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Abstract5

Ecological interactions, the impact of one organism on the growth and death of another,6

underpin our understanding of the long-term composition and the functional properties of7

communities. Interactions from classical ecology are typically understood to be fixed val-8

ues, representing for example the per-capita consumption rate of prey by its predator. Yet in9

many ecosystems, such fixed descriptions are inadequate: interactions can depend on local10

environmental conditions, the time at which they are measured, and the sampled position11

in a spatially-structured community. In this work, we show that each of these three types of12

context-dependency can arise from feedbacks between organisms and their environment.13

At the heart of our theory is the ‘instantaneous interaction’, a quantity that describes whether14

a given population changes their surroundings in a way that helps or hinders another in a15

particular environment. This environmentally-dependent quantity then gives rise to time and16

spatial dependencies as the environment changes over time and/or space. We use small17

synthetic microbial communities as model ecosystems to demonstrate the power of this18

framework by showing how we can predict time-dependent intra-specific interactions, and19

how we can relate time and spatial dependencies in crossfeeding communities. Our frame-20

work helps to explain the ubiquity of interaction context-dependencies in systems where21

population changes are driven by environmental changes – such as microbial communities22

– by placing the environment on an equal theoretical footing as the organisms that inhabit23

it.24
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1 Introduction27

Interactions between organisms - the impact of one species on the fitness or growth rate of28

another 1,2 - are one of the most consistent themes in ecology. One reason for this is that they29

are a key component of ecological models which provide testable predictions of community co-30

existence outcomes.3,4 Though classically used to explore macroscopic ecosystems such as31

foodwebs,5 in recent years interaction-based frameworks have also become a subject of deep32

study amongmicrobial ecologists as ameans of rationally manipulating community composition33

and function.6,734

Experimentally, the gold standard for estimating microbial interactions in vitro is to culture35

a focal species alone and in co-culture with another species and then compare the resulting36

growth of the focal species between the two conditions.8–13 While the precise measurement37

defined as the ‘interaction’ varies from study to study, 14,15 in each case these experiments assign38

a single value to the interaction between pairs of species (the inter-specific interaction) or within39

the population of a single species (the intra-specific interaction). These can then be inserted40

into a theoretical model of population dynamics which can in turn be used to predict community41

properties, with the generalised Lotka-Volterra (gLV) framework being among the most popular42

choices.7,943

However, microbes do not typically interact via the direct, trophic mechanisms which the Lotka-44

Volterra framework was originally built to describe. Instead, microbial interactions are often me-45

diated indirectly via abiotic intermediaries secreted into and taken up from the environment, 1646

such as crossfed nutrients 17,18 and toxic compounds used to kill competitors. 19 Consumer-47

Resource models explicitly describe such mechanistic feedbacks between environmental re-48

sources and consuming species, and are widespread in classical ecology.20,21 More recently,49

this framework has been extended to encompass secretion and toxicity of intermediates,2250

which we will refer to as the Environment-Organism (EO) framework. Comparisons between51

gLV and EO models have begun to reveal dynamical behaviours of EO systems that cannot be52

captured by direct, gLV-type interactions.23 At the same time, experimental evidence has be-53

gun to accumulate showing that properties of microbial communities cannot necessarily be54

predicted from measurements of pairwise species combinations as the gLV framework would55

suggest.24,2556
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Context dependencies of interactions have become increasingly apparent as one explanation for57

this breakdown. 1,14,26 Specifically, interactions can vary depending on the chemical environment58

in which they are measured 11,27–31 and the time at which they are measured,32,33 and spatial59

structure in multi-species communities is at least qualitatively understood to influence inter-60

species interactions.34 These observations substantially complicate the fixed-interaction view61

that has typically been adopted by theoreticians, and present a substantial barrier to a general62

understanding of the properties of microbial communities and to our ability to predict their63

behaviour. Breaking down this barrier relies on understanding whether interactions change in64

