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 2 

ABSTRACT 45 
 46 
 47 
Colonization of a novel habitat is often followed by radiation in the wake of ecological 48 

opportunity. Alternatively, some habitats should be inherently more constraining than others if 49 

the challenges of that environment have few evolutionary solutions. We examined the push-and-50 

pull of these factors on evolution following habitat transitions, using anglerfishes (Lophiiformes) 51 

as a model. Deep-sea fishes are notoriously difficult to study, and poor sampling has limited 52 

progress thus far. Here we present a new phylogeny of anglerfishes with unprecedented 53 

taxonomic sampling (1,092 loci and 40% of species), combined with three-dimensional 54 

phenotypic data from museum specimens obtained with micro-CT scanning. We use these 55 

datasets to examine the tempo and mode of phenotypic and lineage diversification using 56 

phylogenetic comparative methods, comparing lineages in shallow and deep benthic versus 57 

bathypelagic habitats. Our results show that anglerfishes represent a surprising case where the 58 

bathypelagic lineage has greater taxonomic and phenotypic diversity than coastal benthic 59 

relatives. This defies expectations based on ecological principles since the bathypelagic zone is 60 

the most homogeneous habitat on Earth. Deep-sea anglerfishes experienced rapid lineage 61 

diversification concomitant with colonization of the bathypelagic zone from a continental slope 62 

ancestor. They display the highest body, skull and jaw shape disparity across lophiiforms. In 63 

contrast, reef-associated taxa show strong constraints on shape and low evolutionary rates, 64 

contradicting patterns suggested by other shallow marine fishes. We found that Lophiiformes as 65 

a whole evolved under an early burst model with subclades occupying distinct body shapes. We 66 

further discuss to what extent the bathypelagic clade is a secondary adaptive radiation, or if its 67 

diversity can be explained by non-adaptive processes. 68 

  69 
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 3 

INTRODUCTION 70 

 71 

How does evolution proceed after the colonization of novel but harsh environments? The 72 

bathypelagic zone of the deep sea (>1,000 m) is characterized by a lack of solar light, food 73 

limitation, high pressure, low temperatures, and large expanses of homogeneous space1–4. Fishes 74 

living at this depth converged on specializations including large jaws and teeth, reduced 75 

metabolic rate, reduced musculature and skeletal density, sensitive eyes, and 76 

bioluminescence1,2,5–13. The repeated evolution of these adaptations across distantly related 77 

lineages may be an indication that there are a limited number of potential solutions to overcome 78 

the challenges of this environment14. In contrast to the deep sea, coastal marine environments 79 

such as coral reefs and estuaries are diverse, productive and topologically complex15,16. Due to 80 

their sharper biotic and abiotic clines, and presumably greater number of niches, we should 81 

expect coastal habitats to promote ecological, morphological, and lineage diversification relative 82 

to open ocean or deep sea settings17–24. Yet, recent studies using phylogenetic comparative 83 

methods have shown that fishes from the latter habitats can have greater phenotypic 84 

diversification rates and disparity in body shape25–29. The reasons for this remain unclear, but 85 

nonetheless contradict expectations based on first principles30. 86 

The order Lophiiformes is an iconic clade of marine fishes whose members are 87 

characterized by a lure on their head that is used for sit-and-wait hunting. Lophiiformes contains 88 

~350 species among five well-supported suborders: Lophioidei (monkfishes), Ogcocephaloidei 89 

(hand batfishes), Antennarioidei (frogfishes), Chaunacoidei (sea toads), and Ceratioidei 90 

(dreamers and sea devils)31. Four of the five suborders are benthic and occupy the continental 91 

shelf, slope and rise, while the ceratioids are bathypelagic. The ceratioids are known for their 92 
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extreme sexual size dimorphism and varying degrees of sexual parasitism in which males fuse to 93 

a female, a phenomenon not found in any other vertebrate32. In addition to their habitat diversity, 94 

anglerfishes also exhibit diverse body shapes ranging from laterally compressed, dorsoventrally 95 

compressed, globose, and elongated. Specializations of benthic lophiiforms include extreme oral 96 

gape expansion33, a tetrapod-like walking gait34, and extremely slow breathing in low-oxygen 97 

settings35,36. It is believed that their shape diversity is related to the evolution of restricted gill 98 

openings, which frees constraints on cranial morphology37 and allows the body to fill with water 99 

to perform these specialized functions. 100 

How have habitat transitions shaped the evolution of anglerfishes? First, we hypothesize 101 

that shallow and/or benthic species will have faster rates of phenotypic and lineage 102 

diversification than bathypelagic anglerfishes. Even deep benthic environments are more 103 

heterogeneous than the deep pelagic zone3,38,39, and substrate preferences are evident from videos 104 

of deep benthic chaunacids and lophiids40–42. In contrast, the homogeneity of the bathypelagic 105 

zone is unparalleled on Earth2. There are few barriers to dispersal which should limit 106 

speciation43–45 (but see 46–49). Further, the environmental challenges in the deep pelagic zone 107 

should impose constraints on evolution, limiting the number of viable phenotypes14 and thereby 108 

reducing rates of phenotypic evolution50. Phenotypic constraints associated with a particular 109 

habitat can be detected using a model-fitting approach, with an Ornstein-Uhlenbeck (OU) model 110 

being most consistent with this type of constraint (Table 1). 111 

Alternatively, we hypothesize that the bathypelagic anglerfishes could have faster rates of 112 

diversification and be less evolutionarily constrained than shallow-water or deep-benthic 113 

relatives. Specifically, due to the lack of solar light, predator-prey interactions occur over short 114 

spatial scales in the deep sea, often facilitated by bioluminescence2,9,51. This presumably reduces 115 
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selection for the fusiform body shapes common among shallow-water pelagic fishes22,23,26,29,52–55, 116 

allowing ceratioids to explore new areas of morphospace. If this ecological release is associated 117 

with an increase in phenotypic diversity, speciation, and the filling of novel ecological 118 

niches56,57, then ceratioids would fit the search image of an adaptive radiation incited by the 119 

colonization of a novel habitat58–60. If this hypothesis is supported, we would expect ceratioid 120 

morphological disparity to be higher than that of benthic relatives. 121 

We can further divide this latter hypothesis into two sub-hypotheses, distinguishable by 122 

the mode of evolution (Table 1). First, phenotypes in ceratioids may be continuously diversifying 123 

over time. This could occur if the radiation is still in its early stages, if ecological opportunity has 124 

not been exhausted, or if phenotypic diversity accumulates via non-adaptive processes such as 125 

genetic drift in addition to adaptive evolution. In this case, we would expect phenotypes to be 126 

evolving under an unbounded Brownian motion (BM) model of evolution. Alternatively, we may 127 

expect to see a slowdown in phenotypic evolution in ceratioids following their initial radiation 128 

from the benthos. This could indicate that the radiation is in its late stages, that competition for 129 

similar resources prevents lineages from overlapping in morphology, or that there are few 130 

ecological niches in the bathypelagic zone to begin with. Under this sub-hypothesis, ceratioid 131 

phenotypes would be evolving under an “early burst” (EB) model, in which phenotypic and 132 

lineage diversification is fastest early in a clade’s history as subclades occupy new adaptive 133 

zones free from negative ecological interactions, but slows with time as diversification proceeds 134 

within these adaptive zones. Unlike BM, the EB model enforces a constraint on phenotypic 135 

evolution; unlike OU models, the constraint is time-dependent61. While some authors associate 136 

the EB model with diagnosing adaptive radiation sensu Simpson61,62 (i.e., process-based 137 

definition), we prefer a broader definition of adaptive radiation as a lineage that has evolved 138 
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taxonomic and phenotypic diversity associated with different ecologies20,59,63,64 (i.e., outcome-139 

based definition). The EB model might therefore be interpreted as an “ecological limits” model 140 

instead of an adaptive radiation model. 141 

 Sampling of deep-sea fishes for phylogenetic analysis is stymied by the difficulty of 142 

collecting3,65,66. Dense species sampling is needed to gain power for phylogenetic comparative 143 

methods67, ultimately limiting what we can learn about the evolution of deep-sea fishes. Here we 144 

present a novel phylogenomic hypothesis of anglerfishes (Lophiiformes) based on 1,092 single-145 

copy exon markers. Due to contributions from many natural history collections and government 146 

agencies68,69, our taxonomic sampling greatly improves upon predecessors70–72, with nearly 40% 147 

of species and all deep-sea families sampled. This advance allowed us to apply phylogenetic 148 

comparative methods largely reserved for well-sampled terrestrial and shallow-water organisms 149 

to test hypotheses about evolution in the deep sea.  150 

 151 

 152 

RESULTS 153 

 154 

Phylogenomic inference and divergence times 155 

 156 

We generated new genomic data for 152 lophiiform individuals from 120 species using 157 

exon capture approaches proven successful for fishes55,73–75 (Table S1). Sampling was 158 

augmented by mining exons from published UCEs71,72 and legacy markers from NCBI (Tables 159 

