locally connected.
Based on these assumptions, the manifold for the data
is modeled with fuzzy topological structure in which the
embedding (low dimensional representation) is constructed
with the closest possible equivalent fuzzy topological struc-
ture (41). In our experiments, the latent space of 16,384
elements for the output of the autoencoder DL model and
128 elements for the encoder DL model were embedded into
three elements for each data sample.

A.3. Number of Clusters Determination. As our dataset was
unlabeled, we used the Bayesian information criterion (BIC)
(42) and Akaike information criterion (AIC) for optimal se-
lection of the number of phenotype clusters (43). BIC and
AIC are commonly used statistical measures for model se-
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lection. Both BIC and AIC are based on the likelihood func-
tion of the model and include a penalty term to account for
the number of parameters in the model. In general, models
with lower AIC or BIC values are preferred over models with
higher values, as they are considered to be more parsimo-
nious. We calculated the AIC/BIC scores for the models with
2-20 clusters for each image type and DL model.

A.4. Gaussian Mixture Model (GMM) for Clustering. The
Gaussian mixture model (GMM) is a statistical model that
represents the probability distribution of a random variable
as a weighted sum of Gaussian distributions (44). The proba-
bility density function (PDF) in one dimension for a Gaussian
Distribution is expressed as:

G(X|µ,σ) = 1
σ
√

2π
e
− (x−µ)2

2σ2 (2)

Where µ is the mean and σ2 is the variance of the distribu-
tion. Analogous to one-dimensional distribution, the PDF for
a multivariate Gaussian distribution is given as:

G(X|µ,Σ) = 1√
2π|Σ|

e−
1
2 (X−µ)TΣ−1(X−µ) (3)

In Eq. 3, µ is d-dimensional vector indicating the mean of
the distribution and

∑
is a d×d covariance matrix. Assume

we have K clusters, we compute the µ and
∑

for each clus-
ter. If K = 1, they are estimated by the maximum likelihood
method. However, for K > 1, we have:

p(X) =
K∑
k=1

πkG(X|µk,Σk) (4)

πk is the mixing coefficient for the kth distribution. More
details about this method can be found in (45). In this work,
we fit the GMM model on one embedding space and either
predict the same embedding space or a different one. Also,
we calculate the probability for each image in a particular
cluster. The cluster label is assigned based on the maximum
probability of the image in a cluster.

Results
Study Population. In the MEE dataset, we identified 18,985
images of 8,323 patients with a diagnosis code for glaucoma.
Of the 8,323 patients, 43.81% were men with an average age
of 61.63 +/- 15.98 years. The race/ethnicity distribution of
the study population is as follows: 57.47% White, 16.11%
Black, 7.27% Asian, 0.16% American Indian or Alaska Na-
tive, 0.11% Native Hawaiian or Other Pacific Islander, and
13.81% Hispanic.
In the UKBB dataset, we identified 86,115 images of 47,908
participants. Of the 47,908 participants, 45.8% were male
with an average age of 56.39 +/- 8.08 years. The ancestry
distribution of the study population is as follows: 91.3%
European ancestry, 3.95% African ancestry, 3.47% South
Asian ancestry, 0.83% East Asian ancestry, and 0.43%
American ancestry.

Fig. 3. Reconstruction error for the autoencoders that are trained on GCC and
RNFL images of Mass Eye and Ear (MEE) dataset.

Autoencoder Model. The reconstruction error of trained au-
toencoders were computed (Figure 3), based on the compar-
ison of each pixel of the original image and the reconstructed
image. We calculated the error for each image and computed
the mean error across all images. For MEE, the reconstruc-
tion error for RNFL and GCC was 18% and 6%, respectively.
For UKBB, the reconstruction error for RNFL and GCC was
20% and 9%, respectively (Figure 3). The similar recon-
struction errors for MEE and UKBB indicate that the autoen-
coder was able to successfully learn RNFL and GCC patterns
identified in the MEE dataset and map them to the UKBB
dataset.

We applied UMAP to the predictions of the autoencoder to
reduce the dimensionality of the data samples. The param-
eters of the UMAP model are listed in Supplemental Table
S3. AIC and BIC scores for embedding were calculated and
three candidates for the optimal number of clusters are con-
sidered. The optimal number of clusters was found to be 11
for GCC and 9 for RNFL. This was selected based on a corre-
lation analysis between images within and between clusters.

