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ABSTRACT

Deep-learning models have been rapidly adopted by many fields, partly due to the deluge of data
humanity has amassed. In particular, the petabases of biological sequencing data enable the unsu-
pervised training of protein language models that learn the "language of life." However, due to their
prohibitive size and complexity, contemporary deep-learning models are often unwieldy, especially
for scientists with limited machine learning backgrounds. TRILL (TRaining and Inference using
the Language of Life) is a platform for creative protein design and discovery. Leveraging several
state-of-the-art models such as ESM-2, DiffDock, and RFDiffusion, TRILL allows researchers to
generate novel proteins, predict 3-D structures, extract high-dimensional representations of proteins,
functionally classify proteins and more. What sets TRILL apart is its ability to enable complex
pipelines by chaining together models and effectively merging the capabilities of different models
to achieve a sum greater than its individual parts. Whether using Google Colab with one GPU or a
supercomputer with hundreds, TRILL allows scientists to effectively utilize models with millions to
billions of parameters by using optimized training strategies such as ZeRO-Offload and distributed
data parallel. Therefore, TRILL not only bridges the gap between complex deep-learning models
and their practical application in the field of biology, but also simplifies the orchestration of these
models into comprehensive workflows, democratizing access to powerful methods. Documentation:
https://trill.readthedocs.io/en/latest/home.html.

Introduction

Even though the first genome was sequenced in 1977 [1], there are now more than 36 petabytes of sequencing data on
the NCBI Sequence Read Archive [2]. This scientific feat has enabled scientists to utilize the breadth of nature for their
research; whether it be for revealing unculturable organisms that live in extreme environments [3], to discovering novel
antimicrobial peptides [4] or finding new ways to engineer genomes [5]. While there are seemingly endless amounts of
sequencing data, actually leveraging this treasure-trove of biological novelty is a non-trivial task. Classical methods for
comparing biological sequences usually involve pairwise comparisons [6] or by using hidden-markov models (HMMs)
[7]. While these methods rely on evolutionary relationships to link related sequences through homology, machine
learning based methods have shown success for functional comparisons without needing shared ancestry. For example,
researchers have been able to predict whether a given protein is a cell-penetrating peptide, regardless of actual homology
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[8]. These predictions were enabled by extracting amino acid frequencies and biochemical properties for each protein
and using this data to train random-forest classifiers. However, these methods tend to rely heavily on feature selection,
which not only requires background knowledge but also introduce potential bias by focusing on select features.

Deep learning methods, such as recurrent neural networks, have proven to be able to extract functional information
of proteins from sequence alone [9]. However, the application of natural language processing (NLP) methods to
protein sequences has truly led to breakthroughs for state-of-the-art in-silico protein analysis. At the heart of these
breakthroughs is the Transformer, a deep-learning architecture first published in 2017, which uses self-attention to
effectively capture long-range dependencies and intricate patterns in protein sequences that were previously challenging
for traditional methods to discern [10]. Analogous to using words and sentences to train typical large language models
(LLMs), Transformer-based models such as ESM-2 use amino acids and protein sequences [11] to learn the "grammar"
of life. These protein language models (PLMs) learn in a self-supervised manner, where the model attempts to predict
the identity of a random 15% of the amino acids per sequence using the unmasked portions. ESM-2 was pre-trained
on the masked language training task with 65 million unique protein sequences from UniRef. After this extensive
training, scientists are able to use these pre-trained models to extract high-dimensional representations for their proteins
of interest. These vectors can then be used for clustering, regression, classification and other downstream tasks for
functional comparisons [12]. However useful deep-learning based approaches are, large PLMs are unwieldy, with
ESM-2 parameter sizes ranging from millions to billions of parameters, much too big for many GPUs. The sheer size
of these types of models limit widespread adoption in the biological community, where most end-users are not able
to efficiently wield these powerful tools due to hardware constraints. While tools such as bio_embeddings [13] and
ColabFold/Design [14] exist, no current software allows for both embedding and fine-tuning with these large PLMs at
scale. Furthermore, end-to-end analyses for proteins often require chaining together methods, including other types of
models like denoising diffusion probabilistic models and graph based message passing neural networks.