predictable ways.65

In this manuscript, we approach this problem by building a formal theoretical framework for66

understanding interaction context dependencies in EO systems. First, we show how a quantity67

we call the ‘instantaneous interaction’ – the environmentally-dependent effect that one species68

has on the growth of another given the local concentrations of different intermediates – arises69

naturally out of the fundamental equations describing EO systems. This instantaneous inter-70

action accumulates as the chemical environment of the system is gradually modified by the71

community. Communities in closed systems without influx or efflux of intermediates sweep out72

trajectories in the space of possible environments over time or space, and this changing envi-73

ronmental context leads to predictable variations in the instantaneous interaction. In the most74

dramatic cases, this can lead to switching of the sign of interactions, from positive to negative75

or vice versa. We then verify these predictions by measuring time-dependent interactions in76

an experimental model based on antibiotic degradation. Finally, we show how time dependen-77

cies and certain types of spatial dependency can both be explained as arising from a single78

set of processes, theoretically unifying the observations of two recent studies33,35 on time and79

spatial interaction dependencies in small crossfeeding communities. Our work demonstrates80

that the context dependencies so often observed in microbial ecosystems are an inevitable81

consequence of the mechanistic basis for most microbial interactions, the feedback between82

microbes and their environment.83
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2 Results84

2.1 A theoretical Environment-Organism interaction framework explains multi-85

ple context-dependencies86

We begin by considering general EO systems for which complex metabolic interactions can87

be decomposed into elementary components, each mediated by a single intermediate. Our88

goal will be to write a general expression for population dynamics containing an interaction89

term, analogous to the measurable interaction term of gLV systems but explicitly mediated by90

the dynamics of the intermediates. This will provide a direct link between the environmental91

context of the system and the measured microbial interactions.92

EO systems can be modelled by breaking them into two distinct parts:21,22,36 firstly the impact93

function of a species β, fβ(r) describes the rate at which one unit of β modifies its chemical94

environment. We denote this environment with the vector r, which we will restrict as represent-95

ing the concentrations of different intermediates (e.g. element 1 represents the concentration96

of glucose, while element 2 represents the concentration of acetate). r defines a position in97

the ‘environment space’, the set of different possible combinations of concentrations of inter-98

mediates. The impact function is itself dependent upon r, allowing it to capture, for example,99

concentration-dependent uptake of a resource. Generally, r will also be impacted by flows of100

intermediates into or out of the system, denoted by σ. We can then write the rate of change of101

the chemical environment as:102

dr

dt
=

∑
β

sβfβ(r) + σ (1)

where sβ is the instantaneous abundance of species β. Importantly, this equation implies that103

the environment changes as a function of time t.104

Secondly, the sensitivity function gα describes the per-capita growth rate of a species α in a105

particular environment:106

1

sα

dsα
dt

= gα(r). (2)

As defined here, these functions are very general, allowing expression of various relationships107
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between intermediates such as the extent to which different nutrients can be substituted for108

each other.21109

Because gα is dependent on r, it is apparent that changes to the chemical environment caused110

by both α itself (β = α, intra-specific interactions) and the other species (β ̸= α, inter-specific111

interactions) (Eq. 1) will regulate α’s growth rate. Breaking this regulation into the effect me-112

diated by each intermediate rρ individually, we can define ‘elementary’ metabolic interactions.113

These can be categorised into four classes by the combinations of the signs of the impact114

and sensitivity functions; following recently-defined terminology,22,37 we refer to these here as115

enrichment (β produces a nutrient that enhances the growth of α), depletion (β reduces the116

concentration of a nutrient, impeding the growth of α), pollution (β produces a toxin that im-117

pedes the growth of α) and detoxification (β decreases the concentration of a toxin of α and118

enhances its growth) (Fig. 1A).119

Species can interact via any combination of these elementary metabolic interactions, resulting120

in ‘composite’ metabolic interactions. In general, if all elementary interactions forming a com-121

