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Abstract

Motivation Current peptide search engines are optimized for wet-lab work�ows, i.e. they operate in an �end-

to-end� manner to achieve good identi�cation results, not to be modi�ed or provide algorithmic insight. This

makes developing new software methods to solve problems in peptide identi�cation methods di�cult, often

requiring a full engine rewrite. Recently, many deep learning methods were proposed as solutions to various

parts of the peptide identi�cation task, but virtually none of those methods have been implemented in any

actual peptide search process. We believe that the lack of a reliable bioinformatics research platform for

peptide identi�cation that enables such integrations is slowing down proteomics research as a whole.

Results We present pepid, a bioinformatics research-oriented peptide search engine. Unlike other search

engines, pepid is speci�cally designed with ease of computational research in mind. Our design is highly

�exible and allows easy modi�cations with little required software development expertise, allowing researchers

to focus on analysing and improving peptide identi�cation methods. It also takes recent computational trends

into account, such as the recent slew of deep learning publications in proteomics, and features a multi-phased

batched operations design that is more appropriate than the spectrum batch �end-to-end� designs of existing

search engines for those approaches. We show that pepid is competitive with common engines in terms of

both identi�cation rates and runtime, forming a minimum required baseline to enable further identi�cation

research.

Availability and Implementation Pepid is available as open source software under the MIT license at

https://github.com/lemieux-lab/pepid. Other data referenced in the text is 3rd party. The selected

yeast proteome can be found on SwissProt with accession ID UP000002311 while the human proteome's

accession ID is UP0000005640. The ProteomeTools spectra can be found in the PRIDE archive under

accession ID PXD004732 and the One Hour Yeast Proteome can be found at the ChorusProject at

https://chorusproject.org/anonymous/download/experiment/-8823069691100997209 and https:

//chorusproject.org/anonymous/download/experiment/449795368199176159.
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2 Pepid

1. Introduction

Peptide identifcation is a technically and scienti�cally di�cult

problem both on the wet- and dry-lab side. Current peptide

search engines are designed for �end-to-end� operations, i.e.

to provide a streamlined process for proteomics experiments

considering wet-lab users, with non-separable operations from

spectrum and protein processing all the way to scoring and output.

This has the unintended consequence of making computational

research in peptide identi�cation harder, because deviating

from the established paradigms e�ectively requires rewriting the

entire engine. Recently, many deep-learning algorithms have

been proposed to solve various problems relevant to peptide

identi�cation, such as theoretical spectrum generation [Gessulat

et al., 2019, Liu et al., 2020], retention time prediction [Zeng et al.,

2022, Giese et al., 2021], peptide-spectrum scoring, and so on (we

direct interested readers to more comprehensive reviews of deep

learning methods in proteomics, such as Wen et al. [2020] and

Meyer [2021]). Unfortunately, these methods cannot be readily

tested on top of most labs' software work�ow because making the

requisite changes requires good software development expertise, as

well as time and �nancial budget that may not always seem like a

good use of resources to most labs. As a result, it is not clear which

of these methods, if any, is actually useful for database-driven

peptide searches, and even in the rare cases where those methods

are implemented with an existing search engine [Wilhelm et al.,

2021], it is not readily possible to port those changes to another

engine to bene�t from a proven method because two di�erent

engines may operate in totally di�erent ways.

State-of-the-art peptide-centric search engines for peptide

identi�cations can be classi�ed in many di�erent ways. One

classi�cation axis relevant to the di�culties in modifying engines

for actual use with novel techniques is their license status

(i.e. proprietary or not), and source status (i.e. closed vs.

open, published vs. unpublished). Breakthrough deep learning

algorithms have been proposed, but they cannot be added to

proprietary search engines and released legally (except by such

search engines' authors themselves), slowing down research and

making convincing experiments to demonstrated added value on

top of some commonly used engines di�cult. In addition, current

open-source search engines do not have deep learning methods in

mind and are designed in such a way that integrating machine

learning models to their pipeline is di�cult: for example, deep

learning algorithms are designed for e�cient batch processing,

potentially at one speci�c stage of the process, whereas current

engines are desgined to perform all processing steps across groups

of inputs.

In this paper, we propose Pepid: a new, open-source search

engine that is designed from the ground up with dry-lab research

and deep learning methods in mind and, in general, to further

research and development of tools and algorithms for peptide

identi�cation. Our search engine features a multi-phase, batched

pipeline design. Each step in the pipeline is fully optional, uses

con�gurable user function attachments, and supports a variety of

user settings to customize computational schedules. We believe

this is a more appropriate design for applications such as deep

learning than the usual �end-to-end� approach of other options, at

the cost of incurring some overhead that we show to be negligible

overall.

We implement two common scoring algorithms and their

extensions as well as a combination score function, and we show

that Pepid is competitive in both runtime and identi�cation

rates. We believe that deep learning is already instrumental to

achieving best-in-class performance in peptide identi�cation, and

that further research at the intersection of deep learning and

proteomics is critical to next-generation peptide identi�cation

research. We provide experimental deep leanring methods with our

source release to demonstrate how one might go about integrating

such algorithms, although discussion of those details falls outside

the scope of this paper.

2. System and methods

Existing search engines present various tradeo�s based on their

implementation and design. We discuss a select few common

examples and describe how Pepid addresses �aws in current

choices. The selected engines showcase some orthogonal design

characteristics that make them suboptimal for Pepid's usecase

(research into computational methods for peptide identi�cation,

as opposed to maximum identi�cation rates or counts, and

incidentally, throughput).

