ABSTRACT
DNA damage and cellular metabolism exhibit a complex interplay characterized by bidirectional feedback mechanisms. Key mediators of the DNA damage response and cellular metabolic regulation include Ataxia Telangiectasia and Rad3-related protein (ATR) and the mechanistic Target of Rapamycin Complex 1 (mTORC1), respectively. Previous studies have established ATR as a regulatory upstream factor of mTORC1 during replication stress; however, the precise mechanisms by which mTORC1 is activated in this context remain poorly defined. Additionally, the activity of this signaling axis in unperturbed cells has not been extensively investigated. Here, we demonstrate that ATR promotes mTORC1 activity across various cellular models under basal conditions. This effect is particularly enhanced in cells following the loss of p16, which we have previously associated with hyperactivation of mTORC1 signaling and here found have increased ATR activity. Mechanistically, we found that ATR promotes de novo cholesterol synthesis and mTORC1 activation through the upregulation of lanosterol synthase (LSS), independently of both CHK1 and the TSC complex. Furthermore, the attenuation of mTORC1 activity resulting from ATR inhibition was rescued by supplementation with lanosterol or cholesterol in multiple cellular contexts. This restoration corresponded with enhanced localization of mTOR to the lysosome. Collectively, our findings demonstrate a novel connection linking ATR and mTORC1 signaling through the modulation of cholesterol metabolism.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
New Figure 1 and 4. Revised Figure 3. New Figure S1 and S4. New authors who have contributed to the manuscript.