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Abstract

The current mainstream software for peptide-centric tandem mass spectrometry

data analysis can be categorized as either database-driven, which rely on a library of

mass spectra to identify the peptide associated with novel query spectra, or de novo

sequencing-based, which aim to �nd the entire peptide sequence by relying only on

the query mass spectrum. While the �rst paradigm currently produces state-of-the-art

results in peptide identi�cation tasks, it does not inherently make use of information

present in the query mass spectrum itself to re�ne identi�cations. Meanwhile, de novo

approaches attempt to solve a complex problem in one go, without any search space

constraints in the general case, leading to comparatively poor results. In this paper,

we decompose the de novo problem into putatively easier subproblems, and we show

that peptide identi�cation rates of database-driven methods may be improved in terms

of peptide identi�cation rate by solving one such subsproblem without requiring a

solution for the complete de novo task. We demonstrate this using a de novo peptide

length prediction task as the chosen subproblem. As a �rst prototype, we show that

a deep learning-based length prediction model increases peptide identi�cation rates in

the ProteomeTools dataset as part of an Pepid-based identi�cation pipeline. Using the

predicted information to better rank the candidates, we show that combining ideas from
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the two paradigms produces clear bene�ts in this setting. We propose that the next

generation of peptide-centric tandem mass spectrometry identi�cation methods should

combine elements of these paradigms by mining facts �de novo� about the peptide

represented in a spectrum, while simultaneously limiting the search space with a peptide

candidates database.

Keywords: Deep Learning, Spectrum Scoring, Peptide Identi�cation, Proteomics,

ProteomeTools

Introduction

Mass spectrometry (MS) is currently the only high-throughput method that allows the anal-

ysis of peptides and proteins at scale1. Tandem MS is typically needed to accurately identify

the fragments under study as mass con�icts make precursor fragment masses an insu�cient

proxy for peptide identity in peptide-centric experiments. In this paper, we focus on the

tandem MS paradigm and use the term �mass spectrometry� to refer to �data-dependent

tandem mass-spectrometry� (in particular in the peptide-centric identi�cation setting) for

the sake of brevity. Due to the large and complex data generated by mass spectrometry ex-

periments, analysis by computer software of the mass spectra output is necessary to process

the data at a reasonable rate. The main paradigms for such analysis are:

� de novo, or tag-based approaches, where the software tries to identify parts, or com-

plete, sequences from the spectrum2;

� correlation-based approaches3, which attempt to describe the strength of the correspon-

dence between an experimental spectrum and a spectrum from a database, possibly

generated in silico based on a candidate sequence4, and

� probabilistic models, which compute the probability that a certain amount of observed

peak matches between an experimental spectrum and an expected spectrum (usually

generated from a database) occurs by chance as a proxy for the likelihood of a match
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between the experimental spectrum and the peptide represented by the database spec-

trum5

Some of the most widely used mass spectrometry analysis software tools are proprietary.

While the high-level ideas behind these methods are sometimes published3,5,6, their �ner-

grained details remain trade secrets5�7, which makes iterating or probing these methods

complicated. This means that for algorithm development and comparisons, only open-source

software is viable (although this is not su�cient, as the design of the tool in question may

make the integration of some algorithms hard or impossible). In many contexts, however,

closed source tools are preferred for use in practice for peptide identi�cations3,5. Nevertheless,

these proprietary methods see wide use as practitioners empirically �nd them to work best

for their usual workloads, as reported in the literature8,9. Many open-source solutions are

available (MS-GF+10, Comet11 or Morpheus12 for example), but they don't always respond

to the community's expectations, often producing results of insu�cient quality, although

the situation may be changing. For example, IdentiPy13 was recently proposed as a new

open-source algorithm that performs better than its other open-source peers, representing a

further step toward closing the gap between open-source and proprietary methods.