S2, S3). Final taxonomic sampling after quality control included 132 species of Lophiiformes 160 

(37.8% of species) and 20 of 21 families (all but Lophichthyidae). Sampling of ceratioids 161 
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included all 11 families and 32.1% of species. Relationships were largely in agreement between 162 

concatenation- and coalescent-based phylogenomic analyses (Appendix A1). These relationships 163 

strongly suggest that obligate sexual parasitism (found in Ceratiidae, Neoceratiidae, and 164 

Linophrynidae) evolved more than once32,70. Detailed systematic results are given in Appendix 165 

A2. 166 

 We assembled a set of 21 node calibrations, including eight outgroup and ten ingroup 167 

fossils and three geologic calibrations (Appendix A3). Our calibration scheme is novel and 168 

includes six lophiiform fossils from the Eocene Monte Bolca communities76 (Fig. 1). To 169 

incorporate uncertainty in topology and divergence times for comparative analyses, we produced 170 

eight alternative time trees using either the IQ-TREE or ASTRAL tree, the calibration scheme 171 

with or without the controversial fossil †Plectocretacicus75,77, and using either MCMCtree78,79 or 172 

RelTime80,81 as the calibration method. The methodological choice with the largest impact on 173 

divergence times was MCMCTree versus RelTime (Fig. 1, Appendix A4). For this reason, some 174 

comparative analyses involving complex visualizations were repeated on two designated 175 

“master” trees: the IQ-TREE calibrated with the scheme including †Plectocretacoidea using 176 

either MCMCTree or RelTime (hereafter “master MCMCTree” or “master RelTime tree”). 177 

Six out of eight time trees inferred a Cretaceous origin of crown Lophiiformes (92–61 Ma 178 

across trees) (Fig. 1). In the MCMCTrees, Ceratioidei split from Chauancoidei near the K/Pg 179 

boundary (67 Ma), whereas in the RelTime trees this divergence occurred in the Eocene (47–40 180 

Ma). Similarly, the two methods result in a >20 million-year difference in the age of crown 181 

Ceratioidei, either in the Paleocene (~58 Ma using MCMCTree) or late Eocene (40–34 Ma using 182 

RelTime). Detailed discussion of divergence times is given in Appendix A4. 183 

 184 
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 185 

Habitat transitions: 186 

 187 

Ancestral habitat reconstructions (Table S4) based on the best-fitting biogeographic model 188 

(BAYAREA+J; Table S5) indicated that the MRCA of all Lophiiformes had a widespread depth 189 

range spanning the continental shelf and slope82 (Fig. 2A). The bathypelagic ceratioids originated 190 

from a benthic continental slope ancestor. In other words, the most significant habitat transition 191 

associated with the ceratioids was benthic-to-pelagic, not shallow-to-deep. There were two 192 

independent transitions to a shallow-only habitat associated with frogfishes (Antennarioidei) and 193 

the hand batfish genus Ogcocephalus. 194 

 195 

 196 

Lineage diversification rates: 197 

 198 

We estimated branch-specific net diversification rates using the MiSSE framework (missing state 199 

speciation and extinction)83. MiSSE models with 1–7 rate classes were supported with >5% of 200 

the relative Akaike weight across the alternative trees (Table S6). There was little consensus on 201 

the best-fit model for any tree, therefore we model-averaged rates84. The backbone of Ceratioidei 202 

had elevated net diversification rates following the benthic-to-pelagic transition at the base of the 203 

clade (Fig. 2B, Fig. S2). The distributions of recent (tip-associated) rates of net diversification 204 

overlapped among suborders and habitats (Fig. S1). Five genera had particularly high net 205 

diversification rates: the deep benthic Chaunax, the ceratioids Gigantactis, Oneirodes, and 206 

Himantolophus, and the shallow-water batfishes Ogcocephalus (Fig. 2B). Rates were higher 207 
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overall in the RelTime trees compared to the MCMCTrees due to the generally shorter branch 208 

lengths of the former (Figs. S1, S2). Pruning for suspected taxonomic inflation in certain genera 209 

(Appendix A2) reduced rate variation overall, but the general patterns remained (Fig. 1).  210 

 211 

 212 

Phenotypic disparity: 213 

 214 

Phylomorphospace analyses85 showed that the five lophiiform suborders generally occupied 215 

distinct regions of morphospace associated with different body plans (Fig. 3, Fig. S3). The first 216 

principal component (PC1) explained 45.0% of the variation in body shape. Taxa with laterally 217 

compressed bodies and small eyes had negative values, while dorsoventrally compressed, large-218 

eyed taxa had positive values (Fig. 3A). The second PC axis explained 21.3% of the variation 219 

and corresponded to body elongation, mouth width, and jaw length, with short bodies and small 220 

mouths having low values and elongate bodies and large mouths having high values. By habitat, 221 

the body shape of female ceratioids were generally restricted to low values of PC1 and high 222 

values of PC2. Benthic species found on the continental slope were restricted to high values of 223 

PC1 but were distributed throughout PC2. Both continental shelf clades (Antennarioidei and 224 

Ogcocephalus) were restricted to low values of PC2. Thus, the transition from deep benthic to 225 

deep pelagic habitats incurred a relative increase in jaw size and decrease in eye size. Shallow-226 

water species generally exhibit more truncated bodies and mouths compared to deep-sea species. 227 

 Morphospace analyses based on micro-CT scans of skulls (Fig. S4, Table S7) showed 228 

greater overlap in shapes among suborders compared to analyses based on body shape (Fig. 3B). 229 

The first PC axis explained 19.9% of skull shape variation and was related to elongation of the 230 
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skull and the relative size and position of the jaws and orbit (with Ogcocephalus having the 231 

lowest values and Thaumatichthys having the highest values). The second PC axis explained 232 

11.7% of the variation and was generally related to size and compression of the neurocranium 233 

(with Lophiocharon having the smallest values and Ogcocephalus having the highest values). 234 

We found a strong split in skull shape morphospace by habitat, with all continental shelf taxa 235 

exhibiting negative values along PC1 while the bathypelagic taxa exhibit positive values along 236 

this axis. Continental shelf habitats are generally associated with shorter and narrower skulls 237 

with the orbit positioned high on the head. Deep benthic taxa were widely distributed in 238 

morphospace.  239 

 Convergence emerged as a theme in jaw shape morphospace (Fig. 3C). The first PC axis 240 

explained 37.0% of the variance, with positive values corresponding to foreshortened, front-241 

facing jaws with truncate premaxillae relative to the dentaries (e.g. Brachionichthys) and 242 

negative values corresponding to more laterally-positioned jaws and elongate premaxillae 243 

relative to the dentaries (e.g. Linophryne). The second PC axis explained 16.2% of the variance 244 

and corresponded to lateral versus dorsoventral compression of the jaws (with Lophiomus having 245 

the most negative values and Tetrabrachium having the most positive values). Ceratioids were 246 

nearly all restricted to negative values of PC1 with exception of Ceratiidae, whose jaws more 247 

closely resembled chauancids and shallow-water antennarioids. Similarly, the antennarioid 248 

brachionichthyids (handfishes) converged with batfishes in jaw shape. By habitat, continental 249 

shelf taxa tended towards average or high values of PC1 and PC2, while deep benthic taxa were 250 

widely distributed across the morphospace. 251 

 We quantified shape disparity86 for suborder (Table S8) and habitat categories (Table 252 