posite interaction mediate a positive growth-rate effect on β (enrichment or detoxification) the122

measured interaction will also be positive, if all mediate a negative growth-rate effect (depletion123

or pollution) the measured interaction with be negative, and if they have a mixture of positive124

and negative impacts the sign of the measured interaction will depend on the environmental125

context (Fig. 1B).126

We can capture this environmental dependency naturally within the impact/sensitivity function127

framework. In closed ecosystems (i.e. systems in which there are no external sources or sinks128

of intermediates, so σ = 0), it can be shown (Supplementary Note 1) that129

1

sα

dsα
dt

= gα(r0) +
∑
β

∫ t

0
a′αβ(r) sβ dτ, (3)

where r0 is the initial environmental composition and the integral is taken over the entire history130

of the system up to the current time t (parameterised by τ ). We will refer to this expression as131

the closed Environment-Organism (cEO) equation.132

A key component of this expression is the instantaneous interaction a′αβ , defined as133
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a′αβ(r) = ∇gα(r) · fβ(r). (4)

∇gα(r) is the gradient of the sensitivity function, a vector field which denotes the direction134

in the environment space along which the growth rate of α increases most rapidly. The scalar135

product of this with fβ(r) (also a vector field) can therefore be naturally interpreted as indicating136

whether β is pulling the environment in a direction that increases (positive a′αβ) or decreases137

(negative a′αβ) the growth of α at a given position in the environment space r. Put simply, this138

term captures the environmental dependency of the interaction in a given environment.139

What do the other parts of this expression tell us about the dynamics of closed ecosystems? To140

answer this, it is instructive to compare the cEO equation with the familiar gLV equation:141

1

sα

dsα
dt

= µα +
∑
β

aαβ sβ . (5)

Here, µα is α’s intrinsic growth rate (i.e. its growth in the absence of other species and at142

low population sizes) and aαβ is the interaction between β and α, defined as the population-143

dependent impact of β on the growth rate of α. We note some similarities between the two144

equations: both are expressed in terms of a basal growth rate added to a sum of interaction145

terms from all species β interacting with α. However, there are two important distinctions be-146

tween the notion of interactions in the cEO and gLV frameworks. Firstly, as previously noted,147

a′αβ(r) is dependent on the environmental context. Moreover, this environment-dependence148

is not static - in general, closed ecosystems trace out some trajectory r(t) in the environment149

space, over which a′αβ(r) can vary dramatically. Indeed, we will soon see that in many sys-150

tems it can change sign over time and space. Secondly, interactions in the EO framework are151

cumulative, arising from the integration of the interaction term over the entire history of the152

system. This reflects the fact that interactions are mediated via concentration changes in pools153

of different intermediates, which take time to be impacted by organisms. We refer to the re-154

sulting net impact of β on α’s growth rate at a given time t (
∫ t
0 a

′
αβ(r) sβ dτ ) as the cumulative155

interaction.156

In the remainder of this manuscript, we discuss the consequences of the cEO equation for our157

understanding of the dynamics of closed ecosystems. Specifically, we show how the environ-158
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mental dependency of the instantaneous interaction results in temporal interaction dependen-159

cies and spatial structure when the environmental context changes over time and space (Fig.160

1C).161

2.2 Composite interactions can result in time-dependencies of interaction mea-162

surements163

To develop and illustrate these ideas, we consider here one of the simplest composite interac-164

tions, a single species A interacting negatively with itself via nutrient depletion and positively165

via detoxification (Fig. 2A) in a well-mixed batch culture. We take the impact (Fig. 2B) and sensi-166

tivity functions (Fig. 2C) for this system from a previously described EO framework 11 (Methods).167