Even with a wet lab protocol that is optimally tuned for a given (preselected) downstream

analysis tool, the results obtained leave space for further improvement on the basis of correct

peptide identi�cation rate1,14,15. In addition, the various state of the art methods share a

notable �aw: they rely heavily on input databases (and their speci�c contents, entry count,

composition, and so forth) to query against candidates1,5�7, which makes results highly de-

pendent on the input database design. In applications where a large specialized or extended

database might be useful, the mainstream algorithms place technical restrictions on the size

of the databases vs correctly identi�ed peptides, leading the community to develop various

sub-optimal tricks to work around these issues16. Recently, to address the above, the Pepid

project (https://github.com/lemieux-lab/pepid) has attempted to build a platform designed

speci�cally for experimenting with peptide search algorithms, which may accelerate improve-
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ments in open-source search engines and to the development of more robust identi�cation

pipelines.

De novo sequencing methods are tandem mass spectrometry analysis methods that do

not make use of databases, instead relying purely on the mass spectrum. Solving de novo

sequencing has been attempted for decades with limited success2,17�21. However, some of

these methods optimize metrics that implicitly imply good performance on other tasks: the

recent method DeepNovo2, for example, computes amino acid-level errors over length of

ground truth peptide, and errors over length of predicted peptide, in their experiments.

Such a metric is consistent with the model's ability to predict peptide length. This suggests

that the auxiliary peptide length prediction task may both be easier than, and a required

component of, de novo sequencing. Moreover, the fact that DeepNovo performs well for the

aforementioned metric, which implicitly measures length prediction performance (despite

optimizing for de novo sequencing outcome), strongly suggests that peptide length can be

predicted from just the spectrum.

There has been attempts to use de novo sequencing outputs to further improve database

searches3, though those attempts have lead to unconvincing results in the general case, prob-

ably in no small part due to the disappointing performance of de novo sequencing methods

when used in this context2,17�21. On the other hand, de novo sequencing methods have shown

successful uses in constrained applications on clean spectra22. This demonstrates that de

novo methods are sensible as a class of approaches, though hampered by the complexity

of spectra from peptides of unconstrained structures. To the best of our knowledge, there

has been no attempt so far to decompose the de novo problem into distinct subproblems

(which could be easier than full, end-to-end de novo sequencing, and therefore achieve the

subproblem's objective better than de novo approaches can perform end-to-end) and to use

solutions to those subproblems for database-driven methods. In this work, we propose one

such decomposition. We then focus on peptide length prediction as a subtask of the full de

novo sequencing problem to demonstrate its potential usefulness in database-driven peptide
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identi�cation. Previously, software like MaxQuant23 have modeled the relation between pep-

tide length and scores generated by methods such as Mascot6, and to derive more con�dent

identi�cations using that model. This is di�erent from our methodology, where we propose

to model the length of the peptide based on the spectrum only, and combine that with an

external scoring method.

While there can be many ways to consider a decomposition for de novo sequencing, we

choose the following model:

1. Peptide length prediction

2. Amino acid composition prediction

3. Amino acid ordering

We show that solving one subproblem from this example decomposition (namely, peptide

length prediction) is both reliably achievable using deep learning, as well as proving a valuable

asset as part of a state-of-the-art database-driven peptide identi�cation pipeline.

In this paper, we demonstrate that a deep learning-based method can accurately predict

peptide length from the spectrum, and that the predictions from such a method can further

be used to achieve higher peptide identi�cation rates at a �xed false discovery rate (FDR)

as well as at �xed false discovery proportions (FDP) using the SPOT24 peptide dataset

ProteomeTools15.

Methods

In order to establish a proper evaluation of the proposed methods, we make use of Pro-

teomeTools15, a dataset of synthetic (SPOT24) peptides. This gives us access to a reasonable

ground-truth for the peptide identities in the dataset as well as enabling FDP evaluation

rather than relying on target-decoy FDR estimation. The availability of ground-truth data

also allows a richer performance comparison between proposed and competing methods. The
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length model is trained on the Massive-KB25 dataset, so as to keep the evaluation data and

the train data as separate as possible to show the applicability of our method. To fur-

ther demonstrate the generalization power of our length prediction method, we also present

measures on the One Hour Yeast Proteome26 dataset.