2.1. IdentiPy

IdentiPy [Levitsky et al., 2018] is an open-source search engine

written in python 2.7, using cython in parts to improve

performance. Its main feature is its high con�gurability, providing

users with custom extension points allowing sta� with limited

technical skills to provide and apply arbitrary python functions

at limited parts of the pipeline. This paradigm also means the

intermediary computation steps are exposed to the user, allowing

more �exibility in how the pipeline operates and runs. It makes

use of multiple processors via multi-processing and performs task

dispatch on the unit spectrum level (that is, each query spectrum

is individually processed by the next available process on a

�rst-come-�rst-served basis with no task batching).

However, only a small set of extension points are supported,

and the single task dispatch design means that operations

with short computations and long preparation times (e.g. those

leveraging GPUs for general-purpose computing, as would be

desired for a deep learning-driven work�ow, or those that should

load data from the disk in chunks) limits what kind of functions

can feasibly be implemented this way due to wallclock time

concerns. Moreover, it is implemented in Python 2.7, which is

incompatible with Python 3.0+ and is deprecated as of January

1st, 2020; conversion is not di�cult but remains a burden on

potential users. It also operates fully in-memory, which, combined

with the multi-processing paradigm, makes it susceptible to the

�memory explosion� problem � that is, as the task schedule is

unpredictable and may use large amounts of memory, potentially

exceeding available memory; this may cause the entire run to fail.

It also means that the database size used in the search, as well as

the query set used in any one run, are arti�cially restricted based

on hardware availability.

2.2. X!Tandem

X!Tandem [Craig and Beavis, 2004] is an open-source version of

the proprietary University of Washington's SEQUEST engine [Eng

et al., 1994]. X!Tandem is reasonably fast and e�cacious, however

it is designed to operate �end-to-end� for identi�cations, meaning

there is no way to halt the process at arbitrary points. On the

other hand, X!Tandem supports custom scores via a �score plugin�
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system. An example of a popular score plugin is the �k-score�,

which is the same basic scoring method that was later implemented

in Comet [Tabb, 2015].

Score plugins in X!Tandem are developed in C++, which

requires a certain technical sophistication from the programmer as

well as providing a rather slow development cycle when working on

iteratively improving the score function. By comparison, languages

such as Python, Julia or Lua, which may feature slower operation

at runtime, but provide better facilities for rapid application

development, may be more appropriate for computational research

purposes, since a better optimized version of the algorithm may

replace the prototype after a novel approach is found to be

advantageous.

X!Tandem also does not allow outputting more than the

single best-scoring peptide match for each spectrum except when

applying a �lter on the score (e.g. there is no way to output

an un�ltered best-10 score), which makes disambiguation with

potentially close-in-quality matches impossible without further

manipulation of the software, and score distribution analysis only

possible with su�cient hardware to store all scores on disk, as

well as temporarily in memory during X!Tandem's processing.

This may also a�ect the performance of post-processing methods

like Percolator [Käll et al., 2007] as they may exploit the greater

amount of available data if provided to them.

2.3. Comet

Comet [Eng et al., 2012] is a reputedly fast search engine whose

main scoring function is a function of the inner product between

the theoretical spectrum of a candidate peptide and the empirical

spectrum of the query input (where both spectra are represented

as �xed-length vectors of mass to charge intervals to intensity

values), normalized by the average of the same score across a

window around each peak window. Comet also features a so-

called E-value score, which is based on a regression over the score

distribution's log-histograms (i.e. the E-value score is an ordinary

least-square approximation of the estimated log-CDF of the score

distribution). Similar to X!Tandem, Comet is designed for �end-to-

end� operations and does not innately support any modi�cation to

its runtime procedure. Unlike X!Tandem, it also does not support

a plugin system for scores or other aspects of the computations.

Comet operates in a batch-oriented way, processing a user-

speci�able amount of spectra at a time, thus bounding memory

requirements, potentially at the cost of processing time. This

design is more amenable to be modi�ed to support heterogeneous

compute capabilities. Indeed, Tempest [Adamo and Gerber, 2016]

is such a modi�ed version of comet and can run on CPUs or GPUs

using OpenCL for faster processing.

2.4. Others

A plethora of other search engines exist, some proprietary like

PeaksDB [Zhang et al., 2011], Andromeda [Cox et al., 2011],

or the Thermo Fisher version of SEQUEST [Eng et al., 1994],

and some open-source, such as Morpheus [Kim and Pevzner,

2014a] or MS-GF+ [Kim and Pevzner, 2014b], to give but a few

arbitrary examples. To the best of our knowledge, beside potential

additional issues related to licensing and availability of source

code, all commonly used search engines share an �end-to-end�

focus causing similar challenges to those described in the previous

sections. Selection of the above search engines for longer exposition

does not imply endorsement, and was not made on the basis of

subjective of objective criteria other than the following:

• All three engines are open-source, allowing examination of

internals;

• IdentiPy has inbuilt user extension points;

• Comet and X!Tandem are in common use in practice.

This provides a comparison background that enables us to

estimate Pepid's viability in practice (by proxy, using X!Tandem

and Comet for comparison) as well as for �exibility (especially by

comparison with IdentiPy, which allows the most customization

to work�ow among engines we are aware of).

A qualitative summary of some search engines compared to the

proposed Pepid engine is provided in Table 1.

2.5. Datasets

ProteomeTools is a dataset of synthetic human peptides. The

dataset was generated using synthesized peptides based on the

SwissProt database [Bateman et al., 2020].

Due to corruption in the dataset (causing some of the archive

�les to fail to decompress), we only use the First Pool data

(which is uncorrupted). We select only the higher-energy collision

dissociation (HCD) data at a normalized collision energy (NCE)

of 25 as this seems to produce the best quality results out of the

available settings [Zolg et al., 2017].

The One Hour Yeast Proteome is a dataset of non-synthetic

yeast peptides with a baseline generated by the Thermo Fisher

version of the SEQUEST search engine [Hebert et al., 2014]. We

use the �batched� dataset, which combines the result of all the

hour-long runs.