Calculation of the instantaneous intra-specific interaction a′AA (Fig. 2D) recapitulates the en-168

vironmental dependency of interactions in this system, with positive intra-specific interactions169

generally dominating at high toxin concentrations and negative intra-specific interactions dom-170

inating at low toxin concentrations. This static map is traversed by the system as it evolves from171

some initial state r0, following the trajectory r(t). We can see in Fig. 2E that in this particular172

case, the system generally moves towards the origin asA reduces the concentration of both the173

nutrient [n] and the toxin [q]. Importantly, this means that a′AA can switch from being positive174

early to being negative later on.175

This switch in sign of the instantaneous intra-specific interaction propagates through to A’s176

growth rate. As there are no other species in this system, the sole growth rate effect is the177

time-dependent impact of A on its own growth – the cumulative intra-specific interaction –178

given by
∫ t
0 a

′
AA(r) sA dτ . This switches from positive to negative once the accumulated ben-179

efit of the removal of the toxin is outweighed by the accumulated penalty from the reduction180

in the nutrient concentration (Fig. 2F). We now introduce a third quantity, the measured inter-181

action, which is based on the abundance timecourses resulting from the integral of A’s growth182

rate. This is an experimentally tractable value, closely related to the interaction measurements183

typically taken from batch-culture experiments 13 (see next section). In the simulated system,184

the sign switch in the instantaneous and cumulative interactions is reflected in a sign switch in185

this measured interaction (Fig. S1). We therefore arrive at an unexpected prediction: measure-186

ments of the intra-specific interaction in such systems should give positive values if performed187

early on (when detoxification dominates) and negative values if performed later (when depletion188
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dominates).189

2.3 An antibiotic-based experimental system demonstrates sign-switching of190

the intra-specific interaction191

We now attempted to establish whether this prediction was borne out in an experimental set-192

ting. As an experimental model of the detoxification/depletion interaction network (Fig. 2A),193

we made use of a bacterium (Comamonas testosteroni) that can degrade β-lactam antibiotics194

via induced secretion of β-lactamases (Fig. S2) and which can utilise proline as a sole carbon195

source. β-lactamase-producing bacteria are typically associated with a phenomenon known as196

the inoculum effect, in which larger starting population sizes result in higher measuredMinimum197

Inhibitory Concentrations (MICs) of the antibiotic.38,39 This is due to more rapid degradation of198

the antibiotic at larger initial population sizes, an effect already suggestive of a positive intra-199

specific interaction. Combined with a depletion mechanism mediated by competition over lim-200

ited proline as a sole carbon source, we speculated that we would observe a positive to negative201

intra-specific interaction shift in a time-dependent manner as predicted theoretically.202

To address this, we prepared arrays of environmental conditions (with varying initial proline,203

[pro]0, and ampicillin, [amp]0, concentrations) within 96-well plates (Fig. 3A). Each condition204

was split into two sets of wells, one inoculated with exponential-phase C. testosteroni cells at205

high density and the second at low density. Absorbance-based growth curves of these cultures206

were then measured in a plate reader.207

In typical experimental measurements of interactions, monoculture and co-culture assays are208

prepared with a constant inoculation density of a focal species. The interaction is then mea-209

sured by detecting whether this initial population grows more or less in the presence of a sec-210

ond species. 11,13,40,41 By direct analogy, we can treat our low inoculation density condition as211

a ‘monoculture-like’ assay, with a corresponding sub-population in the high-density condition212

which is of equal size. In the high-density condition, this sub-population is effectively co-213

cultured with a second sub-population of the same species. We can therefore measure the214

intra-specific interaction by comparing the fate of the matching sub-populations in the high-215

and low-density conditions (Fig. 3B).216

In practice, this is achieved by dividing the growth curve of the high-density culture by the ra-217

tio of inoculation densities (4:1), yielding the size of the sub-population as a function of time.218
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At times when this normalised curve is higher than that of the low inoculation density con-219

dition, we can infer that the presence of additional cells of the same species enhanced the220

sub-population’s growth - i.e. that a positive intra-specific interaction has occurred. The op-221

posite argument applies when the normalised curve is lower than that of the low inoculation222