Recent advancements in the field have provided us with novel methods and examples for protein engineering. Despite the
excitement, we identified a significant gap in the availability of computational platforms designed for agile, multifaceted
experimentation in protein analysis. Motivated by this unaddressed need and eager to use these methods ourselves, we
initiated the development of TRILL (TRaining and Inference using the Language of Life). TRILL provides users with
an expansive toolkit that encompasses a wide array of functionalities, from de-novo protein design and 3D structure
prediction to simulating protein-ligand interactions and assessing protein properties. The platform’s user-friendly and
flexible interface not only facilitates efficient model utilization for researchers of varying backgrounds but also reduces
technical barriers. This enables a more focused and declarative approach to advancing protein science. A distinguishing
feature of TRILL is its capability to compose complex workflows, allowing for more comprehensive analyses. By
integrating these features, TRILL serves as a "toolbox," aiming to become a go-to resource for both biologists and
bioengineers engaged in protein-related research.

The TRILL Framework

TRILL serves as a comprehensive platform designed to democratize access to state-of-the-art deep-learning models and
methods. The framework eliminates the need for specialized computational skills, thereby lowering the entry barrier for
end-users. At present, TRILL offers a rich repository of deep-learning models specifically trained for protein design
and analysis. These models are complemented by a suite of utilities that enhance user experience and functionality. For
instance, the platform provides interactive visualization tools for protein embeddings, capabilities for training custom
classifiers, and features for conducting empirically scored docking. To facilitate ease of use, these diverse tools and
utilities have been encapsulated within a command-line interface, organized into ten commands. This modular approach
allows users to effortlessly switch between different approaches, thereby enabling seamless experimentation.

One of the most significant challenges in leveraging cutting-edge models is the initial setup, which often involves
configuring a suitable computational environment, installing requisite software packages, and managing intricate
dependencies. TRILL streamlines this process, offering an installation procedure that is both straightforward and
efficient. By establishing a cache in the end-users home directory, TRILL also intelligently manages downloads to
optimize storage usage, where models are downloaded once and only once when first used. Moreover, TRILL addresses
the hardware limitations that frequently hinder the effective utilization of LLMs, which can range from millions to
billions of parameters. The framework employs advanced techniques such as model parameter sharding to optimize
computational resources. Another strength of the platform lies in its flexibility. TRILL’s scalability is a hallmark feature,
designed to function across a spectrum of computational environments—from Google Colab and personal laptops
without GPU support to high-performance supercomputing clusters. The framework is highly accessible, requiring
only protein sequences or structures as user input. TRILL also exposes a range of hyperparameters that can be adjusted
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Figure 1: Abstracted TRILL architecture.
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COMMAND FUNCTION

Embed These models generate numerical representations, or "embeddings," of protein
sequences. This transformation allows for quantitative analysis and comparison of
proteins, which is crucial for understanding their functions and interactions.
Available models: ESM2 [11], Ankh [15], ProtT5-XL [16] and ProstT5 [17] .

Visualize Performs dimensionality reduction and generates an interactive 2D visualization
of the embeddings. Exported as searchable HTML Bokeh scatterplots, this feature
powers exploratory data analysis with label-based queries via JavaScript.
Available methods: PCA [18], t-SNE [19] and UMAP [20]

Finetune Finetune protein language models on a specific task with several different training
strategies including Distributed Data Parallel and ZeRO-Offload.
Available models: ESM2, ProtGPT2 [21] and ZymCTRL [22].

Language Model Protein Generation Utilizing pretrained large protein language models, one can either directly generate
proteins in a zero-shot fashion or first finetune the models on proteins of interest and
then proceed with generation.
Available models: ESM2, ProtGPT2 and ZymCTRL.