We present two measures of the e�ectiveness of our proposed approach:

1. Identi�cations under False Discovery Proportion (FDP)

2. Identi�cations under Target-decoy approach-based FDR (TDA-FDR)

Since we have access to reasonable ground-truth, we can compute FDP (sometimes called

factual FDR27), which is not usually available in non-synthetic datasets where the identity

of the peptides in a pool is not known. We compare the relative results (i.e. between the

ground-truth and our proposed method) using the aforementioned metrics and note that

due to the availability of ground-truth data, the identities at various FDP thresholds is most

likely the most relevant. The FDR metrics serve as reference and o�er a di�erent, more

common view of the results.

Data

ProteomeTools is a dataset of spectra obtained with an Orbitrap Fusion Lumos on a pool of

synthetic peptides determined by in silico trypsic digestion of the 42 164 sequences of human

proteins found in the Swiss-Prot database at the time of recovery of the release in this paper.

ProteomeTools data is available on the PRIDE archive with accession ID PXD00473215.

In the original ProteomeTools paper, spectrum quality was assessed using the Andromeda

score5 for the ground-truth peptide (if it was identi�ed at all by Andromeda). We show

statistics related to spectrum quality in Figure 1. The distribution of masses vs peptide

length with a linear �t in Figure 1A gives an idea of task di�culty. In Figure 1B, we

show the distribution of peptide lengths across the dataset. Figure 1C and D show score

distributions, where an Andromeda score of less than 100 is considered �low quality� for the
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spectrum5,15. It can be seen that while there are many low-quality spectra, the majority are of

relatively good quality. We used only the data from the higher-energy collision dissociation

(HCD) experiments at a 25 normalized collision energy (NCE) as these seem to produce

the best scored results out of the available data according to the analysis in the original

ProteomeTools paper15. The length distribution of peptides in the dataset (�g. 1B) shows

a preference for small peptides with 44.28% of the spectra in the dataset covering peptides

shorter than 12 amino acids (which corresponds to 38.54% of unique peptide sequences).

The One Hour Yeast Proteome is a dataset of non-synthetic yeast peptides with a base-

line generated by the Thermo Fisher version of the SEQUEST search engine26. We use the

�batched� dataset, which combines the result of all the hour-long runs. URLs to the Cho-

rusProject submissions of the data are available in the One Hour Yeast Proteome paper26.

The Massive-KB dataset builds consensi based on various proteomics experiments sub-

mitted to the project, thus combining more realistic peptide pool searches with reason-

ably con�dent ground truth identities25. It is the largest of the 3 datasets (about 4x the

size of the ProteomeTools dataset) and contains HCD-fragmented spectra of human pep-

tides. The data may be obtained at https://massive.ucsd.edu/ProteoSAFe/static/

massive-kb-libraries.jsp

To use Massive-KB for evaluation by the length prediction combination with Pepid,

a subset of the data where the ground truth peptides may only be modi�ed with �xed

modi�cation C(CAM) and variable modi�cation M(ox) was used (by correspondence with

ProteomeTools, and due to resource constraints).

In the same setting, the performance for the yeast dataset was obtained by performing the

search only on the subset of the data with a ground truth identi�cation (representing about

50% of the dataset) and uses SEQUEST search results rather than known real identities

(hence the high accuracy vs pepid).

To ensure that the reported performance metrics generalize to never-before-seen pep-

tides and spectra, the Massive-KB dataset, which is used for training, was split three-way
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according to the following criteria:

1. Data (spectra, spectrum metadata, associated peptide) is split into groups depending

on the peptide they represent, with each group corresponding to one unique peptide

sequence;

2. The collection of groups is then split 3-ways into sets: 80% for training, 10% for

validation, and 10% for testing.

In total, the Massive-KB dataset we used contained 3 178 174 peptides, forming a training

set of 2 542 539 peptides, and 317 817 peptides each for testing and validation. All models

are trained using the training set, whereas the validation set is used to optimize the model

choice and hyperparameters. Finally, the held-out test set is used to report all results in this

work for length prediction performance. For experiments combining length prediction with

pepid, the Massive-KB, ProteomeTools or One Hour Yeast Proteome dataset are used, as

and where indicated, with the ProteomeTools and Yeast data serving as fully held-out data.