The Massive-KB dataset contains spectra from real experiments

and use a best-representative and consensus identi�cation

approach to provide a high-con�dence peptide identity [Wang

et al., 2018]. We select the �human hcd in-vivo� subset and

remove cross-digestion experiments (such as HeLa Trypsin-Lysc

experiments) by excluding those entires whose provenance dataset

contains keywords lysc, argc, or chymotryp. This dataset segment

does not contain the ProteomeTools data which is included in the

�full� Massive-KB dataset.

The ProteomeTools data provides an inordinately clean

baseline using arti�cial peptides and pools designed to minimize

mass con�icts, while the yeast dataset is a realistic real-world

peptide dataset. Together, they allow us to qualitatively observe

Pepid's suitability in both settings, as each may provide a di�erent

yet useful setup for research purposes.

Properties for the datasets used in this work are listed in

Table 2.

2.6. Evaluation

Each search engine uses a di�erent method for evaluation and

reporting: for example, classical false discovery rate vs. q-value

[Käll et al., 2008], di�erent formulae for their computation [Elias

and Gygi, 2007, 2009], etc. In order to ensure comparisons can

be made, we use the same external evaluation method for each

search engine rather than relying on their native tools. The code

for evaluation is available in the script gen_fdr_report.py in

the Pepid source release. We compute q-value using the FDR

formula in Elias and Gygi [2007]. In addition, since FDR can be

untrustworthy [Gupta et al., 2011, He et al., 2015, Elias and Gygi,

2009, Matrix Science Ltd, 2010, Danilova et al., 2019, Jeong et al.,
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Engine Language Extensible License Source Phased Runs PSM Output Speed

X!Tandem C++ Little Permissive Open None Filtered Fast

Comet C++ No Permissive Open None Top N | Filtered Very Fast

IdentiPy Python 2.7† Somewhat Permissive Open None Top N Slow

SEQUEST* C++ No Proprietary Closed None Top N | Filtered Very Fast

PeaksDB Java No Proprietary Closed None Filtered Slow

Andromeda C# No Proprietary Published None Filtered Slow

Pepid Python 3 Fully Permissive Open All Any× Fast

Table 1. Qualitative summary of some search engines. Source is the status of the engine's source code. Published Source means partial or snapshot source

releases are available, for example accompanying a publication. Phased Runs means an engine can perform only a subset of its operations at a time and

outputs artifacts that can be used to continue a run at a later time from where the engine left o�. PSM Output quali�es if an engine can output only the

top N outputs, or if it can �lter based on score. *: SEQUEST is commonly used to refer both to the University of Washington and the Thermo Fisher

versions of the software. The listing here is for the latter. †: The IdentiPy developers are in the process of updating their engine to Python 3 at the

time of writing. ×: Pepid outputs artifacts containing all scores that were above 0, and provides a condensed output with the Top N peptides for each

spectrum by default. This is fully user-con�gurable.

Dataset #Specs #Peps #Cands Frag @ NCE

Massive-KB 1 566 292 956 580 8 410 825 HCD @ 25

ProteomeTools 1 454 139 113 583 8 410 825 HCD @ 25

Yeast 400 665 47 650 2 160 144 HCD @ 30

Table 2. Features of the datasets used to evaluate Pepid. Peptides

(#Peps) are unique pepide sequences, excluding modi�cations. Candidates

(#Cands) are the count of Pepid-generated candidate peptides in total (i.e.

including modi�cations, missed cleavages, and so forth) for the species

database. Spectra (#Specs) are the total spectra in the query dataset.

2012], we also report the false discovery proportion (FDP) using

ProteomeTools's groundtruth labels as computed using the same

algorithm as for FDR.

2.7. Spectrum Generation

We present a spectrum generation model designed for integration

into a search pipeline. Spectrum generation quality is

benchmarked against Predfull, using code and model obtained on

2023-05-16, labelled as version 2022.05.19. The pretrained model

was obtained from the PredFull Google Drive indicated in the

PredFull github-hosted repository (https://github.com/lkytal/PredFull).

Since this pretrained model was trained on ProteomeTools and

thus may exhibit some over�tting compared to our model. The

code was obtained from the master branch of the same github

repository. We choose to compare to PredFull rather than

alternatives (like Prosit or DeepMass) for the following reasons:

�rst, PredFull was previously compared to other models and found

to perform better even with only the theoretical peak sequence.

Second, our method also performs full spectrum prediction,

making the comparison more directly appropriate. Third, PredFull

is easily reproducible and is still maintained, whereas other models

like Prosit have not seen an update since 2018 (as of the time of

writing) and can no longer be loaded with the currently available

versions of existing dependencies.

3. Algorithm

Pepid is designed to operate in restartable, customizable phases.

Each phase can be customized both by user parameters describing

behavior settings (for example, how to multiprocess the program),

or by custom (i.e. fully user-written), user-speci�ed functions

(the score function, the peptide candidate generation function

and the rescoring function, for example, are all user-provided,

with sensible defaults implemented by Pepid). Pepid uses python's

dynamic capabilities to read the name of the functions provided in

a con�guration �le and dispatches work through these functions

as appropriate during operations. In addition, users may elect to

perform a subset of phases before directly examining or modifying

the data, and then proceeding with remaining phases.

3.1. Inputs and Outputs

User con�guration to the pipeline is composed of a single �le: a user

con�guration document in an INI-like format compatible with the

python configparser module, for which a default con�guration

set is provided in the data/default.cfg �le in the release

distribution. The default �le features explanatory comments for

each con�guration option to guide modi�cations. The set of query

spectra as speci�ed in the con�guration �le must be in the Mascot

Generic Format (mgf) and the database of candidate proteins must

be in the protein fasta format. Pepid's output is a database of

processed queries, candidate sequences (generated in-silico from

the fasta input database), and peptide-spectrum matches (PSMs)

as SQLite databases. An optional pipeline step also extracts the

top N (for some user-selected N) matches per query spectrum

and outputs them as a tab-separated value (tsv) �le. Afterward,

the pipeline optionally runs percolator [Käll et al., 2007] or a

custom random-forest-based rescoring method on the output, and

can generate a graphical report about identi�cation performance

using the target-decoy approach, false discovery rate (TDA-FDR)

methodology, both after and before rescoring.