Diffusion Based Protein Generation Denoising diffusion probabilistic models have learned to create proteins from
atomic noise.
Available models: RFDiffusion [23].

Inverse Fold Inverse folding is the process of designing a protein sequence that will fold into a
desired 3D structure.
Available models: ESM-IF1 [24], ProteinMPNN [13] and ProstT5.

Fold Predict the three-dimensional structure or 3Di tokens (for use with Foldseek [25])
from protein sequence alone.
Available models: ESMFold [11] and ProstT5.

Dock Predicts preferred binding orientations of ligands to a protein.
Available models: DiffDock [26], Autodock Vina [27], Smina [28] and LightDock
[29].

Simulate Performs molecular dynamics simulations to relax protein structures.
Available methods: OpenMM [30]

Classify Enables high-throughput protein property predictions. Users can choose between
using pre-trained models or train custom XGBoost [31] and Isolation Forest [32]
classifiers on protein embeddings.
Available pre-trained classifiers: TemStaPro [33] and EpHod [34]

Table 1: Breakdown of TRILL’s commands

to meet specific research needs. Through abstraction, TRILL is able to reduce lines of code needed to be written by
end-users by a factor of 10-100.

TRILL’s adaptability is underpinned by robust deep-learning frameworks such as PyTorch Lightning [35] and Hugging
Face’s Accelerate [36]. These frameworks facilitate scaling of both training and inference across diverse hardware
architectures. We have meticulously transformed many of the neural networks within TRILL into Lightning modules,
even going so far as to modify the model’s source code on GitHub. This conversion not only democratizes the models
through features like parameter offloading, memory efficient optimizers, and mixed-precision training, but it also
facilitates high-performance, distributed analyses on a supercomputer, with a SLURM script example included in
the documentation. Additionally, we have engineered all requisite models to operate independently of GPU support.
Beyond its core functionalities, TRILL offers auxiliary features like advanced visualization capabilities for protein
embeddings. Utilizing dimensionality reduction techniques followed by Bokeh, we generate interactive, queryable
scatter-plots that are accessible through a text-input interface powered by Javascript. The platform also leverages key
packages such as PyTorch [37], Deepspeed [38], and Transformers [39], along with specialized packages like fair-esm
and RFDiffusion [23] for interfacing with relevant deep-learning models.
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In the following sections of this manuscript, we will describe two use-cases that demonstrate how TRILL can be
employed to compose bespoke workflows. These examples are by no means exhaustive but are intended to inspire
further exploration. We believe that the scientific community is just scratching the surface of what is possible when
ground-breaking models are chained together into complex pipelines.

Example TRILL workflows

Workflow 1: Remote Homology Detection

Figure 2: Workflow for finding remote homologues using TRILL

Remote homology detection with proteins is a complex yet indispensable task in bioinformatics. The importance of
identifying distant homologues lies in enabling accurate functional annotation, structural prediction, and evolutionary
analysis of proteins, which are fundamental to advancements in drug discovery and understanding diseases [40]. The
challenge primarily stems from the need to accurately extract evolutionary information into profiles for effective
detection. Traditional sequence-based methods are often inadequate for identifying remote homologues, necessitating
more advanced computational techniques like profile-based protein representation. This task holds significant importance
for both basic research, such as molecular evolution and protein attribute prediction, and practical applications like 3D
protein structure modeling for drug development.