Model

We developed a deep learning approach using combined multiple modalities to process the

spectrum and metadata, as illustrated in Figure 2A. The mass is encoded as a simple number,

while the spectrum is encoding as a rasterized vector of �xed size 50000, summing in each

vector element vi the intensity of all peaks in the spectrum of m/z i ∗ 10 to (i+1) ∗ 10. The

model includes a fully connected network, a convolutional neural network, and a di�erent

network integrating metadata such as the mass in the captured spectrum (Figure 2B). At this

stage, latent representations of those modalities are extracted by each network. We train an

auxiliary length prediction task following each of these latent representations (Figure 2D). In

Figure 2C, the di�erent networks' outputs are combined using another deep learning network.

This network is trained independently of the subnetworks that provide modality-speci�c

latent representations, and gradients do not �ow below it: the subnetworks are trained
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using only the signal from their auxiliary training networks, with a di�erent, independent

predictive subnetwork 'head' per modality, as depicted in Figure 2E.

The optimization algorithm is Adam28. When the validation loss does not achieve a new

minimum in 10 epochs, the learning rate is divided by 10 and the best performing model

is loaded to continue training with this new learning rate. This method is iterated 3 times

starting at a learning rate of 10−3, after which no further improvement on the held-out

validation set could be observed. The optimization problem is described as follows:

min
θ,φ

1

|X|

|X|∑
j=1

L(xj,·, yj,·)

L(xj,·, yj,·) =−
|C|∑
i=1

yj,ilog(cφ(Fθ̄(xj,i)))

−
N∑
n=1

|C|∑
i=1

yj,ilog(gn,ψ(fn,θ(xj,i))

where X 3 (xi, yi ∈ R|C|) is the training data, |X| is its size and |C| = 40− 6 length categories are

considered (i.e. the model classi�es between classes 6 and 40, inclusively), using cross entropy loss.

Optimization is performed over hyperparameters ψ for each prediction network used to help drive

the subnetworks, θ which are the subnetwork parameters, and φ which are the combiner network's

hyperparameters. The neural networks fi are the subnetwork 'processors', F is the concatenation

of those networks, N is the count of subnetworks (3 in this case). c is the combiner network, and gi

is the subnetwork prediction output network for subnetwork fi. Additionally, we use the notation

θ̄ to represent θ with gradients disabled, i.e. interpreted as a constant. The full hyperparameters

are described in Supplementary Material.

Search Engine Integration

To show that length prediction can improve real peptide search result metrics, we integrate the score

from peptide search using Pepid with our length prediction model by producing several features for

rescoring by Percolator, as described later in the text. We chose Pepid because its �exible design,

good wallclock performance, and high baseline identi�cation performance allowed us to quickly
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Table 1: Linear regression baseline performance (trained on Massive-KB,
tested on each dataset). MAE: Mean Absolute Error.

Accuracy (%) MAE
ProteomeTools 40.8 0.88
Massive 30.4 1.31
Yeast 42.0 0.83

implement the integration and to iterate on feature design for Percolator. This provides a realistic

look at what length prediction can achieve in real-world search scenarios.

To showcase the advantage of length prediction in a familiar setting, we compute statistics of

the length prediction (namely the probability output from the model for the candidate's length

given the spectrum, the di�erence between this probability and the best-scoring, next-best scoring,

previous-best scoring and worst scoring lengths, and the absolute and non-absolute di�erence be-

tween the best-scoring predicted length and the candidate length) and provide them to Percolator29

for rescoring.

Results

We assessed the feasibility of the length prediction task by looking at the distribution of distinct

lengths vs the mass of precursors in the dataset, which is shown in Figure 1A, clearly showing

that the relation is linear but the range of possible lengths for any mass is wide. To establish a

baseline accuracy, we used a simple linear regression, which was trained and tested on the entire

dataset (i.e. performance is reported on the same dataset used for training), achieving an accuracy

of 38.53%. This suggests the task is not trivial and that methods based on precursor mass and

peak-matching-based scores may not be able to exploit implicit peptide length data. We then used

a linear regression baseline �t on the Massive-KB data to assess performance (reusing the full set

already used for �tting as an indication of performance upper bound), with results as per Table 1.