3.2. Pipeline

The search engine features a pipeline design composed of 6 steps:

Query and Database Processing, Input Postprocessing, Search,

Report, Rescoring, Final Report, which we explain in more details

below. The pipeline is graphically illustrated in Figure 1A.

In the Query Processing step, the input query �le is processed

in a more suitable format for further operations and is stored in

a SQLite database. In the Database Processing step, peptides are

generated from a fasta protein database. The resulting peptides

are saved in a SQLite database. User-speci�ed functions are used

to process the queries as well as to generate peptide candidates.

In the Input Postprocessing step, user-de�ned functions are

applied to the processed queries and peptides. The user is thus

able to insert arbitrary data into the database.
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Fig. 1: Comparison between Pepid and commonly-used search

engines on ProteomeTools �rst pool (1 458 831 spectra). RF:

using the random forest-based rescorer instead of Percolator. All:

using both the spectrum generator and peptide length prediction

models. IdentiPy cannot process the spectra witin resource limits,

so the �le had to be split 10-ways, and the process run once

per split. X!Tandem is only capable of outputting a single top

PSM when not applying a score �lter, other engines output the

top 10. A: High-level processing pipeline steps of Pepid. B:

Runtime performance. C: Count of identi�cations (for FDP, as

per ProteomeTools baseline) at a q-value of 1% (PSMs on left,

peptides on right, TDA-FDR on top, FDP on bottom).

Besides the arbitrary post-processing function, the user-

speci�ed spectrum prediction function is applied to the database

candidates. The default spectrum prediction function simply

generates the theoretical b and y ion series for the candidate

modi�ed sequence for each charge level indicated by the user. The

output spectrum object can be an arbitrary python object and will

be inserted as a binary blob into the database.

In the Search step, a user-speci�ed scoring function is applied

to a set of queries and a set of candidates for each query. The

candidates are a subset of the entire database that matches a

user-speci�ed tolerance threshold around the mass of the query

precursor neutral mass, as is usually done in other engines to

restrict the set of candidates to search against.

The Report step prepares a graphical report containing a mix

of performance metrics based on the TDA-FDR methodology,

along with score distribution data plotted against basic PSM

statistics, to help identify potential biases or weaknesses in the

score function. The Report step also outputs a serialized artifact

containing the statistics computed during the report generation

for further analysis. This artifact can also be used to generate

comparison plots using the pepid_compare.py script which is

discussed further below.

The Rescoring step applies an arbitrary rescoring function,

which is Percolator by default, to the results.

The Final Report step produces the same report artifacts as

the Report step, only after the rescoring function is applied.

Pepid phases are reusable and optional throughout its process:

unlike other search engines, the intermediary artifacts remain

between each step and the software can rerun only the steps of

interest to the user. This also enables the user to perform part

of the steps, then use custom software to modify the resulting

artifact, then proceed with additional steps, without Pepid having

to know anything about the intermediary user processing scripts,

granting additional pipeline �exibility beyond the basic pipeline

proposed by the Pepid system. It also allows users to perform

perhaps lengthy processing (especially for peptide generation �

that is, in-silico digestion by more complex algorithms and/or

spectrum for candidate peptides) only once and to reuse this

database for as many query searches as required. Another potential

use case is to �rst generate the preprocessed database on one

machine (or multiple machines and then performing a merge step),

and making that database available on multiple hosts for search

across a cluster (before performing a synchronized �nal merge

of these databases). This design also a�ords some robustness

regarding computational disruptions.

Pepid also provides additional utility scripts: pepid_compare.py

takes two report artifacts and generates a combined report

visualization that makes comparing search results between two

conditions convenient. pepid_files.py outputs the paths to the

�les generated by Pepid as part of the search process, given the

class of �les of interest (for example, just report artifacts or just

database artifacts).

3.3. Preprocessing

The query preprocessing step simply adds useful metadata, such

as the count of peaks in the spectrum and the precursor neutral

mass, to the reformated input data, and places it in a database

for more e�cient further processing. The user can specify criteria

used to �lter query spectra for quality, such as the peak count

range that is allowable and the maximum and minimum precursor

mass.

On the other hand, the database processing step is more

involved. Its main substeps are as follow: In-silico Digestion,

Filtering, Post-translational Modi�cation (PTM) generation,

Deduplication.

In the �rst step, a user-speci�ed regular expression (regex)

is applied to the protein sequences in the database to extract

�digested� peptides. The regex speci�ed by default corresponds to

tryptic digestion using the EXPASY rule. Users can additionally

specify maximum missed cleavages. The resulting peptides are

then �ltered by user-speci�ed minimum and maximum mass and

length for the sequences. Next, user-speci�ed maximum variable

modi�cations, variable modi�cation types, and �xed modi�cations

are applied against the peptides kept from the previous step,

triggering a re�ltering for mass. Finally, duplicate peptide-

modi�cation tuples are merged by joining the source protein

identi�ers to retain a single entry for each unique such tuple.

3.4. Search

The search procedure proper �rst selects a batch of candidates

matching a certain tolerance window as speci�ed by the user

around the precursor neutral mass of each individual query

spectrum, then applies a user-speci�ed scoring function to the

batch of candidates for the input query spectrum. Any resulting

match scoring more than 0 is kept in the �nal results database

(it is the responsibility of the score implementation to adapt to

this 0 cuto� based on other user settings to achieve the desired

behavior). The complete artifact takes the form of the query
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spectrum identi�er (the title provided in the input mgf �le), the

source protein identi�er (the protein identi�cation line from the

fasta �les, or multiple lines merged with semicolons if duplicate

peptides were generated in the preprocessing step), the score, and

an arbitrary python metadata artifact as a binary blob. It is up

to the scoring function implementer to ensure that the artifact

contains all the data necessary to apply the rescoring function if

such a step is desired later.