PLMs provide a unique paradigm for remote homology detection that does not rely on sequence alignment. Sequences
are first embedded within the high-dimensional latent space of an PLM and then homology detection can be performed
by training a classifier to detect sequences from a protein family of interest against a background of out of class
sequences. When it comes to viral proteins, the challenges of finding distant relatives are further amplified due
to various factors such as rapid evolution, the absence of a single common ancestor, horizontal gene transfer, and
overlapping genes. These factors contribute to substantial sequence divergence over short timescales, making viral
sequences significantly different from their ancestral forms and unrecognizable to traditional methods like BLAST. A
clear example of the sensitivity of these methods can be found in Kirchberger 2022, where they were able to vastly
expand the known genomes of Microviridae by several thousand through the use of iterative HMM searches for the
microviral major capsid protein, or VP1, which is a highly conserved hallmark gene of the viral family [41]. Despite
the success of this iterative approach, it required months of searches and thousands of CPU hours. Language model
based homology detection can have powerful computational advantages over conventional detection strategies due to
the alignment-free nature that facilitates rapid classification. While protein language models such as ESM2 have not
been extensively trained on viral sequences, they can still learn a mapping from sequence space to high-dimensional
space that might generalize across the tree of life. We apply TRILL for detecting Microviridae with a relatively simple
workflow, where we first use ESM2 to embed known viral sequences. We then train a classifier and use it to find other
VP1s in our simulated pool of viral sequences.

To simulate the viral pool, we downloaded all viral proteins from RefSeq, and then filtered out existing VP1s from
the database using an HMM search. To reduce the redundancy, we then performed clustering with MMSeqs2 [40], to
bring the number to 130K proteins. After embedding the sequences with ESM2_3B, we trained two types of classifiers
for microvirus detection: an XGBoost binary classifier and an Isolation Forest anomaly detector. Our reasoning for
including two different types of algorithms lies in the fact that "negative" examples for protein classification are often
ill-defined and not experimentally validated. In the case where there is no clear "negative" classification, an anomaly
detector just requires one label. We trained the two types of classifiers on a held-out 25% of the VP1 sequences,
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Figure 3: Top: PCA of Microviridae VP1s, colored by ground truth, iForest and XGBoost predictions respectively from
left to right. Bottom: Confusion matrices for the iForest and XGBoost VP1 classifiers.

with the XGBoost also requiring a comparable amount of negative examples for training. We randomly sampled the
negative cases for training the binary classifier from the 130K unrelated viral proteins without replacement. After
training, the XGBoost and iForests achieved best F1-scores of 0.999 and 0.950 respectively (Figure 3). Remarkably,
both classifiers had no false positives, highlighting the utility of these high-dimensional representations for performing
sensitive searches.
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Workflow 2: Family Based Protein Generation

Figure 4: Workflow for generating putative cell-penetrating peptides using TRILL

Proteins that share similar functions often share ancestry, as they are likely to have evolved from a common ancestral
protein. This shared ancestry is usually reflected in sequence similarities, which can be detected through various
bioinformatics methods like sequence alignment and profile-based homology detection. However, this is not always the
case due to the phenomenon of convergent evolution, where proteins from different evolutionary lineages evolve similar
functions independently. In such cases, the proteins may have similar functional domains but differ significantly in their
overall sequences, making traditional methods of homology detection less effective. Grouping proteins that share similar
functions can be a powerful strategy for fine-tuning generative models. By focusing on these "families", the model
can learn the specific sequence patterns and structural motifs that are crucial for a particular function. This targeted
learning can improve the model’s ability to generate novel proteins with desired functionalities, thereby enhancing its
applicability in synthetic biology and drug development. Leveraging the knowledge of functionally similar protein
families can thus provide a more nuanced and effective approach to protein design.

We apply TRILL to generate novel proteins from a desired grouping. While there are many possible ways to approach
this task, our workflow first involves training a functional classifier on ESM2 embeddings from validated positive
and negative examples of our protein family. We then proceeded to finetune a generative PLM, ProtGPT2, on known
examples of our desired family and compare the classification rates for generated proteins from both the finetuned and
base model. For this general workflow, we decided to test it on two different groupings of proteins, cell penetrating
peptides and anti-CRISPR proteins.