Different numbers of clusters were tested; the number of
clusters with the highest correlation within images of a clus-
ters compared to correlation of images between clusters were
chosen (Figure 4). The applied GMM on the embeddings is
shown in Supplemental Figure S1. Labels for the output of
the GMM models were created. The labels are shown in the
embedding space of MEE dataset for GCC and RNFL images
in Figure 5. Representative sample images from each cluster
are shown in Figure 5. The weight of the patterns for each
dataset is shown in Figure 6. As seen in Figure 6, some pat-
terns seen in MEE were not seen when the model was tested
in the UKBB (RNFL – pattern 8, GCC – patterns 1, 5).
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Encoder Model. As the encoder directly maps the images to
feature space, reconstruction errors for the encoder model are
not reported.
Similar to the autoencoder model, we applied UMAP on the
predictions of the encoder and calculated AIC/BIC scores.
The optimal number of clusters was found to be 11 for both
GCC and RNFL based on AIC/BIC criteria and the number
of clusters with highest correlation (Figure 7). The applied
GMM on the embeddings is shown in Supplemental Fig-
ure S2. The labels and representative sample images from
each cluster are shown in Figure 8. The weight of patterns
in each dataset is shown in Figure 9. Similar to the results of
the autoencoder model, some patterns seen in MEE were not
observed when tested in the UKBB dataset (Figure 9). For
GCC images, patterns 1, 2, 6, 8, 9, and 10 were not observed
in the UKBB.

Unsupervised Performance Analysis. We used AIC/BIC
scores to identify the optimal number of clusters in our data.
Despite the utility of this strategy, we acknowledge its limi-
tations, especially in the context of uncertainty related to the
exact number of patterns and the lack of a defined ground
truth for evaluating performance. To address these chal-
lenges, we introduce a new method for performance assess-
ment that does not require supervision.
To this end, we employed a correlation analysis approach to
examine the correlation within and between clusters. This
was carried out for images in both pixel and feature space, al-
lowing us to better understand the similarities and differences
among images within a single cluster as well as between im-
ages in distinct clusters.
We first performed a correlation analysis between images
in pixel space. To this aim, we used the normalized cross-
correlation method in which the correlation is calculated
based on Equation 5:

rfg =
∑
x,y[f(x,y)− f̄ ][g(x,y)− ḡ]√∑

x,y[f(x,y)− f̄ ]2
∑
x,y[g(x,y)− ḡ]2

(5)

where rfg , f̄ and ḡ are the correlation, mean values of im-
ages f and g, respectively. however as this method was sus-
ceptible to noise, we did not find meaningful results (Figure

Fig. 4. The correlation analysis between the images within a cluster and the images
in different clusters for different numbers of clusters for the autoencoder model.

10). In Figure 10a, each cell represents the average corre-
lation between all images of patter i: in rows, and pattern
j: in columns for the RNFL images of MEE dataset for en-
coder model. As shown, there is no discernible pattern in
pixel space correlation. Also Figure 10b shows an example
of the failure of normalized-cross correlation for correlation
analysis; two images that are visually more similar have less
correlation (based on normalized-cross correlation) than two
images that are less similar visually.
We then performed the correlation analysis in the feature
space. The correlation analysis in feature space is Pearson
correlation (Equation 6 ):

r =
∑n
i=1(xi− x̄)(yi− ȳ)√

(
∑n
i=1(xi− x̄)2)(

∑n
i=1(yi− ȳ)2)

(6)

where:

• r is the correlation,

• xi and yi are the i-th elements of variables X and Y ,

• x̄ and ȳ are the means of variables X and Y ,

• n is the number of data points.

The results of the correlation analysis in feature space are
shown in Figures 11 and 12 . The value for each cell is
the average correlation between all images within a cluster
and the images in different clusters. Most diagonal cells are
brighter than other cells which means the images within a
cluster have a higher correlation than the images in different
clusters.