density condition (Fig. 3B). To measure the intra-specific interaction as a function of time, we223

can therefore simply subtract the low inoculation density curve from the normalised high inoc-224

ulation density curve (Fig. 3C). We considered several alternative definitions of the measured225

interaction (Fig. S1D-G), but found that the chosen abundance difference metric provided the226

optimal balance between capturing the shape of the cumulative interaction and robustness to227

measurement noise. We note that it is similar to accepted endpoint-based interaction met-228

rics, 13 although we emphasise that in contrast to these measurements which yield a single,229

fixed value, our approach yields a time-varying interaction estimate.230

Beginning with the control conditions with zero antibiotic, we observe that the low inoculation231

density curves look very similar to the high inoculation density curves aside from a consistent232

time delay (Fig. S3A). We can interpret this delay as arising mostly from the smaller initial233

number of cells in the low density condition, as the ratio of densities between the two con-234

ditions remains approximately equal to the inoculation ratio until the high-density condition235

approaches stationary phase (at around 35 hrs). This is reflected in the abundance difference,236

which displays an approximately neutral intra-specific interaction up to this point and a neg-237

ative interaction afterwards (Fig. 3D). In the presence of antibiotic the time delay between238

the two conditions increases, presumably because the smaller initial population takes longer239

to degrade the ampicillin before being able to start growing (Fig. S3B). Consequently, we see240

a concentration-dependent positive interaction emerging with increasing ampicillin doses, as241

predicted by the model (Fig. 3E). Ultimately however, all environments resulted in negative in-242

teractions in the long term. Summarising these experimental results by considering the peak243

and final abundance differences demonstrates the environmental and time dependencies to-244

gether (Fig. 3F,G), which qualitatively match the patterns predicted by our modelling framework245

(Fig 3H,I). Although we do not directly fit model parameters to our data, we find that these qual-246

itative patterns are robust to large changes in parameter values, suggesting that these results247

are not a result of fine-tuning of the model (Fig. S4).248

Evolutionary rescue can result in similar abundance trajectories as those described here, as a249
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small number of mutant cells with antibiotic-resistant genotypes can grow to fixation after a long250

time delay.42,43 We explored the role of evolution in our experimental system by measuring the251

MIC of ampicillin for each culture at the end of one of our interaction measurement timecourses252

(Fig. S5), finding that there was indeed a small increase (≈ 50%) in the resistance of populations253

exposed to the highest ampicillin concentrations compared to those grown under antibiotic-254

free conditions. However, simulations incorporating the evolution of resistance showed that255

such events, far from driving the observed interaction time dependencies, tend to attenuate256

measured positive interactions if they have any effect at all (Fig. S6). Thus, we concluded that257

the consistent positive to negative interaction switch that we observe arises from the changing258

dominance of the two elementary interactions (detoxification and depletion), as suggested by259

our theoretical framework.260

2.4 Small crossfeeding communities illustrate the common origins of time-261

dependent interactions and spatial structure262

Thus far, we have considered time and environmental dependencies in a mono-species system.263

However, our framework generalises quite readily to multi-species communities, as well as cer-264

tain types of spatially-structured communities (Methods, Supplementary Note 2, Fig. S7). Two265

recent studies have described time33 and spatial35 dependencies of very similar two-species266

communities. In both cases, a degrader species consumes a polymer (chitin or dextran) and267

subsequently produces a metabolite (acetate or glucose) which can be consumed by the second268

crossfeeding community member. When the polymer is exhausted, the degrader species can269

switch from net production to net consumption of the crossfed metabolite (Fig. 4A). Daniels270

et al. 33 note a time-dependency of the inter-specific interactions in batch culture: supply of271

an initial quantity of polymer leads initially to a strongly positive degrader → crossfeeder in-272

teraction and a neutral crossfeeder→ degrader interaction, changing later to a weakly positive273

crossfeeder→ degrader interaction and a weakly negative crossfeeder→ degrader interaction274