S9). Across the three phenotypic datasets, the bathypelagic ceratioids had the greatest disparity 253 
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accounting for 37–41% of the total disparity of Lophiiformes (Fig. S5). The remaining habitats 254 

each accounted for less disparity: shelf only (22–31%), shelf and slope (22–27%) and slope only 255 

(6–11%). Disparity among the remaining suborders was distributed as: Ogcocephaloidei (23–256 

30%), Antennarioidei (13–25%), Lophioidei (9–12%), and Chaunacoidei (4–6%). Note that 257 

while the four benthic suborders individually contain less disparity than ceratioids, when 258 

combined they account for 59–63% of the disparity of Lophiiformes, meaning the benthic state 259 

in general contains more disparity than the pelagic state. 260 

 261 

 262 

Tempo and mode of phenotypic evolution 263 

 264 

We used an evolutionary model fitting approach to identify the mode of body, skull and jaw 265 

shape evolution for Lophiiformes as a whole and within each suborder individually. Multivariate 266 

model-fitting analyses performed using mvMORPH87 found that the EB model had the best fit 267 

for body shape evolution for Lophiiformes (Fig. 4A). There was some support for EB dynamics 268 

for jaw shape as well, as this model had a GIC (generalized information criterion) within 0–2 269 

for all trees. The best-fit model for skull evolution was uncertain, and all three models were 270 

typically within 2 GIC units across trees. Multivariate model fitting for suborders revealed 271 

clade-specific evolutionary dynamics. Shallow-water antennarioids were unique among 272 

suborders in that the OU model had the best fit for body shape evolution, and the attractor 273 

parameter was inferred to be high indicating strong stabilizing selection on shape. There was 274 

support for the EB model on antennarioid jaw shape evolution across all trees (likely driven by 275 

divergence of small-mouthed handfishes from large-mouthed frogfishes). For bathypelagic 276 
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ceratioids, the best-fit model of body shape evolution was BM across all trees, though other 277 

models were within 2 units of GIC. For lophioids, the EB model was strongly supported as the 278 

best fit model of body shape evolution, driven by the divergence of the globose Sladenia from 279 

the strongly dorsoventrally flattened lophiids (Fig. 3A). There was strong support for an OU 280 

model for skull shape in ogcocephalids (Fig. 4B), as the skull of batfishes is very different from 281 

all other lophiiforms (Fig. 3). 282 

We also performed univariate model fitting for the ten body shape linear measurements 283 

individually, revealing additional nuances (Fig. 5). As with multivariate analyses, the OU model 284 

had the best fit for all ten dimensions of antennarioid body shape indicating stabilizing selection. 285 

The OU model was also favored for most body shape dimensions in ceratioids, except standard 286 

length and interorbital length, for which BM was favored. As standard length becomes a 287 

reflection of body elongation when size-corrected with log shapes ratios88, this indicates that 288 

body elongation is less constrained than other shape dimensions in ceratioids. EB models did not 289 

have strong support in any of these analyses. This suggests that EB evolution detected with 290 

multivariate analyses (Fig. 4) was driven by the organization of trait combinations among clades. 291 

Disparity-through-time analyses89 suggested that body shape disparity for Lophiiformes 292 

was relatively low within subclades early in the history of the clade but increased over time (Fig. 293 

S6), a signature of an early burst pattern of evolution for the order overall. Notably, ceratioids 294 

and antennarioids had high average subclade disparity in body, skull and jaw shapes throughout 295 

their entire history. This pattern indicates that subclades within these groups overlap greatly in 296 

morphology, a departure from the ordinal-level pattern. 297 

PhyloEM models90 (Fig. S7) confirmed that adaptive peaks in body, skull and jaw shape 298 

reflected the same groups visible in morphospace (Fig. 3). Shifts in major body plans were 299 
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generally associated with suborders, corroborating the early burst dynamics detected for body 300 

shape using other analyses (Fig. 4). An ancestral adaptive peak in overall skull shape was shared 301 

by the lophioids, ceratioids, and chaunacoids, with separate peaks for ogcocephalioids and 302 

anntenarioids. Lophioids and ceratioids each had unique adaptive peaks in jaw shape. Additional 303 

adaptive peaks were supported depending on which master tree was used, such as separate 304 

adaptive peaks in antennarioid and brachionichthyid jaw shapes when using MCMCTree (Fig. 305 

S7). 306 

 We inferred branch-specific evolutionary rates of body, skull, and jaw shape evolution 307 

across Lophiiformes using BayesTraits V491 while fitting ten alternative models of trait evolution 308 

available within the software. Variable-rate models with a lambda transformation had the best fit 309 

in all cases. The slowest tip-associated evolutionary rates belonged to continental shelf taxa. 310 

Bathypelagic taxa had the highest rates of body shape evolution, and similar rates of skull and 311 

jaw evolution to deep benthic taxa (Fig. 6). Rate variation by branch revealed more complex 312 

patterns of trait evolution (Fig. 6). Evolutionary rates were generally low within the 313 

antennarioids across all three phenotypic datasets, with the exception of a few specialized species 314 

and along the stem branch leading to Brachionichthyidae. The ceratioids and ogcocephalids had 315 

several lineages with elevated rates corresponding to morphologically unique deep-sea genera. 316 

Therefore, we did not find that evolutionary rates slowed through time in deep-sea taxa, as 317 

predicted if ecological limits are driving the diversification process (Table 1). Rates of body 318 

shape evolution were high on the stem branches leading to Ceratioidei, Ogcocephalidae, and the 319 

dorsoventrally flattened lophiids, suggesting high rates are related to evolution of new body 320 

plans. Patterns were generally consistent between the two master trees (Fig. S8). 321 

 322 
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 323 

DISCUSSION 324 

 325 

In this study we asked whether colonization of a novel but harsh environment should promote or 326 

constrain evolution. Colonization of new environments is generally believed to be a precursor to 327 

evolutionary radiation58. Yet, some environments should be inherently more constraining than 328 

others, potentially because there are few available niches or the challenges of that habitat only 329 

have a few viable solutions14,50. We examined the push-and-pull of these factors on evolution in 330 

the anglerfishes (Lophiiformes) with three guiding hypotheses (Table 1). We discuss the 331 

evidence for each of these hypotheses below. 332 

 333 

 334 

Early burst of lophiiform phenotypes: 335 

 336 

We found strong evidence that evolutionary dynamics for the order Lophiiformes as a whole 337 

evolved under early-burst dynamics. We found that an EB model had the best fit for body shape 338 

evolution (Fig. 4). The five suborders generally occupy distinct regions of the body shape 339 

morphospace, which was confirmed by phyloEM models (Fig. 3A, Fig. S7). Since four of five 340 

suborders are benthic, this supports the idea that benthic habitats in general contain more body 341 

shape diversity. This is potentially due to the greater topographic complexity of benthic versus 342 

pelagic habitats, which should promote niche evolution22,55. For example, the dorsoventrally 343 

compressed body plan only evolves in benthic fishes22,92, represented in Lophiiformes by the 344 

lophiids and ogcocephalids. These two clades diverged further in diet, with ogcocephalids eating 345 
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small invertebrates93 and lophiids eating fishes9, explaining additional shape variation related to 346 

mouth size and position (Fig. 3). The early appearance of diverse body plans is also preserved in 347 

the fossil record: Monte Bolca fossils closely resemble living lophiids, antennarioids, and 348 

batfishes94–99. 349 

 Of all benthic environments, we should expect coastal shelf habitats, especially coral 350 

reefs, to promote phenotypic evolution17,19,20,23,100. Yet, the most reef-associated clade of 351 

lophiiforms, the antennarioids, was the most constrained in shape, fitting a pattern of “branch 352 

packing”85 (Fig. 3, Fig. S6). Unique among the five suborders, the OU model had the strongest 353 

support for multivariate body shape of antennarioids (Fig. 4) as well as for nearly all individual 354 

body shape variables (Fig. 5). Antennarioids also had the lowest rates of phenotypic evolution 355 

among Lophiiformes (Fig. 6, Fig. S8). The other lophiiform clade that specialized on continental 356 

shelf habitats, the genus Ogcocephalus, was also restricted in morphospace relative to 357 

ogcocephalids from deep-sea habitats (Fig. 3). Therefore, shelf habitats alone cannot explain the 358 

higher diversity of benthic lophiiforms, but rather the entire spectrum of benthic habitats 359 

including deep-sea environments must have played a role in generating this diversity. 360 