The default scoring function provided by Pepid is a

combination of an implementation of the Xcorr function based

on the Comet codebase and an implementation of the Hyperscore

function based on the X!Tandem codebase, a strategy that

has been shown in the past to improve search result qualities

[Shteynberg et al., 2013]. We also modify our Xcorr and

Hyperscore implementations in two major ways: �rst, we

expose many implementation details of those algorithms as user

modi�able parameters in our con�guration �le, and second,

we expand in multiple directions upon those algorithms. Our

extensions are as follows:

• We generalized comet's so-called "�anking peaks" feature to

support using arbitrary amount of intensity bins on either side

of the current bin during spectrum correction;

• We implement a gaussian kernel and a generalized version of

the original comet kernel using the exponential fallo� ( 1
2
)n to

weigh intensity values n bins away;

• We implement dynamic bin boundary settings based on ppm

calculations at the level of individual spectra, supporting 3

operating modes: in "max" mode, the highest m/z in the

spectrum is used to compute a m/z di�erence equivalent and is

the basis for setting the distance between bins; in "precursor"

mode, calculation proceeds as in "max" mode, but operates o�

of the percursor neutral mass; in "bins" mode, bin boundaries

are iteratively computed from the maximum allowable mass

down to the user-provided minimum mass interval using the

distance metric computed as in "max" mode.

We similarly apply modi�cations to the hyperscore algorithm

as follows:

• We keep the top N best-matching sequences, with user-

provided N and user-provided series selection criterion (i.e.

answering the question "best N what?"): "charge" instructs

Pepid to keep the top N charges, counting matches across all

series for the same charge level; "series" does the converse

(selecting the two best series across all charge levels); "both"

selects the best matching vectors (i.e. series-charge sequences).

• We make the theoretical spectrum weighing scheme used

by X!Tandem (corresponding to the input parameter `re�ne,

spectrum synthesis`) user-settable and optional.

• We add a score reformulation option that modi�es the model

to assume that the sum of intensities (all sequences) is caused

by the selected best-matching sequence(s) alone (rather than

the joint of all selected sequences as in the original X!Tandem

model).

We show that some of those modi�cations can greatly

improve peptide identi�cation rates in Section 4. Additionally, we

deliberately abstain from implementing the X!Tandem hyperscore

protein-level peptide score adjustment and the Comet E-Value

scoring function because it is well known that both methods defeat

appropriate TDA-FDR evaluation (for example, it was noted by

Zhang et al. [2012], Gupta et al. [2011], Matrix Science Ltd [2010],

Jeong et al. [2012] and indirectly observed in Elias and Gygi

[2009]).

The uncombined version of each scoring function (i.e. Xcorr

and Hyperscore) are also made available to users by default by

selecting the right function in the con�guration �le.

3.5. Input Postprocessing

In Input Postprocessing, a user-speci�ed function receives an input

python dictionary-like object describing the corresponding entries

in the database that are to be user-processed, and outputs an

arbitrary python datum that is then serialized as binary and

saved in the database in an extra column. It is up to the user to

implement the correct processing functions at the correct stages of

the pipeline to make use of this data, or to rely on the primitives

already provided by the engine.

In previous work, we added a deep-learning length prediction

system as an input postprocessing step applied to the set

of queries. The length prediction module adds a vector of

probabilities corresponding to the predicted probability of the

peptide being of a given length as a metadata item to each query

spectrum.

We also add a deep learning-driven spectrum prediction

input postprocessing module to the input postprocessing step for

candidates. For each candidate, the deep learning module predicts

a full spectrum (i.e. both the m/z and the intensity across the

entire spectrum, not just the intensity for preselected masses as in

Prosit [Gessulat et al., 2019] or DeepMass [Tiwary et al., 2019]),

which is added as a metadata item. We do not use this module as

the main spectrum generation function because, as with Gessulat

et al. [2019], Wilhelm et al. [2021], we �nd that our predicted

spectrum is better used as a feature for a rescoring algorithm like

Percolator.

3.6. Postsearch

A postprocessing phase following the search, dubbed �postsearch�

to avoid ambiguity with other postprocessing phases, is applied

before the rescoring phase. When using the length prediction

module mentioned above, this phase can add various computed

features based on the PSM characteristics to the metadata

for each search result. This design was chosen mostly as a

demonstration of the pipeline's �exibility, as it could be more

e�cient to only perform this step as an out-of-pipeline operation

as we do to append groundtruth labels to the data (described

in implementation), so as to only generate predictions for those

entries that will be used for rescoring. Nevertheless, this design

allows examining the results to drive potential insights and further

peptide identi�cation research.

3.7. Rescoring

The rescoring module runs the user-speci�ed function on the input

results rows. The default rescoring function generages a Percolator

INput �le (PIN), and uses Percolator for rescoring, converting

the Percolator OUTput �le (POUT) at the end of the Percolator

rescoring process into a Pepid output tsv. Alternatively, Pepid also

provides a random forest-based rescoring method.

We also provide an experimental random forest-based rescorer

that is pretrained on Massive-KB [Wang et al., 2018] (a dataset

of non-synthetic human peptides with a consensus-based ground

truth), in the style of the original formulation of PeptideProphet
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[Ma et al., 2012]. We show that this rescoring method appears

to generalize as it successfully rescores both ProteomeTools and

One Hour Yeast Proteome search results beyond what Percolator

is capable of at both the FDR and FDP level despite no �netuning

being applied.