(Fig. 4B). In a separate study, Wong et al. 35 loaded a similar community into a microfluidic275

device consisting of a single channel along which flow was applied. They observe that this276

community spontaneously self-structures along the channel, with the crossfeeding species only277

being able to grow towards its outlet (Fig. 4C). Given the commonalities between the two stud-278

ies, we decided to use them as case studies for how our framework can unify similar observations279

occurring across time or space.280
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We built an EOmodel of the degrader/crossfeeder community, labelling the degrader population281

D and the crossfeeder population C. We then derived expressions for the four different instanta-282

neous interactions a′DD , a
′
DC , a

′
CD and a′CC (Methods). As shown in Fig. 4D, these four quantities283

can be arranged analogously to the interaction matrix of the gLV framework, with intra-specific284

interactions located along the main diagonal and inter-specific interactions located off this axis.285

However, instead of being represented by a single value as in the gLV approach, the instanta-286

neous interactions are expanded into scalar fields defined on the entire environment space,287

capturing the environmental-dependency of each different interaction. Both the degrader’s288

intra-specific instantaneous interaction a′DD and inter-specific instantaneous interaction a′CD289

contain both positive and negative regions, reflecting the changing balance between the enrich-290

ment mechanism (production of the crossfed metabolite from the polymer) and the depletion291

mechanism (competition over the crossfed metabolite) in different environments.292

In batch culture, organisms modify their environment by secreting and consuming intermedi-293

ates over time. A similar effect occurs in flowing systems, whereby the intermediates within a294

parcel of fluid are sequentially modified by the organisms residing at successive spatial loca-295

tions as it is transported downstream. We can therefore project trajectories representing the296

evolution of the environment over time in a batch culture system (Fig. 4D, dashed lines) and the297

spatial variation of the environment along the length of a system under flow at steady-state (Fig.298

4D, solid lines) onto these instantaneous interaction maps, allowing us to interpret the changing299

interactions over time and space using the same framework (Methods, Supplementary Note 2).300

The initial position of the system r0 – here assumed to consist of a large amount of polymer301

and zero crossfed metabolite – is interpreted subtly differently between the two cases: in batch302

culture, this represents the initial composition of the inoculum media, while in the microfluidic303

channel this represents the fixed composition of the media in the inflow of the device. Both sys-304

tems sweep out initial trajectories with similar shapes, suggesting that the temporal patterning305

of the batch culture and the spatial patterning of the channel may arise from similar changes306

in interaction strengths.307

To explore this in more detail, we now broke down the growth dynamics in the batch culture308

simulations into cumulative interactions, focusing on the inter-specific cases (Fig. 4E,F). We309

observe a similar pattern of the time evolution in the batch culture interactions as in the original310

study (Fig. 4B,E). In the initial phase, the large amount of initial polymer is metabolised by the311
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degrader, resulting in large amounts of overspill in the form of the crossfed metabolite. This312

consequently substantially enhances the growth of the crossfeeder, while the relatively low utility313

of the crossfed metabolite at this point for the degrader limits the impact of its uptake by the314

crossfeeder on the growth of the degrader. Later, the switch of the degrader to metabolite315

uptake leads to a decrease in the strength of the net-positive interaction with the crossfeeder,316

and a negative impact of the crossfeeder on the growth of degrader.317

Very similar effects arise as we consider the spatially structured system (Fig. 4G,H). Near the318

inlet, the crossfeeder cannot grow as the rate at which it is washed out of the device (θ) ex-319

ceeds the growth rate sustained at very low metabolite concentrations. However, the activity320

of the degrader leads to a gradual enhancement of the environment for the crossfeeder along321

the length of the channel and ultimately leads to the opening of a new niche when the cumu-322

lative interaction from the degrader to the crossfeeder exceeds the threshold set by θ. This323

leads to the spatial structure observed in the original study, with the crossfeeder only growing324