 361 

 362 

Evidence for adaptive radiation in the bathypelagic zone 363 

 364 

Within ceratioids, most individual body shape variables evolved under an OU model (Fig. 5), 365 

and ceratioids were generally confined to a region of morphospace associated with small eyes 366 

and large jaws (Fig. 3), suggesting that these features are a response to bathypelagic conditions. 367 

For example, at these depths all light comes from bioluminescent point sources, which are bright 368 
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enough for small eyes to detect11. Despite these constraints, we found that the bathypelagic 369 

ceratioids had the highest disparity when considering suborders individually, comprising 37–370 

41% of the total disparity of Lophiiformes (Tables S8, S9; Fig. S5). Ceratioids have been able to 371 

diversify as long as general constraints related to a bathypelagic existence are satisfied. This 372 

diversification includes instances of convergence on shallow-water shapes (Fig. 3C), as well as 373 

the evolution of entirely novel phenotypes related to predation (Fig. 6). Most strikingly, the 374 

“wolftrap” phenotype, in which the upper jaw and teeth are enlarged to ensnare prey, evolved 375 

twice independently (in Lasiognathus and Thaumatichthys) and is associated with high rates of 376 

evolution (Fig. 6). Ceratioids especially show a lot of diversity on the spectrum of body 377 

elongation, which was found to be evolving under BM (Fig. 5). Even though the “archetypical” 378 

ceratioid in popular imagination is globose, elongate forms have evolved repeatedly such as 379 

Ceratias, Gigantactis, Lasiognathus, and Thaumatichthys (Fig. 5).  380 

 Are ceratioids an adaptive radiation themselves (nested within the lophiiform radiation), 381 

or a different type of evolutionary radiation generated through non-adaptive processes63,101,102? 382 

This is not a pedantic exercise63, but is crucial for understanding fundamental questions about 383 

deep sea evolution. For example, given the paucity of resources, is adaptive radiation even 384 

possible in the deep sea? If so, does it conform to patterns described for terrestrial, freshwater 385 

and shallow marine adaptive radiations60? Ecological opportunity, the kindling that incites 386 

adaptive radiation, is thought to be highest upon colonizing a novel habitat that lacks 387 

competitors, especially when coupled with a key innovation that provides access to novel 388 

resources56,58,60. Ceratioids are by far the most diverse vertebrate clade in the bathypelagic zone 389 

today6. Their lure, large jaws, low metabolism, and extensible stomachs are shared with their 390 

benthic relatives33,36, which may have predisposed them for ecological success in the food-391 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.26.564281doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.26.564281
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

limited deep sea relative to non-lophiiform competitors5,49. They colonized this habitat from a 392 

deep-benthic ancestor and shortly after experienced a burst in lineage diversification rates (Fig. 393 

2) and evolved novel phenotypes (Figs. 3, 6). Their sister group, the benthic chaunacids, have 394 

comparably low taxonomic and phenotypic diversity102 (Fig. S5). These pieces of evidence paint 395 

the picture of a potential adaptive radiation103. 396 

 While the EB model was developed to characterize adaptive radiation based on 397 

Simpson’s conceptualization62,104, in practice this model seems to be a poor representation of 398 

many adaptive radiations61 including the ceratioids. Despite rapid lineage diversification early on 399 

(Fig. 2B), there is little evidence for a similar early burst of phenotypic evolution (Figs. 4, 5). 400 

Phylomorphospace analyses (Fig. 3) and diversity-through-time plots (Fig. S6) showed 401 

phenotypic overlap in body, skull and jaw shapes throughout the entire history of ceratioids, 402 

distinct from the early burst pattern seen for Lophiiformes as a whole (Fig. S6). BayesTraits 403 

analyses showed that relatively young lineages have experienced rapid rates of evolution (Fig. 404 

6). The wolftrap and whipnose anglers are examples of lineages that have evolved novel prey 405 

capture strategies relatively recently in the context of the ceratioid radiation. Although ceratioids 406 

are at least 30 million years old (Fig. 1), it seems unlikely that they are exhausting ecological 407 

opportunity such that they can no longer diversify105,106. We know very little about what 408 

ecological opportunity looks like in the deep sea. On one hand, the bathypelagic zone is the most 409 

food-limited and environmentally homogeneous habitat on Earth. On the other hand, population 410 

density of ceratioids is very low, and populations are spread across the globe6,45. Environments 411 

with patchy resources should promote coexistence by preventing any species from becoming 412 

dominant107. Therefore, resources are very limited, but competition should also be very low108.  413 
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 A remaining mystery is the degree to which non-adaptive processes contributed to the 414 

diversity of ceratioids. Relaxed selection due to ecological release is believed to play an 415 

important role in the initial stages of adaptive radiation by broadening phenotype diversity, 416 

giving way to a later stage of disruptive selection among these phenotypes56,57,60. Yet, some 417 

authors hypothesize that selection on body shape is perennially relaxed in the bathypelagic 418 

zone29. Bathypelagic fishes have neither the demands of shallow-water pelagic predators for 419 

pursuing prey52, nor the challenges of navigating obstacles like benthic fishes22,26. Therefore, 420 

shape disparity may have accumulated over time in this habitat if new shapes are neutral with 421 

respect to selection. Ceratioid body elongation may fit this pattern of evolution (Fig. 5). While 422 

elongation is also a common theme for benthic-to-pelagic transitions in shallow-water fish 423 

clades22,53,55, the difference is that elongation in these groups is under selection for reducing drag 424 

for sustained swimming. Videos in-life suggest that globular109 and elongate110 ceratioids are 425 

both incapable of sustained swimming due to their reduced skeletal and muscular architecture. It 426 

is unclear why elongation would be under selection for some ceratioids but not others. Similarly, 427 

ceratioids have diverse jaw and tooth shapes which yield differences in function111, yet they 428 

seem to be opportunistic generalist carnivores based on largely anecdotal evidence9,112. We know 429 

from videos and trawl records that ceratioids show some differences in hunting behavior111, and 430 

a few genera inhabit the benthic boundary layer with demersal prey making up some portion of 431 

their diet6,39,110. Otherwise, evidence of phenotype-ecology matching is lacking for ceratioids, 432 

whereas this has been a crucial piece of evidence for the adaptive radiation process in terrestrial 433 

and shallow-water organisms that are easier to study59,103,113. Without this evidence, it is difficult 434 

to understand why so many body and jaw shapes have evolved in ceratioids and the strength of 435 

disruptive selection on these different shapes. 436 
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 437 

  438 

Phenotypic constraint in shallow-water lophiiforms 439 

 440 

Phenotypic stasis could arise from the lack of ecological opportunity (external constraints) or 441 

functional limitations (internal constraints)24,114,115. Slow and constrained evolution of shallow-442 

water frogfishes is unexpected because it contradicts the trend seen in other fish clades. Wrasses 443 

(Labridae) show higher diversification on reefs which is partially driven by exploration of novel 444 

phenotypes to acquire new resources19,116. Grunts (Haemulidae) are not as trophically diverse as 445 

wrasses yet still have faster phenotypic diversification on reefs, probably due to finer partitioning 446 

of existing niches100. Unlike wrasses and grunts, frogfishes did not evolve novel diets nor 447 

partition dietary resources more finely than other lophiiforms. No lophiiform has evolved 448 

herbivory or planktivory, so frogfishes are not taking advantage of the full array of opportunities 449 

provided by coastal habitats19–21,23. They are indiscriminate carnivores with extensible 450 

stomachs33 capable of the largest volume of oral expansion known among reef fishes, allowing 451 

them to catch prey from long distances using suction feeding. Their prey capture success rate is 452 

therefore much higher than other reef fishes33. Evolutionary innovations may result in 453 

specialization instead of diversification if the innovation does not broaden the array of potential 454 

resources117,118. We might therefore conclude that the frogfish bauplan functions in a variety of 455 

coastal environments by increasing their success as a generalist carnivore, and there is little 456 

external incentive to modify it even with the genetic or developmental ability to do so. Note that 457 

while frogfishes are constrained in shape, they are highly variable in color allowing them to 458 

mimic sponges, corals and urchins33; they likely have very high rates of color evolution. 459 
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 460 