3.8. Reports

The Report and Final Report steps are the same, except at

di�erent stages of the pipeline: the Final Report operating after

rescoring. The result of this step are text �le artifacts containing

data about PSM quality across FDR thresholds and graphical

artifacts summarizing the results (see Figure 4 for an example

of the output graphical artifacts).

3.9. Out-of-pipeline Operations

The phased, pipeline design of Pepid allows interrupting the

process at any time and using arbitrary functions to alter the

contents of the databases used to store the queries, candidates

or search results. We showcase this capability by implementing

such an out-of-pipeline insertion of �elds from the mgf �le that

aren't otherwise recorded by the query processing step (namely

the ground truth sequence from ProteomeTools used exclusively

for FDP evaluation, which is introduced in the mgf data by the

SEQ= �eld).

4. Implementation

Pepid is implemented in Python 3. It is accelerated using a custom

multiprocessing module available under pepid_mp.py in the source

repository, which allows greater �exibility for reporting and

debugging than usual python options such as multiprocessing.

The scoring functions are also accelerated using numba, and

extensive use of numpy and vectorization provides additional speed

advantages. For the experimental deep learning facilities, pytorch

is used for both training and inference.

The sqlite database is used as the backing store for the

artifacts at each stages. During search, heavy sharding is used

to ensure maximum throughput. This means that Pepid is

highly sensitive to the storage medium and properties for the

destination of the artifacts. To avoid performance degradation due

to operations on a large SQLite database, each process creates

a new shard whenever a user-speci�ed result count threshold is

exceeded.

The condensed output generation (i.e. the output to a human-

readable tsv �le) and the PIN generation steps can be very slow

if operated sequentially, so they are multiprocessed as well. To

avoid data races, a �le lock is used to negotiate write access to

the appropriate �le. This is su�cient to speed the process up to

2000% compared to sequential operations.

In the current version, Pepid relies on unix-speci�c facilities

to perform both the multiprocessing (UNIX sockets are used for

communication), as well as for the �le lock facility.

4.1. Search Parameters

Search parameters for the cross-engine comparison using

ProteomeTools were selected to match as well as possible between

the search engines used, while enabling any special method

available to each engine as would normally be enabled in a real

search. A summary in the Pepid con�guration format is provided

with the software. For the yeast search, parameters for Pepid were

optimized so as to represent realistic performance statistics for

more accurate comparison on the basis of wallclock time.

While Pepid supports rescoring by Percolator or by a partially

pretrained random forest method, we only compare engines

with percolator due to the pervasiveness of this method across

established pipelines. We show the results of the pretrained

random forest method compared to previously shown Pepid results

to demonstrate generalization and increased identi�cation rates

separately. Due to its pretrained nature, this random forest

approach cannot equitably be applied to other search engines.

4.2. Length Feature Extraction

When the length prediction module is in use, several features are

computed in postsearch and added to every PSM from the search

step. In particular, we compute the di�erence between the most-

probable predicted length and the candidate length, the predicted

probability that the peptide present in the spectrum is of the

candidate's length, the di�erence between the probability of the

candidate's length and the best, worst, next best and next worse

length probability. Those features are simply extracted during the

rescoring step and used as extra features in the Percolator-based

pipeline, for example.

4.3. Spectrum Generation

We developed a deep learning-based approach to full-spectrum

prediction. To the best of our knowledge, the only previous work to

have ever successfully used this approach was PredFull [Liu et al.,

2020]. Our approach di�ers in several aspects: �rst, we use fully

standard convolutional neural network instead of PredFull's mix of

�Spike and Excitation� units and multi-scale convolutions. Second,

we output a predicted spectrum for each charge level (equivalent

to using 5 di�erent networks that heavily share weights). Third,

we constrain the output spectrum so that any intensity less than

1 · 10−3 is dropped to 0 so as to obtain a sparse spectrum (we

�nd that resulting spectra are usually very sparse, at around 1-3

non-null peaks per 1000 bins, with a total of 50000 bins, i.e. an

average of up to 150 peaks per generated spectrum). We do this

mostly due to storage constraints when applying the model during

peptide search, although this also acts like a noise removal pass.

The model's architecture and input processing are presented in

Figure 2. It is can be understood as an encoder (a convolutional

layer processing the whole sequence at once), 5 processing stages

(using convolutional residual layers with a kernel size of 1), and 5

decoders (one per charge level), each independently transmuting

a size 1024 latent representation into a size 50000 predicted

spectrum corresponding to each input in the sequence, which

is then averaged over those sequence elements. The result is a

predicted total spectrum in rasterized (i.e. a vector for which each

bin has a 0.1 Da width) format for each charge level. This design

allows the model to be used e�ciently to preprocess a database

of candidate peptides, without having to repeat this relatively

slow prediction process when iterating upon scoring mechanisms

or parameters.

We train the model using the Massive-KB data to avoid

potential over�tting vs ProteomeTools as much as possible, and

we show some results on ProteomeTools and the Yeast dataset

to demonstrate that the resulting model is generalizable. Finally,

we apply it during candidate post-processing and store it using

the compressed sparse row representation using the SciPy module,

version 1.10.0 [Virtanen, 2020].
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Fig. 2: Architecture and input transformation for the Spectrum

Generation model. A: The input peptide sequence is encoded

similarly to PredFull [Liu et al., 2020]: one-hot peptide sequence,

one-hot charge, and mass divided by a �xed scaling factor (2000

here). B: The model architecture is composed of straightforward

convolutional layers (kernel size, embedding output size). The �nal

pooling layer averages over the sigmoid outputs across each of the

41 input sequence elements, in e�ect gathering the consensus from

the spectrum implied by each amino acid. The output is 50000

intensity levels for each output charge level. The dashed circle

with + represents elementwise addition.

4.4. Rescoring

Beside the classical Percolator-based pipeline, we also present a

ground truth-based, pretrained, random forest rescorer using the

Massive-KB dataset so as to avoid over�tting as much as practical.