We note that the performance on the Yeast and ProteomeTools datasets are higher than on

Massive-KB, despite the model being trained on the same Massive-KB subset that it is being tested

on. This is likely due to Massive-KB being the more realistic of the three, as the ground truth

for the Yeast dataset is actually Sequest predictions, while ProteomeTools is a dataset of synthetic
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peptides.

To demonstrate that length prediction can positively impact peptide identi�cations beyond

state-of-the-art methods, we show in Figure 3 that the Pepid search engine with arti�cial perfect

length predictions generated from the ProteomeTools groundtruth followed by rescoring by Percola-

tor29 can consistently achieve higher identi�cations across common false discovery ranges. We also

show that this holds for FDP (i.e. the real metric of interest).

The results show a modest, but consistent, improvement across the board using just Percolator.

Combination using other strategies, such as candidate �ltering, using more sophisticated, non-linear

rescoring methods, ad hoc scoring functions that taken the length prediction into account, and so

on, could potentially result in further improvements even with the oracle, although it is as yet

unclear which of these methods might be most suitable, and how to best combine and prove them

for next generation proteomics peptide analysis.

The length prediction model's performance is presented as a confusion matrix in Figure 4. Since

this task, to the best of our knowledge, has never been attempted before, we use the Pepid search

engine's results as a baseline by taking the length of the best-scoring PSM for each spectrum as a

proxy for the �predicted length� from Pepid to be compared to our length prediction model's output.

In Table 2, prediction accuracy for the model trained on the Massive-KB model is compared based

on the range of length of peptide sequences in amino acid, using either the dataset's, or the pepid

top-ranking predictions, as ground truth sequences from which the length is computed.

We note that the deep learning model works signi�cantly better than the baseline linear regres-

sion on Massive-KB (compare Table 1 and Table 2), despite only using a disparate subset when

testing the deep learning model, unlike in the linear regression case which presents results obtained

on the same set used during �tting, despite showing more modest improvements for ProteomeTools

and the Yeast dataset. As noted previously, we attribute these results to the lack of a real ground

truth in the yeast dataset, and to the synthetic nature of the ProteomeTools data. Nevertheless,

we �nd that the spectrum data clearly improves length prediction across the board. In particular,

we note that the performance between the Pepid top-hit (pepid uses an algorithm very similar to

Sequest) for all three predictions are quite closer between the linear regression and the length pre-

diction model, than on the ground truth from the data. Since common search engines provide mass
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Table 2: Length prediction accuracy (percentage of correctly predicted pep-
tide lengths).

Length Range 6-40 7-14
Ground Truth Data Pepid Data Pepid
ProteomeTools 42.7 40.4 52.8 50.6
Massive 47.7 35.8 65.1 51.5
Yeast 44.2 43.2 54.2 53.6

statistics to Percolator for rescoring, this may be a hint that Percolator can e�ectively exploit mass

� but not length � information to achieve improved identi�cation rates.

To further see why the mass-based and spectrum-based length predictions di�er, consider the

consistent improvements obtained by providing length information to Percolator, both in oracular

and in prediction forms. These results demonstrate that (1) real length information (as in the

oracle) can help identi�cations quite a bit despite Percolator's apparent ability to leverage mass to

separate hits in rough length-like categories (on account of the inherent correlation between mass

and length), and (2) spectrum-based length prediction also provides information in excess of what

Percolator can exploit using only its default features and masses.

Length prediction integration results are shown in Figure 5, demonstrating modest but consis-

tent identi�cation improvements across FDR thresholds similar, but less, than in the oracle version.

These results show that the proposed deep learning model can already help improve peptide iden-

ti�cation results, despite leaving space for further improvements. This is also reiterated in Table 3

which shows identi�cation numbers under target-decoy (i.e. classic) and ground truth (i.e. FDP

based on dataset ground truth peptides) false discovery rates at select common threshold values.

Table 3: Performance results for the Pepid platform with and without the
length model on ProteomeTools.