1 # Embed labeled proteins with ESM2 -150M and then perform a hyperparameter sweep to
train a XGBoost classifier on .75% of the data and evaluate it on the rest

2 $ trill step_one 1 classify XGBoost CPP_DatasetE.fasta --emb_model esm2_t30_150M
--save_emb --train_split .75 --sweep --save_embs --key CPP_DatasetE_key.csv

3 # Finetune ProtGPT2 on known CPPs
4 $ trill step_two 1 finetune ProtGPT2 CPP_positives.fasta
5 # Generate 1,000 proteins from the CPP finetuned ProtGPT2
6 $ trill step_three 1 lang_gen ProtGPT2 --num_return_sequences 1000 --finetuned

CPP_ProtGPT2.pt
7 # Embed generated proteins and classify them with the CPP pretrained XGBoost

classifier
8 $ trill step_four 1 classify XGBoost generated_sequences.fasta --emb_model

esm2_t30_150M --preTrained my_CPP_classifier.json --save_emb
9 # Perform PCA and visualize the generated sequences , colored by the predicted

labels
10 $ trill step_five 0 visualize generated_sequences.fasta --key predicted_labels.csv

Listing 1: Example TRILL commands for CPP workflow

Cell penetrability is an example of a protein function that BLAST/HMMs routinely fail in identifying due to convergent
properties without sharing common ancestry. Utilizing Dataset E from Yadahalli 2020 [8], we first trained an XGBoost
classifier on the protein embeddings from ESM2-150M and then achieved an F1 of 0.876 on a held-out 25% of the
CPPs (Figure 5). We then finetuned ProtGPT2 on the 955 CPPs for 10 epochs with a learning rate of 1e− 5. Next,
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Figure 5: Top: PCA of cell penetrating peptides, colored by ground truth, iForest and XGBoost predictions respectively
from left to right. Bottom: Confusion matrices for the iForest and XGBoost CPP classifiers.

we generated 1,000 proteins using the base and CPP finetuned ProtGPT2 for each of the top 9 most frequent starting
residues used as seed sequences (’R’: 175, ’K’: 137, ’G’: 119, ’A’: 66, ’L’: 61, ’M’: 50, ’C’: 48, ’Y’: 44, ’S’: 38).

We then evaluate the putative de-novo proteins with our pretrained XGBoost classifier. While the base ProtGPT2 model
has a non-trivial success rate of generating predicted CPPs, there is a noticeable increase in success with the finetuned
model. Between the proteins generated from the base and finetuned models, we predicted an average success rate of
22% and 57% respectively over 9,000 synthetic proteins from both (Figure 2). We surmise that the base ProtGPT2
model might have an artificially high "success rate" due to short peptide length as well as starting with certain amino
acids such as arginine and lysine, which both have positively charged side-chains and are the two most frequent starting
residues. For further comparison of the generative abilities of these models, we generated two groups of random
proteins that have lengths that are drawn from a Poisson distribution (λ = 55). The first group is 9000 purely random
proteins from a uniform distribution across the 20 canonical amino acids and the second group is 9000 proteins that
have a bias to start with a certain amino acid according to the initial residue distribution in the training CPP set, while
the rest of the generated sequence is purely random.

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.10.24.563881doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.24.563881
http://creativecommons.org/licenses/by/4.0/


TRILL

Figure 6: Top: Success rates for proteins generated either randomly or from ProtGPT2. In black are the proteins
generated from the base model, while the green bars are from the CPP finetuned ProtGPT2. Bottom Left: Success rates
over the course of finetuning ProtGPT2 for multiple epochs. Bottom Right: Success rates for proteins generated from
either the base or ACr family specific finetuned ProtGPT2 models.

Anti-CRISPR (ACr) proteins are of great interest to both basic and applied biology due to their ability to inhibit different
classes of CRISPR-Cas systems. However, they are also difficult to find in sequencing data due to convergent evolution.
While several tools [42, 43] exist for predicting whether or not a protein is an anti-CRISPR protein, we use TRILL to
demonstrate how simple it is to train competitive classifiers using nothing but protein embeddings. Leveraging the 150M
parameter ESM-2 model, we embedded an equal amount of validated anti-CRISPR proteins and non-anti-CRISPR
proteins from PaCRISPR [42]. We then trained an XGBoost classifier on 75% of the embeddings and evaluated the F1
on the held-out 25%, resulting in a F1 score of 0.886. To augment the amount of putative anti-CRISPR proteins, we
finetuned ProtGPT2 on 3 different Anti-CRISPR families (I-D, I-F, II-C) for 10 epochs with a learning rate of 1e− 5
and then generated 1,000 sequences from each model, including the base. Quite different from the CPP results, the base
ProtGPT2 model only had a predicted 2.1% success rate while the finetuned models achieved 23.5%, 28.7% and 15.7%
for I-D, I-F and II-C respectively (Figure 6).