To demonstrate its capabilities, we measure performance both for

ProteomeTools search results with Pepid, and Yeast search results,

both on the basis of FDP and FDR identi�cations over common

value ranges. The model is implemented in scikit-learn [Pedregosa

et al., 2011] version 1.3.3 as a pipeline composed of a standard

scaler followed by the random forest. The model is trained in a 10-

way cross validation setting and the best-performing model on the

basis of separation between ground truth and other hits is saved

(along with the scaler). The model and scaler are then loaded and

applied to the search results to rescore (i.e. those of ProteomeTools

and Yeast in this case), and a second random forest-based rescorer

is trained to identify high-scoring vs low-scoring targets (where

low-scoring means those with a score below the median score for

the collection of PSMs including decoys). This is used as a �ne-

tuning phase, and the output probability is averaged with the

pretrained ground-truth-based random forest probability outputs

to generate the �nal score. The �ne-tuning is required to adapt

Massive-KB ProteomTools Yeast

PredFull 0.629 0.573 0.320

Ours 0.632 0.616 0.320

Table 3. Spectrum generation average cosine similarity compared to Prosit.

Performance on Massive-KB is on the held out set only for our method.

Note that PredFull uses the pretrained model from predfull.com, which

used a combination of proteometools, NIST [Stein, 2008] and Massive-KB

data for training.

the score to some di�erent experimental conditions, such as search

parameters or species under investigation, as we show using the

Yeast dataset.

4.5. MGF Field Insertion

To compute FDP-based metrics, a separate module (pepid_mgf_meta.py)

is provided in the Pepid distribution. It takes the con�guration

�le and a �eld name and inserts the �eld in each entry of the

mgf �le into the corresponding entry in the queries database (if

the mgf entry was present in the database). This serves also as a

demonstrate of working with out-of-pipeline processes to achieve

even higher �exibility in overall processing.

4.6. Results

Pepid was compared against other search engines to demonstrate

that it forms a solid baseline, without which its utility as a research

platform would prove limited. It was also compared against itself

using di�erent datasets to show how Pepid scales based on dataset

size in terms of runtime.

For the comparison between search engines, runtime and

identi�cation rates are considered. We use the ProteomeTools

dataset as a comparison basis because it contains a large set of

clean spectra which, combined with our hardware capabilities,

serve to better explore real-world performance metrics than would

a smaller dataset.

4.7. Performance

Performance results for the spectrum generation task on the whole

spectrum are presented in Figure 3. We note that our model is

trained only on the Massive-KB data, while the PredFull model is

trained on Massive-KB, ProteomeTools, and Nist peptide datasets.

Despite this, our model performs slightly better on Massive-KB,

and much better on ProteomeTools. The indistinguishable, yet

low, performance on the One Hour Yeast Proteome dataset is

likely due to reaching a ceiling due to the dataset not having

a real ground truth (it uses Sequest search results instead) and

the spectra in the dataset not being quality-selected, such as

by originating from synthetic peptides, or being collected from

consensus as in ProteomeTools and Massive-KB respectively.

Another potential discrepancy is the di�erence in NCE. Higher

NCE typically results in more relatively pronounced low-mass

peaks. Since our model is trained on Massive-KB, it could be

underestimating intensities at lower m/z values compared to the

expected yeast spectrum.

Runtime performance was evaluated on a machine with the

following relevant hardware:

• RAM: 192GB

• CPU: Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz (64

pseudo-cores)
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• GPU: 1x Nvidia GeForce RTX 2080 (12GB VRam)

• Disk: Intel Corporation NVMe Datacenter SSD [3DNAND,

Beta Rock Controller] Model: SSDPE2KE016T8

• OS: CentOS, kernel version 3.10.0

Figure 1B summarizes the runtime performance of various

engines on ProteomeTools so as to demonstrate Pepid viability

in a realistic workload, while Figure 3 compares Pepid's scaling

performance on our datasets and demonstrates that the added

�exibility in the hyperscore and xcorr implementations can be

bene�cial for identi�cations in some contexts. The combined xcorr

and hyperscore scoring function is used in all experiments. We

match our parameters to that of other engines as closely as possible

for the cross-engine comparisons. For the Pepid performance

scaling experiments, we vary the parameters to show the relative

performance of our engine in these scenarios when performing a

realistic search function. We �nd that for both dataset, although

especially the yeast dataset, we can improve upon results provided

by plain xcorr or hyperscore by using our algorithm extensions,

as shown in Figure 3E. We make use of Pepid's phased design

to quickly iterate upon search settings or parameters to �nd

the best choices without having to incur input processing and

input postprocessing costs (or even search costs when iterating

on just pre-rescoring features), while we had to optimize the

results the �hard way� for the other search engines, resulting in

a slower and more painful iteration process. Due to the relatively

painless nature of Pepid development, exposing more parameters

and function variants of the hyperscore and xcorr scoring functions

was straightforward.

Figure 3A,B demonstrates that while the phased design of

Pepid incurs an overhead for preprocessing and output, this

overhead diminishes quickly when dataset size increases, allowing

search and rescoring wallclock time to dominate the overall

process duration. This also appears to be true for the overhead

of the machine learning algorithms, although they remain quite

expensive to run overall. Thankfully, the phased design employed

by Pepid means they only need to be run one per query set

or candidate database respectively, and the resulting computed

features are �portable� (i.e. they can be reused in di�erent settings

without regeneration).

As presented in Figure 1A, despite Pepid keeping all results

in the �nal database on disk, while other engines typically work

in-memory and maintain a limited set of top PSMs, it remains

competitive in runtime compared to other common search engines.