Clinical Associations. To assess the validity of our RNFL and
GCC phenotypes, we identified associations between phe-
notypes and clinical characteristics within the MEE dataset.
Correlations between phenotype coefficients and clinical
characteristics (IOP, SE, VF MD, CDR, POAG PRS, num-
ber of glaucoma medications, and glaucoma severity) can be
seen in Figure 13.
For the autoencoder model trained on RNFL thicknesses,
phenotype 6 had the highest proportion of severe glaucoma
diagnosis codes (ICD 10 diagnosis codes ending in 3 or 4;
49.18%), highest number of average glaucoma medications
(1.57 +/- 0.12), highest mean CDR (0.694 +/- 0.237), highest
proportion of IOP greater than 24 mmHg (9.99%) and low-
est average VF MD (-12.57 +/- 10.1). Phenotype 4 had the
highest proportion of highly myopic eyes (SE < -6, 10.73%).
For the MOCO model trained on RNFL thickness, phenotype
7 had the highest proportion of severe glaucoma diagnosis
codes (41.14%), highest number of average glaucoma medi-
cations (1.84 +/- 0.13), highest mean CDR (0.655 +/- 0.220),
and lowest average VF MD (-8.278 +/- 7.28). Phenotype 10
had the highest proportion of highly myopic eyes (7.59%).
For the autoencoder model trained on GCC thicknesses, phe-
notype 4 had the highest proportion of severe glaucoma diag-
nosis codes (39.93%), highest mean CDR (0.654 +/- 0.229),
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RNFL-Cluster Map for Auto-encoder Method for 9 Clusters

Fig. 5. Labels of data points in the embedding space of GCC and RNFL images of autoencoder model.

Fig. 6. The weight of patterns in the datasets for the autoencoder model

Fig. 7. Labels of the data point in the embedding space of GCC images of MOCO
model.

and lowest average VF MD (-9.445 +/- 8.819), while pheno-
type 9 had the highest number of average glaucoma medica-
tions (1.87 +/- 0.11). Phenotype 1 had the highest proportion
of eyes with high myopia (7.73%).

For the MOCO model trained on GCC thicknesses, pheno-
type 4 had the highest proportion of severe glaucoma diag-
nosis codes (48.42%), highest mean CDR (0.687 +/- 0.221),
highest proportion of IOP greater than 24 mmHg (8.41%),
lowest average VF MD (-10.95 +/- 9.72) and highest propor-
tion of high myopia (6.85%). Phenotype 7 had the highest
number of average glaucoma medications (1.38 +/- 0.11)

Discussion

Here we demonstrate that unsupervised deep learning can be
used to identify imaging phenotypes which have meaningful
clinical correlations. We employed a deep learning model,
manifold learning, and GMM, and introduced a correlation
analysis technique to evaluate the performance of unsuper-
vised phenotyping. Importantly, our new method demon-
strated the ability to transfer phenotypes derived from one
dataset to another. This work reinforces the potential utility
of deep learning models for better understanding of disease
pathogenesis and prediction of disease progression.
We demonstrated that our model can be used to identify
meaningful patterns of RNFL and GCC thickness amongst
patients with glaucoma. In our correlation analysis, we
showed that overall, images within one cluster are more cor-
related than images between different clusters. While pat-
tern detection has been reported based on qualitative analysis
in the literature (46) we propose a fully automated pattern
recognition in glaucomatous images with a quantitative eval-
uation method. We also found that some images in clusters
had higher correlation with images in other clusters; this may
be because GMM assigns labels to each data point based on
the highest probability. In some cases, the highest probability
pattern may be fairly low (e.g., less than 50%), which means
the image may be between multiple clusters. Additionally,
GMM assumes that data is distributed in a Gaussian manner,
which may not be applicable to real-world datasets such as
ours, resulting in imperfect clustering performance. Further-
more, GMM may not perform well with high-dimensional
data; as dimensionality increases, the volume of the space
increases rapidly such that the available data become sparse
making the Gaussian assumption less applicable. Therefore,
our model must balance the performance of the GMM and
the loss of information due to dataset dimensionality com-
pression.
We compared the use of an autoencoder model and an en-
coder model based on self-supervised learning; we found that
the correlations of the encoder model were higher, in aver-
age, compared to those of the autoencoder. This suggests
that, while both autoencoders and encoders have demon-
strated significant promise in feature extraction tasks, en-
coders may have an advantage for identifying more mean-
ingful and relevant features. This may be because an encoder
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GCC-Cluster Map for MOCO Method for 11 Clusters RNFL-Cluster Map for MOCO Method for 11 Clusters

Fig. 8. Labels of the data point in the embedding space of GCC and RNFL images of MOCO model.