ID @ 1% FDR ID @ 1% FDP ID @ 5% FDR ID @ 5% FDP
Pepid 1 031 333 388 771 1 179 915 1 051 333
+ Percolator 1 072 146 967 607 1 222 694 1 105 596
+ Length 1 083 066 990 546 1 228 584 1 112 063
Oracle 1 089 048 995 584 1 235 215 1 121 710

We would also like to point out that while the improved identi�cations over target-decoy based

FDR is advantageous, the more important metric is the increased identi�cations under false dis-
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covery proportion. As shown in our results, length prediction is signi�cantly (around 2×) more

impactful when considering true peptide identi�cations as opposed to target peptide identi�cations.

Due to di�culties in obtaining robust ground truth peptide identities in practice, this metric is often

overlooked in favor of the easier to compute TDA-FDR, yet we show here a divergence between the

quality of the improvement under both metrics, showing that only considering TDA-FDR during

the development and evaluation of re�nements to peptide identi�cation pipelines may be mislead-

ing. This observation may also impact the feature design for rescoring algorithm like Percolator,

or the di�erent score designs for common engines like Comet11 or X!Tandem30: better TDA-FDR

identi�cations may hide lower FDP identi�cations27.

Conclusion

In this work, we have shown that mass spectra contain exploitable information beyond just serving

as the basis for matching against a candidate database. We have proposed a deep learning-based

method that can exploit query spectra to predict the length of the peptide which generated the

fragmentation pattern, and we have demonstrated that this information can successfully be used

to improve peptide identi�cation at �xed FDP or FDR thresholds. We believe this is the �rst

time it has been shown that peptide lengths can reliably be recovered directly from the spectrum.

Our results were compared to the recent Pepid engine, a modern engine implementing the popular

search algorithm Comet's scoring function, demonstrating that length prediction can be of practical

interest to improve peptide identi�cation rates in real experiments.

In the typical FDR-based comparison setup, both using FDP and the more classical TDA-FDR

estimation, our approach slightly but consistently increased the amount of identi�ed peptides across

a range of FDR values, and especially around the common lower FDR ranges (i.e. around 1%).

When using FDP, our method similarly enables better separation of false vs true hits, causing an

increase in the amount of correctly identi�ed peptides over the baseline Pepid model.

The length-based model leaves room for improvement, achieving limited accuracy across the

range of peptide lengths present in the ProteomeTools dataset. Despite this low performance on the

task the model was trained for, its output can already be used to improve peptide identi�cation,

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 1, 2023. ; https://doi.org/10.1101/2023.10.27.564468doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.27.564468


demonstrating that the proposed approach can unlock further improvements for peptide identi�-

cation. Beside our oracle's performance demonstrating what is possible at the upper bound with

a much improved model, this also suggests that extracting more information from the spectrum

(rather than trying for full de novo sequencing, for example) may provide more tools to further

improve peptide identi�cation in database-driven peptide identi�cation tasks: perhaps properties

like hydrophobicity, or the presence of speci�c amino acids in the sequence, can also be predicted

and used in this manner. Furthermore, these approaches can create a toolbox of algorithms that

could lead to similar improvements in a de novo peptide sequencing framework by greatly restricting

the potential search space for peptide candidates.

Combining the length prediction from our model with a classical peaks-matching-based approach

(i.e. that of Pepid in our case) is a complex problem. We used a two-step approach in this

work and not an end-to-end approach because we aimed to compare the contribution of our de

novo subproblem model to an existing baseline following common modern identi�cation work�ow

practices, and thus to minimize code and architecture changes to just those required to combine

our method and the Pepid scoring method. In light of our encouraging results, we believe that

an end-to-end scoring approach may further improve peptide identi�cation compared to the results

presented in this work. While we do not have the means to combine this method with some of the

commonly used software like PeaksDB or MaxQuant's Andromeda as they are proprietary, it would

be interesting to verify that this method can improve performance when combined with them.