We show that Pepid is faster than currently used search engines,

demonstrating that the design's impact on overall speed is minimal

in the current iteration. On the other hand, space usage may

be an issue, as storing all the data for the One Hour Yeast

Proteome search results takes about 160GB on disk, while for

Proteometools, 2.8TB are required. However, deep learning-based

methods increase runtime considerably at this time. Though that

may be the case, the identi�cation performance impact of our

methods are signi�cant in the settings tested in this paper, despite

our approaches leaving space for re�nement across the board (both

for runtime performance and for metric performance).

In Figure 1C, performance between the selected search engines

is compared, showing that Pepid performs well compared to other

engines in similar parameter settings. A baseline of this level is

important as a starting point for further research, as it shows

that Pepid works reasonably well without a signi�cant algorithmic

Fig. 3: Performance scaling data for Pepid. Lgt: length predictions.

Spec: deep learning spectrum generation. Both: Lgt+Spec. RF:

random forest-based rescoring. A,B: Runtime breakdown by

phase per dataset. Right compares the runtime for computing all

machine learning features vs non-ML (�rest�) tasks. C: Indicative

database sizes (queries and candidates). D: Overall runtime

comparison. E: PSM and peptide identi�cations depending on

which of Pepid's modules are in use.

update. We believe that this demonstrates once again that Pepid

is a suitable tool for further research in peptide identi�cation.

4.8. Visualization

It is well known that the hyperscore and xcorr scores are biased,

notably for peptide length (i.e. they tend to generate higher

scores for longer peptides) [Wang et al., 2015, Hubler et al., 2019,

Jeong et al., 2012] or charge [Granholm et al., 2012]. For peptide

identi�cation algorithm research, it is important to have at least

two basic metrics: accuracy (that which we aim to optimize,

e.g. peptide identi�cation rate) and bias (which we would like to

minimize). Pepid currently o�ers basic visualization aids to expose

common sources of biases relating to precursor charge, precursor

mass, peptide length, identi�cations at a selected q-value FDR

threshold at the peptide level, spectrum level, and PSM level, and

identi�ations over FDR, among others. These tools can be used to

quickly identify biases, distribution skews, algorithm performance,

etc. In Figure 4, a report plot for the xcorr function on the One

Hour Yeast Proteome is shown. As previously reported in the

literature, we �nd peptide length bias in the score distribution,

demonstrating the potential usefulness of this tool for further

development.

5. Discussion

We have developed a research platform for peptide identi�cation

research that is competitive with state-of-the-art methods

in runtime and identi�cation rate performance. Overall,

Pepid showcases a design that is speci�cally oriented toward

bioinformatics research and is suitable, in the authors' experience,

to combination with deep learning methods, all the while retaining

runtime and identi�cation performance in line or superior to

commonly used �search-only� engines (that is, engines designed

for throughput, not for modi�cation and research).
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Fig. 4: Example unretouched analysis output from the default

Pepid �report� module (run on the One Hour Yeast Proteome

data).

We have shown that Pepid can easily be adapted to include

deep learning methods in the search process, demonstrating the

added value of the phased design. The custom function extension

points displayed their value both during the development process

(allowing simple con�guration modi�cations to easily compare

performance in di�erent conditions) and the research process

(allowing the easy extension of the Pepid run to use deep learning

models). Furthermore, we have shown that the inclusion of deep

learning tools for parts of the peptide identi�cation pipeline can

greatly increase identi�cation rates across the board, and that

those deep learning tools can be generalized to di�erent species

and, to some extent, experimental settings.

Currently, Pepid does not feature a score �ltering system. That

is because in this initial design, Pepid was developed for peptide

identi�cation research �rst, where we would like to keep as many

search results as possible so that we may identify where search

algorithms show weaknesses. This data is also usable to train deep

learning models in various ways, where the presence of low-quality

search results is important to help models explore a richer and

more accurate data distribution. In a future update, we plan to

address the disadvantage this brings in terms of space constraints.

Pepid's phased design allows it to naturally operate in a

distributed environment even though no such feature is o�cially

supported at present; a simple scheme to achieve this is as follows:

• Perform input processing on a single node;

• Migrate the database artifacts to each computer that will be

used for search;

• Perform only the search step on each computer, providing a

mgf �le subset appropriate for each;

• Migrate the resulting search databases to a single node;

• Perform output, report and rescoring on that node, as desired.

In a future update, more attention will be given to user-

friendliness, for example by providing easy name association for

enzymes instead of requiring the user enter a regular expression

directly. In similar veins, An o�cial utility script akin to the

comparison and �lepath generation scripts described previously

will be provided to make other operations, like distributed

processing, more convenient. In addition, although Pepid's

preprocessing function can be changed by a user's arbitrary

function instead, better defaults will be provided, for example

expanding modi�cation support and fragmentation types.

Finally, Pepid currently relies on UNIX facilities. While it

may or may not operate under Windows using WSL2, a future

release may get rid of the UNIX-speci�c facilitie in favor of a

cross-platform option.

Regarding the newly introduced models, the spectrum

generator is not aware of NCE during generation and therefore

may require postprocessing-based adjustment, or the integration

of larger datasets with a range of NCEs, to work better in di�erent

NCE scenarios. The lack of quality synthetic or consensus data

of su�cient size, especially for non-human peptides and for non-

tryptic digests, makes accurate evaluation of this, and the length

prediction model, di�cult. Similarly, the lack of reliable ground

truth peptide identities makes proper FDP evaluation (to qualify

FDR estimation quality) less than ideal, a problem that also

a�ects other search engines as shown in our �gures (for example,

Comet appears to �nd fewer peptides than X!Tandem with 1%

FDR control, but far more at the 1% FDP level. This shows

that X!Tandem's algorithm causes underestimation of FDP by

the TDA-FDR method, and that Comet should be preferred in

this example. The question to solve is: how can we obtain such

con�dence when we have no access to ground truth peptides?)

Our search engine is publicly available online at https://

github.com/lemieux-lab/pepid.
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