 461 

The timeline of lophiiform evolution 462 

 463 

A novel result from our study is that the crown age of Lophiiformes is well within the 464 

Cretaceous (Fig. 1). Even our trees with the youngest estimates have confidence intervals 465 

extending to ~76 Ma (Appendix A4, Table A4). Yet, other studies found that Lophiiformes have 466 

a Cenozoic origin as part of a post-K/Pg diversification event affecting spiny-rayed fishes 467 

broadly72,119. The primary reason for the older age estimates in our study is our use of six fossil 468 

calibrations from Monte Bolca which included crown representatives of Lophoidei and 469 

Antennarioidei (Fig. 1). Older age estimates were not limited to analyses using 470 

†Plectocretacoidea, a controversial Cretaceous fossil77. We believe that at minimum, the age of 471 

lophiiform subclades were underestimated by prior studies (discussed in detail in Appendix A4). 472 

Past studies used at most three Monte Bolca calibrations for Lophiiformes (Appendix A4, Table 473 

A5). This was most likely due to lower taxonomic sampling compared to our study, providing 474 

fewer nodes to place calibrations.  475 

 The fossil record gives no direct evidence of lophiiforms prior to the Eocene. Yet, the 476 

presence of several lineages in Monte Bolca, including crown representatives of two suborders, 477 

strongly suggests that Lophiiformes were already diverse by then. A Cenozoic crown age of 478 

Lophiiformes would require that suborders diversified rapidly in the intervening 17.5 million 479 

years between the K/Pg boundary and Monte Bolca94. Yet, no such rapid radiation is visible in 480 

our phylograms (Appendix A1). Therefore, we suggest that a Cretaceous origin of Lophiiformes 481 

is the best explanation to reconcile molecular data with the fossil record. 482 
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Notably, Hughes et al.74 recently found a crown age of Labridae of ~79 Ma using an 483 

expanded fossil calibration list compared to past studies, which found a Cenozoic crown age. 484 

Both Lophiiformes and Labridae are members of Eupercaria, one of nine series within 485 

Percomorpha120 and one of the groups implicated in the post-K/Pg radiation of acanthomorphs. It 486 

remains to be seen whether an older age of labrids and lophiiforms changes the finding of rapid 487 

post-K/Pg radiation of acanthomorphs found by recent studies72,119. Regardless, it is clear that 488 

improved taxonomic sampling made possible by collections68 combined with paleontological 489 

systematics77,95,97 stands to transform our understanding of the timescale of fish evolution. 490 

 491 

Conclusions 492 

 493 

We combined a well-sampled phylogenomic hypothesis with three-dimensional morphometric 494 

data to examine the tempo and mode of evolution following habitat transitions in anglerfishes. 495 

The bathypelagic anglerfishes experienced a burst of lineage diversification and now contain the 496 

greatest phenotypic diversity of all lophiiform clades, whereas continental shelf lineages are 497 

relatively constrained in morphology. These findings contradict ecological expectations, since 498 

we expect complex coastal habitats to promote niche evolution relative to the homogeneous 499 

bathypelagic zone. Our findings prompt new questions about deep-sea ecology and evolution, 500 

such as to what extent radiation is possible in harsh environments, as well as the role of adaptive 501 

versus neutral processes for generating diversity in these settings. 502 

  503 
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Table 1. Summary of hypotheses and predictions. 542 
 543 
Hypothesis Description Mechanisms Predictions 

   Evolutionary 

mode 

Phenotypic 

Disparity 

Evolutionary 

rates 

1 Benthic 

habitats 

promote 

evolution 

while the 

bathypelagic 

zone 

constrains 

evolution 

More niches 

and 

opportunities 

for allopatry in 

benthic habitats; 

harsh conditions 

with few 

evolutionary 

solutions, and 

few barriers to 

dispersal, in the 

bathypelagic 

Ceratioid 

evolution 

best 

described by 

bounded 

(OU) models 

Shallow-

water and/or 

benthic 

suborders 

with greater 

morphologic

al disparity 

than 

ceratioids 

Ceratioids 

with slower 

rates of 

evolution and 

lineage 

diversificatio

n than 

benthic 

suborders 

2a Bathypelagic 

zone 

promotes 

evolution 

relative to 

benthic 

habitats; 

ceratioid 

diversification 

is ongoing 

Ceratioids have 

not exhausted 

ecological 

opportunity in 

the bathypelagic 

zone, or 

phenotypic 

change is non-

adaptive as well 

as adaptive 

Ceratioid 

evolution 

best 

described by 

unbounded 

(BM) models 

Ceratioids 

with greater 

morphologic

al disparity 

than 

shallow-

water and/or 

benthic 

suborders 

Ceratioids 

with faster 

rates of 

evolution and 

lineage 

diversificatio

n than 

benthic 

suborders; 

rates do not 

slow through 

time 

2b Bathypelagic 

zone 

promotes 

evolution 

relative to 

benthic 

habitats; 

ceratioid 

diversification 

has slowed 

down 

Ceratioids have 

exhausted 

ecological 

opportunity in 

the bathypelagic 

zone  

Ceratioid 

evolution 

best 

described by 

bounded 

(EB) models 

Ceratioids 

with greater 

morphologic

al disparity 

than 

shallow-

water and/or 

benthic 

suborders 

Ceratioids 

with faster 

rates of 

evolution and 

lineage 

diversificatio

n than 

benthic 

suborders; 

rates slow 

through time 

 544 
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MAIN TEXT FIGURE CAPTIONS 546 
 547 
 548 
Figure 1: Time-calibrated phylogeny of Lophiiformes. Inset shows the range of dates for key 549 
nodes inferred across the eight alternative time trees. This tree was inferred using IQ-TREE and 550 
calibrated using MCMCTree with the scheme including †Plectocretacoidea (master 551 
MCMCTree); for the master RelTime tree see Appendix A1. Grey shading indicates the 552 
Cretaceous and the mid-Miocene (~15 Ma) to present, the latter period identified as having 553 
elevated rates of speciation across deep-sea fishes49. Line art was digitized from FAO fisheries 554 
guides. 555 
 556 
 557 
Figure 2: Timing of habitat transitions and lineage diversification rates. (A) Habitat 558 
reconstructions inferred using BioGeoBEARS. (B) Branch-specific net diversification rates 559 
inferred using MiSSE. For tip-associated rates across all trees see Fig. S1. Here the master 560 
MCMCTree is shown; for comparison with the master RelTime tree see Fig. S2. 561 
 562 
 563 
Figure 3: Phylomorphospace analyses of (A) body shape, (B) skull shape and (C) jaw shape. 564 
Body shape was inferred from ten linear measurements (Fig. S3). Skull and jaw shapes were 565 
inferred using geometric morphometrics from CT scans (Fig. S4). Sladenia image from NOAA. 566 
 567 
 568 
Figure 4: Results from multivariate model fitting using mvMORPH. (A) Akaike weight of three 569 
models of body, skull and jaw shape evolution across the eight trees. (B) Attractor strength 570 
(alpha) for OU models. (C) Attractor strength (alpha) for EB models. For panels B and C, poorly 571 
fitting models are not shown (i.e., only models within 2 GIC units of the best-fitting model are 572 
shown). 573 
 574 
 575 
Figure 5: Univariate model fitting for individual body shape variables (Fig. S3). (A) Akaike 576 
weight support for three models across the eight time trees. (B) Attractor strength (alpha) for 577 
cases where the OU model had the best fit (greatest proportion of Akaike weight support). 578 
 579 
 580 
Figure 6: Rates of body, skull and jaw shape evolution inferred by BayesTraits. Panels A–C 581 
show branch-specific rates on the master MCMCTree. See Fig. S8 for a comparison between the 582 
master trees. Panel D shows tip-associated rates by habitat. See Fig. S8 for tip-associated rates by 583 
suborder. Haplophryne and Brachionichthys images from Fishes of Australia121. 584 
 585 
 586 
  587 
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Antennariidae Antennarius striatus