For both functional classes (CPPs and ACrs), we evaluated how the rate of generating predicted valid proteins varies as
a function of finetuning epochs. After each epoch, we generated 5000 proteins and subsequently tested them with our
pretrained classifiers. Interestingly, both generative models hit their peak success rate after only 1 epoch, with 95% and
90% respectively for ACrs and CPPs. After 2 epochs, both generative models appear to share similar dynamics, with
drops in performance until eventually coming close to the first epoch’s performance. Over the course of 10 epochs, the
rate of generating valid proteins varies by around 40% for both models, which highlight the importance of generating
proteins from multiple versions of finetuned models. Furthermore, more work is needed to evaluate how the "successful"
proteins from 1 epoch of training versus 10 epochs differ. For example, the generative models might end up memorizing
certain sub-sequences if finetuned for too many epochs, where the generated proteins are quite similar to the initial
training set, potentially losing novel, dissimilar proteins that share function.
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Table 2: Classifier performances

PLM Parameters Embedding
Dimension

CPP
XG F1

CPP
iF F1

ACr
XG F1

ACr
iF F1

VP1
XG F1

VP1
iF F1

Multi-Class
Micro F1

ESM2-8M 8M 320 0.854 0.546 0.916 0.733 0.978 0.833 0.830
ESM2-35M 35M 480 0.853 0.563 0.895 0.714 0.980 0.862 0.835

ESM2-150M 150M 640 0.876 0.553 0.886 0.745 0.984 0.906 0.842
Ankh 450M 768 0.839 0.613 0.888 0.751 0.993 0.956 0.826

ESM2-650M 650M 1,280 0.870 0.582 0.904 0.712 0.996 0.970 0.842
Ankh-Large 1.15B 1,536 0.833 0.601 0.882 0.773 0.986 0.443 0.813
ESM2-3B 3B 2,560 0.860 0.599 0.905 0.763 0.999 0.950 0.850
ProtT5-XL 3B 1,024 0.880 0.578 0.870 0.764 0.999 0.972 0.835

ProstT5 3B 1,024 0.886 0.609 0.889 0.802 0.998 0.689 0.826
ESM2-15B 15B 5,120 0.886 0.611 0.903 0.763 1 0.963 0.844

Performance of Classifiers

We systematically evaluated the performance of both XGBoost and iForest classifiers trained on different representations
extracted from various protein language models, in order to compare the amount of classification-relevant information
that can be learned from the representations. TRILL currently has 3 different types of PLM’s: BERT-style encoders
(ESM2), T5-style encoder-decoders (ProtT5, Ankh) and a "bilingual" T5-style model that has been trained on both
sequence and structure (ProstT5). Further research is needed to determine which representation is most useful for
what application, mainly due to the fact that most usage of these models tends to be for benchmarking purposes so far.
Ranging in model size from 8 million to 3 billion parameters, there appears to be diminishing returns as the protein
language models grow (Table 2). Interestingly, although the top performing representations are mostly from models
with over 1 billion parameters, the smallest model ESM2-8M achieved the highest F1 score in the ACr XGBoost binary
classification. Depending on the end-goal, researchers could opt to save on computation and resources by leveraging
smaller protein language models for classification. Even though the XGBoost classifiers consistently outperformed the
iForests, further comparison of these algorithms is needed, since there seems to be a discrepency in the iForest being able
to actually learn protein properties. While it is clear that the iForest can detect remote, ancestrally derived homologies
in the case of Microviridae VP1’s, the model struggles to identify purely functional classifications, specifically in the
case of CPP’s, where the average F1 was 0.582 (Table 2). This disparity in performance might lie in the fact that the
CPPs are not ancestrally related, while the ACr’s can be and the VP1’s are, leading to a trade-off between the classifiers
when it comes to sequence similarity. There may be some utility in the sequence-conservative predictions of the iForest,
but more studies are needed to probe the differences.