Fig. 9. The weight of patterns in the datasets for the encoder model.

focuses on mapping the high-dimensional input data into a
lower-dimensional latent space and does not need to recon-
struct the original data. This process may result in a more
focused, information-rich feature extraction. The encoder
concentrates exclusively on data compression, thus preserv-
ing more significant patterns in the data and discarding noise.
Thus, in certain scenarios, a more simplified or targeted ap-
proach like an encoder could outperform more complex mod-
els such as autoencoders, further highlighting the importance
of problem-specific model selection in machine learning ap-
plications.
Importantly, in this work, we demonstrate the ability to
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(b)
Fig. 10. Correlation analysis in pixel space with normalized-cross correlation anal-
ysis for RNFL images of the UKBB dataset. Each cell in (a) shows the averaged
correlation between the images in each cluster. (b) Example of failure of normalized
cross correlation between images. The bottom row shows two similar images from
the same pattern that are less correlated (i.e., 0.81) compared to the left column
which are images from different patterns (i.e., 0.87). .

successfully transfer OCT phenotypes from one dataset to
another with similar reconstruction errors (for autoencoder
model) and good correlation of phenotypes (both autoen-
coder and encoder) in the feature space. Disparate datasets
with limited genetic or clinical information pose significant
challenges to cross disciplinary and translational research.
The ability to transfer phenotypes from one dataset to another
will allow for the ability to train and validate phenotypes in
a dataset rich with clinical information and apply these phe-
notypes to a dataset with a genetic repository, thereby poten-
tially increasing the utility of OCT phenotypes to discover
novel disease associated genomic loci.

We also demonstrated that our phenotypes have meaningful
clinical correlations, including variations in ocular parame-
ters used to assess glaucoma severity such as CDR, visual
field mean deviation, and IOP. Specifically, each model (au-
toencoder vs. MOCO) using different input retinal layers
(RNFL vs. GCC) was able to identify a phenotype that corre-
lated with more severe disease, including a more severe ICD
code, greater number of glaucoma medications, higher CDR,
and lower VF mean deviation. Furthermore, in correlation
analysis, several RNFL phenotype coefficients were corre-
lated with SE, a measure for myopia. This may indicate the
ability for our models to distinguish RNFL thickness patterns
that are affected by myopia; myopia can be associated with
“tilting” of the disc due to a longer axial length as is a clinical
confounder when assessing patients for glaucoma.

Our study has many notable strengths, including introducing
a fully automated pattern recognition using retinal layers ob-
tained from OCT scans, evaluation metrics for unsupervised
performance, end to end clinical relevance investigation us-
ing the patterns in OCT scans, and transfer capability from
one dataset to another. In addition, our MEE dataset size
is one of the largest in the U.S.However, retinal thickness
layers extracted from OCT images are subject to significant
noise, including speckle noise (caused by the interference of
multiple scattered light waves), electronic noise (associated
with the electronic components of the OCT system, including
the detector and analog-to-digital converter), and background
noise (due to ambient light and system optics). In order to
best correct for noise, we filtered poor quality images and
imputed missing pixels. Furthermore, by employing UMAP,
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Fig. 11. Correlation analysis between the images in feature space with the Pearson correlation analysis for GCC images of MEE and UKBB dataset for both autoencoder and
encoder methods.

Fig. 12. Correlation analysis between the images in feature space with the Pearson correlation analysis for RNFL images of MEE and UKBB dataset for both autoencoder
and encoder methods.

we were able to isolate the essential structure of the data and
discard aspects of the data that are likely to be noise. UMAP
maintains the topological structure of high-dimensional data
in lower-dimensional representations, which ensures that the
inherent relationships among data points are preserved while
the random fluctuations, which often constitute noise, are
minimized (47).

Our proposed methodology was effective for identifying clin-
ically meaningful patterns in OCT images using RNFL and
GCC thickness maps in patients with glaucoma as a model
disease. We were also able to demonstrate the successful
transfer of OCT phenotypes from one dataset to another,
which may potentially increase the utility of these models for
future translational and cross-disciplinary research including
better understanding of glaucoma pathogenesis and genetic

architecture. Finally, the introduction of a correlation-based
assessment represents an exciting development for the per-
formance validation of unsupervised learning methods.
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Table S2. The parameters of Self-supervised learning based on momentum con-
trast.

Parameter Description and Value
Backbone Encoder ResNet50

Projection Head Output Dimension 128
Momentum Coefficient 0.999
Softmax Temperature 0.2

Bach size 256
Epoch 200

Augmentation Random Crop

Table S3. UMAP Parameters

Parameter Description or Value
Number of Reduced Elements 3

Number of Neighbors 5
Minimum Distance 0.0001

Random State 42

(a) GCC (b) RNFL
Fig. S1. GMM Applied on the Embeddings of GCC and RNFL of MEE dataset for
autoencoder model. The plots are in 2D.

(a) GCC (b) RNFL
Fig. S2. GMM Applied on the Embeddings of GCC and RNFL of MEE dataset for
encoder model. The plots are in 2D.
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