Chaunacidae Chaunax pictus

Centrophrynidae Centrophryne spinulosa

Tetrabrachiidae Tetrabrachium ocellatum

Tetraodontidae

Himantolophidae Himantolophus appelii

Antennariidae Antennarius multiocellatus

Aracanidae

Chaunacidae Chaunax stigmaeus

Oneirodidae Phyllorhinichthys balushkini

Oneirodidae Dolopichthys danae

Molidae

Ogcocephalidae Zalieutes elater

Gigantactinidae Gigantactis gargantua

Histiophrynidae Lophiocharon trisignatus

Gigantactinidae Gigantactis vanhoeffeni

Lophiidae Lophiodes reticulatus

Linophrynidae Acentrophryne dolichonema*

Antennariidae Histrio histrio

Chaunacidae Chaunacops coloratus*

Acanthuridae

Ogcocephalidae Dibranchus tremendus

Oneirodidae Chaenophryne draco

Gigantactinidae Rhynchactis macrothrix

Himantolophidae Himantolophus stewarti

Histiophrynidae Histiophryne psychedelica

Ogcocephalidae Ogcocephalus radiatus

Neoceratiidae Neoceratias spinifer

Ogcocephalidae Halieutichthys aculeatus

Antennariidae Antennatus sanguineus

Rhycheridae Rhycherus filamentosus

Antennariidae Antennatus strigatus
Antennariidae Antennatus nummifer

Ogcocephalidae Ogcocephalus corniger

Chaunacidae Chaunax tosaensis*

Oneirodidae Chaenophryne longiceps

Lophiidae Lophius gastrophysus

Caulophrynidae Caulophryne jordani*

Antennariidae Antennatus tuberosus

Ogcocephalidae Coelophrys micropa

Ogcocephalidae Ogcocephalus darwini

Oneirodidae Oneirodes theodoritissieri

Antennariidae Antennarius indicus
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METHODS 588 
 589 

Data acquisition: 590 

 591 

We generated new genomic data from tissue samples associated with museum specimens (Table 592 

S1). New data was collected from 152 individuals from 120 species of Lophiiformes. DNA was 593 

extracted using the DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA). We shipped DNA 594 

extractions to Arbor Biosciences (Ann Arbor, MI) for library preparation, target enrichment, and 595 

sequencing. Sequencing of pair end 150 bp reads was completed on a HiSeq 4000 with a total of 596 

192 samples multiplexed per lane. Target capture probes were based on a set of 1,105 single-597 

copy nuclear exon markers designed for fish phylogenomics (Eupercaria bait set of Hughes et al. 598 

73). An additional 19 nuclear legacy markers, as well as mitochondrial DNA, were also targeted 599 

using this probe set. Information for individuals with new genomic data can be found in Table 600 

S1. We mined exons from genomes available on NCBI for eight additional outgroup and two 601 

ingroup species. Our outgroup sampling (Table S1) included one holocentrid (representing the 602 

sister lineage to Percomorpha), one ophidiid (the earliest diverging member of Percomorpha), 603 

one pelagiarian, two syngnatharians, 18 tetraodontiforms and 15 additional eupercarians75. 604 

Taxonomic sampling was improved using two approaches. First, we mined exons from 605 

published UCE alignments71,72. We assembled the raw reads from these studies into loci using 606 

the FishLife Exon Capture pipeline described below. Between 5–357 exons (mean 40.3 per 607 

individual) were successfully mined for 93 individuals representing 48 species. After quality 608 

control steps, 12 species were retained in the “final” alignment (see below) on the basis of these 609 

mined exons. Information for individuals with exons mined from UCEs can be found in Table 610 

S2. Second, we downloaded legacy markers for 10 species available from GenBank (Table S3). 611 
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These species had between 1–5 markers available. Due to the large amounts of missing data 612 

introduced in the alignment, we only pursued legacy markers for species that would be new to 613 

our dataset. After quality control steps, two genera and six species not available elsewhere were 614 

retained in the “final” alignment on the basis of these legacy markers (Table S3). 615 

Our final taxonomic sampling when combining all data and remaining after all quality 616 

control steps (see below) was 132 ingroup species (37.8% of species and 78.1% of genera in 617 

Lophiiformes) and 20 of 21 families (all but the monotypic Lophichthyidae). Suborder-level 618 

sampling is as follows: 9 species of Lophioidei (32.1% of species and all four genera), 21 species 619 

of Ogcocephaloidei (28.7% of species and eight of ten genera), 40 species of Antennarioidei 620 

(62.5% of species and 77.3% of genera [17 of 22 genera]), eight species of Chaunacoidei (50% 621 

of species and both genera), and 54 species of Ceratioidei (32.1% of species and 74.3% of genera 622 

[26 of 35 ceratioid genera]). 623 

 624 

 625 

Assembly, alignment and quality control: 626 

 627 

Assembly, initial raw data quality control steps, and alignment were conducted using the 628 

pipeline73 available at https://github.com/lilychughes/FishLifeExonCapture. Low quality raw 629 

reads and adapter contamination were trimmed using Trimmomatic v.0.39122. Trimmed reads 630 

were mapped against the reference sequences used for probe design with BWA v.0.7.17123 and 631 

PCR duplicates were removed using SAMtools v.1.9124. An initial sequence for each marker was 632 

assembled with Velvet v.1.2.10125, and the longest contig was used as a reference sequence to 633 

extend contigs using aTRAM 2.2126 with the Trinity v.2.2 as the assembler127. Redundant contigs 634 
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were excluded with CD-HIT-EST v.4.8.1128,129, and open reading frames for the remaining 635 

contigs were identified using Exonerate v.2.4.0130. Redundant contigs with reading frames 636 

exceeding 1% sequence divergence were discarded. 637 

New data, mined exons from UCEs, and legacy markers were aligned using MACSE 638 

v.2.03131 with the -cleanNonHomologousSequences option. After alignment, we discarded 26 639 

exons with low capture efficiency (those with <50 taxa). Next, some legacy markers can retain 640 

paralogues when obtained using our target capture probe set and deserve additional scrutiny73. 641 

For these markers, we checked their gene trees by eye for pseudogenes. Five exons had 642 

pseudogenes (rhodopsin, zic1, sh3px3, plag2, and ENC1) and were excluded from our dataset. 643 

After these steps, the dataset contained 1,092 markers. This number included 1,077 FishLife 644 

exons, 13 additional nuclear legacy markers, and two mitochondrial legacy markers (CO1 and 645 

ND1). 646 

Further quality control steps follow those described by Arcila et al. 132. We performed 647 

branch length correlation (BLC) tests133 to detect within-gene contamination that may not be 648 

easily detectable once genes are concatenated. The logic of this test is that contaminated 649 

sequences will show very long branches once constrained to a reference topology. We generated 650 

a reference phylogeny using the program IQ-TREE MPI multicore v.2.0134 based on the 651 

concatenated alignment of all 1,092 genes and using mixture models135. We then generated gene 652 

trees for each marker with the topology constrained to match the reference phylogeny. We 653 

generated a branch-length ratio for every taxon in every gene tree, which was the length of the 654 

branch in the gene tree over the length of the corresponding branch in the reference tree (after 655 

pruning the reference tree to the same individuals contained by the gene tree). All branches with 656 

a ratio >5 were flagged, and all flagged branches were then checked by eye. Ultimately, 1,416 657 
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sequences (taxa in gene trees) were discarded from our dataset due to suspected contamination 658 

(very long branches in the gene trees). In addition, two taxa were later dropped entirely from the 659 

dataset because we observed them to have extremely long branches across many gene trees 660 

(Table S1). 661 

Species identifications of sequences were confirmed with two complimentary 662 

approaches. First, for species with more than one individual sampled, we checked the phylogram 663 

produced containing all individuals (see below) by eye with the assumption that species should 664 

be monophyletic. Second, we referenced CO1 sequences against the BOLD (Barcode of Life 665 

Data System) database136 using scripts from the “fishlifeqc” package available at: 666 

https://github.com/Ulises-Rosas/fishlifeqc. For genera with short branch lengths (specifically 667 

Ogcocephalus, Chaunax, Oneirodes, Gigantactis, and Himantolophus), we could not obtain 668 

confident species identifications using BOLD, and species were often non-monophyletic. This is 669 

potentially due to incomplete lineage sorting after rapid speciation, low substitution rates, and/or 670 

misidentification. We checked the literature for evidence of “taxonomic inflation” in these 671 

genera (in which more species are described from morphology than exist based on molecular 672 

divergence), and believed this scenario to potentially apply to Ogcocephalus and Himantolophus 673 