We believe that the above results clearly show that a mixed approach, i.e. combining ideas from

the de novo sequencing and from the database-driven peptide identi�cation, has a lot of potential to

improve upon the current state-of-the-art. A database can be used to initially constrain the search

space to a manageable subset, and information inherently present in the query spectrum can further

be used to reduce this subset by more con�dently ranking candidates based on additional information

not present in peak matching alone. This proposed approach does not su�er from what is arguably

de novo sequencing approaches' biggest weakness: the combinatorial search space and increased

error probability scaling with peptide length, while making use of their strength: the ability to

mine information from the spectrum in advance. Beside peptide length from just the spectrum,

data like peptide amino acid composition, or properties like hydrophobicity, could be extracted to
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further improve identi�cation rates. In addition, predictions from the sequence candidates, such

as spectrum prediction or retention time prediction, could further be used in tandem with these

spectrum-based feature extractors to improve identi�cations even further.

Our code is available as open source software as an integrated package in the Pepid frame-

work starting with version v1.1.0. The repository may be accessed at https://github.com/

lemieux-lab/pepid.
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Figure 1: ProteomeTools dataset properties. A: Distribution of peptide
lengths vs precursor masses in the dataset. The line represents a linear
regression. Dark markers are precursor masses from the spectra with the
correct length label using this linear regression, lighter markers are incorrectly
labeled. B: Distribution of peptide lengths in the dataset showing a large
proportion of shorter peptides. C: Precursor masses vs Andromeda scores.
52.44% of peptide-spectrum pairs pass the suggested quality threshold of 100
(as suggested by the Andromeda developers5), shown by the dashed line on
the graph. D: Distribution of peptide lengths to Andromeda scores.
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Figure 2: Diagram representation of the proposed length prediction model.
A: Inputs. B: Modality-speci�c networks. C: Combiner network. D: Aux-
iliary prediction networks (training only). E: Prediction task and training
feedback. See text for details.
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Figure 3: Pepid with a peptide length �oracle� (values obtained from the
ground truth peptides in ProteomeTools). A: Identi�cations across false
discovery proportions. B: Identi�cations under target-decoy-based false dis-
covery thresholds.
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Figure 4: Length prediction model's confusion matrix showing the total
count predicted vs actual ground truth length from the ProteomeTools set.
Only lengths 7-14 (corresponding to the most represented classes in Pro-
teomeTools) are shown for easier viewing. Colors in the matrix are for per-
centage relative to ground truth counts (green is higher, blue is lower). The
bottom row displays marginals on all the classes, with coloring as per abso-
lute counts.
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Figure 5: Pepid with the proposed length prediction model achieves im-
proved performance compared to baseline. A: Identi�cations across false
discovery proportions. B: Identi�cations under target-decoy-based false dis-
covery thresholds.
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Supplementary Material

Length Confusion Matrix

Supplementary Figure 1: Full length prediction confusion matrix across
the lengths the model was trained for (6-40 inclusive). The bottom row shows
marginal counts for each class.
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Model Details

The model architecture is presented in the main text. Here we describe the exact hyperparameters

in the �nal model.

The convolutional layers in the preprocessing stack were procedurally determined using the start-

ing dimensions of the input. In total, 13 layers, composed of a convolution, a batch normalization

(batchnorm), and recti�ed linear (ReLU), and a pooling layer. All pooling layers were mean-pools

of size and stride 2. For the convolutional layers, they had a dimension of 11, unless the input size

was not compatible, in which case they were 12. The last layer had a kernel size of 1. All layers

used an embedding size of 500 except the �nal layer, which converts the 500 latent units into our

output size of 35. The pattern of kernel sizes was thus: 11, 12, 11, 12, 12, 11, 12, 11, 12, 12, 11, 11,

1. The �nal layer is followed by a non-linearity of log-softmax rather than a ReLU.

To convert the convolution outputs to a latent representation compatible with the prediction

�head�, a convolution of kernel size 1 and a pooling layer of size and stride 2 was applied.

The linear layers processing the spectrum are composed of 8 fully-connected layers with 500

units in their latent spaces. The input of the �rst network is the whole spectrum, of size 50000. A

9th fully-connected layer converts the latent output to our output size of 35.

The linear metadata-processing network is composed of 4 fully-connected layers with 100 units

each, followed by one last layer with 35 outputs. The combination network has the same topology,

but while the metadata network takes just the input mass as a feature, the combination network

takes 1100 features, namely the latent representations of the other networks as a concatenated

vector.
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