Furthermore, we trained and evaluated XGBoost multi-class classifiers on the three classes of interest (VP1, CPP and
ACr), as well as the three "negative" classes. Even though the "negative" classes are not well defined, the classifiers
are still able to distinguish between non-cell-penetrating peptides, non-VP1 random viral genes from RefSeq and the
non-anti-CRISPR proteins. Focusing on the highest performing classifier for both micro and macro-averaged F1 scores
that was trained on ESM2-3B embeddings, we were able to achieve 0.848 and 0.850 respectively (Figure 7). However,
all the representations, ranging from 320 to 2,560 dimensions, perform comparably in the multi-class setting, with only
0.018 and 0.02 differences in micro and macro-averaged F1 specifically between the largest, most successful model
ESM2-3B and the smallest, ESM2-8M (Table 2). From the ROC curves, it is apparent that the classifiers are robust to
false positives, with AUC between 0.81 and 1.00 (Figure 7). Lastly, the multi-class confusion matrix highlights where
the classifier had difficulty distinguishing between non-anti-CRISPR proteins and non-VP1 viral genes. This most
likely has to do with the fact that these two classes are not mutually exclusive and could definitely have overlap, since
the anti-CRISPR negative examples come from phages and mobile genetic elements in bacteria [42].
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Figure 7: Top Left: One-versus-all ROC curves from an XGBoost classifier trained on 6 classes represented by
ESM2-3B. Top Right: Multi-class confusion matrix for all 6 classes represented by ESM2-3B Bottom Left: PCA
of ESM2-3B embeddings colored by ground-truth labels. Bottom Right: PCA of ESM2-3B embeddings colored by
predicted labels.

Conclusion

The workflows presented in this manuscript are intended as illustrative examples to stimulate further inquiry; they should
not be viewed as an exhaustive catalog of TRILL’s potential applications. As TRILL undergoes iterative advancements,
the incorporation of cutting-edge deep-learning models serves to diversify the range of scientific inquiries that can be
addressed. TRILL has only been made possible through building upon the efforts of open-source software development,
highlighting the importance of open-science and collaboration. As the field of deep-learning-based bioengineering
matures, the real-world impact won’t be fully realized without the sharing of methods and widespread adoption.
With broader use of these tools, an immediate benefit is the empirical validation of these integrated algorithms
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through rigorous experiments performed independently. Such validation is poised to bolster the scientific community’s
confidence in these methods and provide invaluable data for subsequent algorithmic refinements. A promising direction
for future development is the implementation of specialized, end-to-end declarative pipelines. These automated pipelines
would allow end-users to execute complex analyses with minimal manual intervention, thereby accelerating the pace of
discovery. The workflows will be designed to strike a balance between generalizability and customizability, thereby
accommodating a broad spectrum of bioengineering challenges while also allowing for task-specific configurations.

In conclusion, TRILL aims to be a facilitative platform, offering a new lens through which to approach proteins. Its
potential impact, while promising, will ultimately be determined by its ability to integrate seamlessly into existing
research workflows and to adapt to the rapid pace of both biotechnology and artificial intelligence. It is through
this iterative process of development, validation, and adaptation that TRILL aspires to become a meaningful tool for
advancing science.

Data Availability

All of the protein sequences, embeddings, finetuned generative models and other artifacts for this work are available for
download at https://doi.org/10.22002/mn4w0-cqj07. The plots in the manuscript and analyses can be reproduced by
following the included Jupyter notebooks.
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