(discussed in Appendix A2). For individuals outside of these five genera that failed our checks, 674 

we checked the voucher specimen whenever possible. This resulted in the re-identification of 675 

two museum specimens. We also flagged four previously published sequences from UCE studies 676 

as misidentified. If we could not confirm an individual’s identification because there was no 677 

CO1 sequence and no conspecific replicate, we referred to the literature to check if the position 678 

of the species in the phylogeny was as expected compared to prior hypotheses, or at least within 679 

the expected genus or family. We preferred to retain individuals for the “final” alignment (see 680 
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below) of which we could be reasonably confident of their species identification. Quality control 681 

results for all individuals can be found in Table S1 (new genomic data) and Table S2 (individuals 682 

taken from UCE alignments). 683 

 684 

 685 

Phylogenomic inference: 686 

 687 

We produced trees from two sets of alignments made from the 1,092-marker-dataset. The first 688 

“all individuals” set contained all sequences that made it past the BLC step of quality control 689 

(n=258 ingroup individuals). The tree made from this alignment (Appendix A1, Figure A1) was 690 

checked by eye to confirm species identity of sequences (for those species with multiple 691 

individuals in the dataset) as the final step of quality control (see above). The second “final” 692 

alignment was produced by choosing one individual to represent each species (n=132 ingroup 693 

species). When multiple conspecific individuals were available, this representative was always 694 

the individual with the greatest number of genes assuming no quality control flags (Tables S1–695 

S3). This “final” alignment was the one used to produce the phylograms used for time calibration 696 

and comparative methods. After pruning down to nearly half the number of individuals between 697 

the “all-individuals” and the final alignment, genes were un-aligned using the “unalign.md” 698 

script within the Goalign toolkit137, then re-aligned. The final alignment was 457,635 base pairs 699 

long, and alignments for individual markers varied in length from 105–2,682 bp (mean 420 bp). 700 

All 1,092 markers were concatenated using utility scripts in the AMAS package138. Trees 701 

were constructed with maximum likelihood using the program IQ-TREE MPI multicore v.2.0134 702 

implementing mixture models135 (option -m set to “MIX{JC,K2-,HKY,GTR}). Support was 703 
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measured using 1000 Ultrafast bootstrap replicates 139 with the “-bnni” option to reduce the risk 704 

of overestimating support due to severe model violations.  705 

To account for potential incomplete lineage sorting, we also performed a multi-species 706 

coalescent analysis using ASTRAL-II v.5.7.1140 based on gene trees estimated using IQ-TREE 707 

with the same settings as above. Prior to use with ASTRAL, nodes within gene trees with 708 

bootstrap values <33% were collapsed into polytomies to reduce noise141. Support was evaluated 709 

using local posterior probabilities142 (option “-t 3”). 710 

 711 

Divergence time estimation: 712 

 713 

We assembled a list of 21 node calibrations from the literature, including 8 outgroup and 10 714 

ingroup fossil calibrations based on well-preserved articulated skeletal remains, as well as 715 

geologic calibrations based on the Isthmus of Panama to constrain the divergence time of three 716 

sister-species pairs. Calibration details and justifications are given in Appendix A3. Following 717 

the recommendations by Parham et al. 143, we established minimum age constraints (i.e., the 718 

youngest fossil ages) to determine lower bounds for each calibration. 719 

We used two calibration schemes including or excluding the controversial fossil 720 

†Plectocretacicus clarae, which we placed on the MRCA of Tetraodontiformes and 721 

Lophiiformes 75. The extinct superfamily †Plectocretacoidea is purportedly a stem 722 

tetraodontiform, and phylogenetic analyses using morphological characters place it as the sister 723 

to all remaining Tetraodontiformes77,144,145. The earliest plectocretacicoid fossils are 94 million 724 

years old144. Therefore, due to the apical position of Tetraodontiformes within acanthomorphs, 725 

and the sister group relationship between Tetraodontiformes and Lophiiformes, this fossil has 726 
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potential to greatly increase the age of early nodes in the phylogeny of Lophiiformes. However, 727 

some authors do not believe †Plectocretacoidea are related to Tetraodontiformes, or at least that 728 

the evidence for such a relationship is uncompelling119,146–148. 729 

We produced eight alternative time trees using either the IQ-TREE (concatenated) or 730 

ASTRAL (coalescent) trees, the fossil calibration scheme with or without †Plectocretacicus, and 731 

using either MCMCtree or RelTime as the calibration method. Both MCMCTree and RelTime 732 

are feasible for use with genomic-scale datasets, but these approaches are otherwise quite 733 

different. MCMCTree uses a birth-death tree prior and an independent rates clock model in 734 

which rates follow a log-normal distribution in a Bayesian framework78,79. RelTime does not use 735 

priors on lineage rates, and instead computes relative time and lineage rates directly from branch 736 

lengths in the phylogram (the “relative rate framework”)80,81. Note that RelTime tends to 737 

underestimate divergence times for branches with very few molecular substitutions, unlike 738 

methods that include a tree prior149,150. 739 

For MCMCTree, fossil calibrations used uniform distributions and geologic calibrations 740 

used Cauchy distributions (Appendix A3, Table A3). We used distribution densities based on the 741 

algorithm proposed by Hedman151. This approach uses a list of fossil outgroup age records based 742 

on the oldest minima to produce a probable distribution of the origin of a given clade (details in 743 

Appendix A3). From the distribution estimated for each calibration, we extracted the 95% 744 

confidence interval to set the soft upper bound (maximum age) for MCMCTree, and to calculate 745 

the mean and standard deviation for log-normal distributions in RelTime. 746 

We implemented MCMCTree analyses using the PAML v.4.9h package152. We divided 747 

the alignment into two partitions: 1st and 2nd codon position, and 3rd codon position. We used the 748 

HKY85 substitution model and the independent rate relaxed clock model. Additional prior 749 
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parameters were set as follows: BDparas: 1, 1, 0.38; kappa_gamma: 6, 2; alpha_gamma = 1, 1; 750 

rgene_gamma = 2, 200, 1; sigma2_gamma = 2, 5, 1. To improve computation time, we first used 751 

the approximate method to calculate the likelihood79. MCMC chains were run twice 752 

independently for 20 or 30 million generations as needed to converge (number of samples= 753 

200000, sample frequency= 100 or 150, and burnin= 2000). We used Tracer v1.7.1153 to check 754 

for convergence. 755 

RelTime uses a maximum likelihood framework implemented in the software 756 

MEGAX154. For the IQ-TREEs, we applied the RelTime-Branch Lengths approach, employing a 757 

Max Relative Rate Ratio of 20, with the tree topology serving as the input. For the ASTRAL 758 

trees, we used RelTime-ML with the GTR+I model while maintaining the default settings to 759 

optimize branch lengths. The ASTRAL topology along with the concatenated alignment were 760 

used as inputs. This is necessary because the ASTRAL tree was made from gene trees and not 761 

estimated directly from the alignment. 762 

Some analyses were repeated for all eight time-calibrated trees in order to incorporate 763 

variation in topology and divergence times. Analyses involving complex visualizations were 764 

repeated on two designated “master” trees: the IQ-TREE calibrated with the scheme including 765 

†Plectocretacoidea using either MCMCTree or RelTime (hereafter “master MCMCTree” or 766 

“master RelTime tree”). This was because of the three methodological choices for time 767 

calibration, the decision with the largest impact was MCMCTree versus RelTime (Fig. 1; 768 

Appendix A4). 769 

 770 

Ancestral habitat and lineage diversification rates: 771 

 772 
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Following Miller et al. 49, we used BioGeoBEARS v.1.1.3155 to infer ancestral habitats. This 773 

approach allowed us to code species as occurring in more than one “region”. Our analysis 774 

included three regions: benthic continental shelf, benthic continental slope to abyssal plain, and 775 

the bathypelagic zone. Habitats were coded based on: FishBase156, Fishes of Australia121, 776 

Pietsch6, and Friedman et al. 22 (Table S4). The maximum number of regions allowed per species 777 

was set to two. We compared the fit of six alternative models using Akaike weights157. These 778 

were: DEC158, DIVA-LIKE159, BAYAREA-LIKE160, and their equivalents with the +J parameter 779 

(Table S5). We performed these analyses on the two master trees, with results being nearly 780 

identical; therefore, only results using the master MCMCtree are shown (Fig. 2). 781 

We estimated lineage diversification rates using the MiSSE framework (missing state 782 

speciation and extinction)83 implemented in the hisse R package v2.1.1. MiSSE operates like 783 

HiSSE161 but does not consider the influence of any characters chosen by the researcher, instead 784 

modelling rate shifts agnostic of any a priori hypothesis. We performed analyses for all eight 785 

time trees individually. We were concerned that taxonomic inflation could inflate speciation 786 

rates in the genera Himantolophus and Ogcocephalus (Appendix A2). Therefore, we also 787 

performed analyses on a set of eight trees with these genera pruned to two species (to retain the 788 

crown age), for a total of sixteen sets of analyses (Table S6). We compared the fit of models with 789 

1–10 rate classes, setting a global sampling fraction of 38%. Following recommended 790 

practices84, we model-averaged rates among the set of models with >5% of the relative Akaike 791 

weight, where the contribution of each model towards the mean was proportional to its Akaike 792 

weight. We plotted model-averaged rates onto the branches of the tree using the gghisse package 793 

v.0.1.1162. Note that SSE models avoid issues of identifiability raised by Louca and Pennell163 794 

because they incorporate multiple information sources to infer rates164. 795 
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 796 

 797 

Phenotypic datasets: 798 

 799 

Body shape was measured using linear measurements from museum specimens. We took eight 800 

measurements following Price et al.88 (standard length, maximum body depth, maximum fish 801 

width, head depth, lower jaw length, mouth width, minimum caudal peduncle depth, and 802 

minimum caudal peduncle width) plus two additional measurements (eye diameter and 803 

interorbital distance). Measurements are shown in Fig. S3. We took measurements using digital 804 

calipers with a minimum resolution of 0.1 mm. Measurements were size corrected using log-805 

shapes ratios88,165: each variable was divided by the geometric mean of standard length, 806 

maximum body depth, and maximum fish width (a more realistic way to approximate size for 807 

globular fishes versus using a single measurement like standard length), and then log-808 

transformed. For quality control, we flagged measurements that were outside the inter-quartile 809 

range for the genus, and specimens with flags were excluded. The final dataset after quality 810 

control contained measurements for 327 individuals from 112 species (representing 84.8% of 811 

tips in the phylogeny), in which 1–9 individuals per species were measured (mean 2.9 812 

individuals per species). No male ceratioids were used. The dataset with voucher information is 813 

available in the Dryad package associated with this study. The species means for each trait were 814 

used for phylogenetic comparative methods.   815 

 Skull shape was measured using three-dimensional geometric morphometrics collected 816 

from micro-computed tomography (micro-CT) scans of museum specimens166. Scans were 817 

collected at the Karel F. Liem Bio-Imaging Center at the University of Washington Friday 818 
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Harbor Laboratories and Rice University. Skulls were segmented from scales and the rest of the 819 

body using Amira v.2020.3167 and exported as mesh files. Mesh files were digitized with 111 820 

three-dimensional landmarks (41 point and 70 semi-sliding; Fig. S4) in the software Stratovan 821 

Checkpoint168. Landmarks were treated as bilaterally symmetrical and thus only placed on the 822 

left side of the skull169. Our CT scan dataset contained 100 species of Lophiiformes (n=1 scan 823 

per species) representing 75.7% of the tips in our phylogeny (Table S7). Of these, 38 are new to 824 

this study, 33 were previously published111, and 29 were downloaded from the online 825 

repositories MorphoSource (https://www.morphosource.org/) or Virtual Natural History 826 

Museum (http://vnhm.de/VNHM/index.php). 827 

The highly mobile and interconnected nature of the teleost fish skull can increase the 828 

likelihood of preservation artifacts21,170,171. To reduce these artifacts, we performed a local 829 

superimposition to standardize the position of individual skull elements172 before any 830 

downstream analyses using shape data. 831 

 832 

Phenotypic evolution: 833 

 834 

We performed all analyses of phenotypic evolution on three datasets: body shape, whole skulls, 835 

and the oral jaws, with the latter two based on CT scans. To measure jaw shape, we isolated the 836 

41 (13 point and 28 semi-sliding; Fig. S4) landmarks placed on the premaxilla, angular, and 837 

dentary. The same set of bones were isolated by Heiple et al.111 in their analysis of jaw and tooth 838 

shape using linear measurements.  839 

We visualized shape variation using a phylomorphospace analysis85 performed with the 840 

function “gm.prcomp” from the geomorph R package v.4.0.5173. For use with downstream 841 
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analyses, we exported the PC scores for the number of axes summing to 95% (body shape) or 842 

85% (skull and jaws) of the variance. For example, when using our two master trees this number 843 

was six axes for body shape, 28 axes for skulls, and 12 axes for jaws. We did this for all eight 844 

time trees, as well as the phylogeny for each suborder isolated from the eight trees, for a total of 845 

48 sets of phylogenetically-corrected PC scores. 846 

We calculated disparity by suborder and habitat category using a test of morphological 847 

partial disparities for the overall mean86 (Tables S8, S9). We plotted disparity-through-time using 848 

the “dtt” function in the geiger package v.2.0.11174. The observed disparity was compared to a 849 

Brownian motion null model that was simulated 1,000 times across the master MCMCTree 89. 850 

We performed univariate model fitting analyses for the ten body shape variables 851 

individually using the “FitContinuous” function in geiger, inputting all 48 trees, for a set of 480 852 

analyses. We compared the fit of three models using Akaike weights: Brownian motion (BM), 853 

single-peak Ornstein-Uhlenbeck (OU), and Early Burst (EB)61. 854 

We performed multivariate model fitting using PC scores from the three phenotypic 855 

datasets, inputting all 48 trees, summing to 144 sets of analyses. Following Clavel et al. 87, we fit 856 

models using penalized likelihood with the “fit_t_pl” function in RPANDA v2.2175 using the 857 

rotation-invariant ridge quadratic null penalty (method=”RidgeAlt”) and accounting for 858 

measurement errors (option SE=TRUE). The fit of the same three models (BM, OU, EB) was 859 

assessed using the generalized information criterion with the “GIC” function in mvMORPH 860 

v.1.1.7176, as GIC is appropriate for penalized likelihood. The relative model support was then 861 

compared using Akaike weights. In addition, we fit multiple-peak OU models to detect 862 

Simpsonian adaptive regimes using the PhylogeneticEM package v.1.6.090, performing these 863 
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analyses on the two master trees. We compared the fit of models with 0–20 regime shifts using 864 

the selection criterion adapted by Bastide et al.90 (Fig. S7). 865 

To infer branch-specific evolutionary rates we performed reversible-jump MCMC 866 

analyses within BayesTraits V491. We investigated rates of evolution in body, skull and jaw 867 

shape, for our two master trees, for a set of six analyses. Following Coombs et al.177, we used 868 

Bayes Factors to evaluate the relative support of ten models: Brownian motion, kappa, delta, 869 

lambda, and OU tree transformations, each with single- and variable-rate alternatives. We 870 

accounted for correlated trait evolution with the setting “TestCorrel” which constrains the 871 

correlation between trait axes to zero. Chains were run for 200 million generations with a burnin 872 

of 30%. A stepping stone sampler was used to estimate the marginal likelihood with 100 stones 873 

to run for 1,400,000 generations after convergence. Analyses were run twice, and convergence of 874 

the runs was confirmed based on trace plots and Gelman diagnostics near 1, using the packages 875 

coda v.0.1.9-4178. BayesTraits output was processed using utility functions from the packages 876 

BTProcessR v.0.0.1179, BTRTools 0.0.0.9180 and scripts written by R. Felice181. The output of 877 

variable-rate analyses is a set of phylogenies where each branch was scaled by its Brownian 878 

motion rate of evolution. We plotted the mean rate for each branch based on the best-fit model, 879 

and extracted tip-associated rates to compare rates by habitat. 880 

 881 

  882 
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