towards the outlet of the device (Fig. 4C,H). Our model also reproduces the suppressive effect325

of increased flow rates on the growth of the crossfeeder, as observed experimentally:35 higher326

flowrates cause the environmental trajectory to terminate with less monomer and polymer hav-327

ing been consumed due to more rapid wash-out of the two substrates (Fig. S8A). Combined328

with a higher mortality θ associated with the stronger flow, this ultimately prevents the cross-329

feeder’s niche from being efficiently opened up and halts its growth (Fig. S8B-G). In summary,330

our framework shows how spatial patterns arising under uni-directional flow and interaction331

time-dependencies in well-mixed systems are reflections of the same underlying ecological332

processes.333

3 Discussion334

Context dependencies have long been understood to be an important factor in ecological sys-335

tems. 1,26,44–46 However, theoretical models that have attempted to capture these dependen-336

cies have generally done so via ad hoc manipulations of the interaction parameters,47,48 rather337

than showing how these changes arise spontaneously out of the underlying reciprocal effects338

between organisms and their environment. By contrast, our approach shows how such depen-339

dencies emerge within EO models, which explicitly describe the bidirectional impact between340

the environment and the species within it. It also provides a theoretical framework to predict341
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interaction changes, given a hypothesis about the underlying metabolic processes at play in342

the ecosystem. We note that the long history of the EO framework20–22,36,49 and its widespread343

use in microbial ecology 11,15,23,29,31,50,51 provides a wealth of existing experimental and theoret-344

ical results that may be re-interpreted through the cEO equation we derive in this study (Eq.345

3).346

Our results have particular relevance for our understanding of the outcomes of batch culture347

interaction measurements. 10–13,40,41 The mechanism by which measured interactions in batch348

culture switch from positive to negative over time once a single nutrient become limiting (Fig.349

3) is quite general, and suggests that measurements based on end-point abundances may miss350

positive interactions during early community establishment. This may at least partially explain351

the ongoing controversy surrounding the relative distribution of negative and positive interac-352

tions in natural communities, where the predominance of negative interactions as estimated353

by end-point batch culture methods appears to be at odds with findings based on alternative354

approaches.8,13,41,52,53355

We also note that despite our focus on microbial ecosystems, our results should also hold true356

for macroscopic ecosystems as long as the assumptions of our framework – particularly the357

assumption that the system is closed – are at least approximately true. Indeed, the role of the358

interplay between organisms and their environment has long been understood to drive succes-359

sional dynamics in plant ecosystems, in which modification of the local environment by early360

pioneer species leads to the opening of new niches and eventual replacement of pioneers by361

latecomers better adapted for the new environment.54 Similar successional patterns are ob-362

served in macroscopic systems such as whale falls55 and microscopic systems such as marine363

snow. 18,56 In the language of our framework, successional effects would be represented as an364

accumulating, time-dependent positive interaction from pioneer species to latecomers. There365

may also be accumulating negative interactions from the latecomers to the pioneers, reflect-366

ing the tendency of pioneers to eventually be replaced during the successional sequence. 18367

Likewise, although we have focused on microfluidic channels as models of systems under uni-368

directional flow, analogous systems such as rivers and the gut are widespread. The spatial369

niche-opening effects that our framework describes may therefore at least partially explain the370

longitudinal patterning of organisms in such systems.57–59371

Another point of interest that this work sheds light on is the long-standing issue of higher order372
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interactions (HOIs) in microbial ecosystems, a phenomenon whereby the interaction between373

two partners is modulated by the presence of additional community members.60,61 While HOIs374

have long been understood as arising from environment-organism feedbacks,49,62,63 their ap-375

pearance in microbial ecosystems is currently poorly accounted for. Our framework provides376

a simple explanation for these effects in closed systems: additional community members de-377

flect the environmental trajectory r(t) (or r(x)) from the path taken in the two-species case,378

changing the timecourse (or spatial pattern) of the instantaneous interactions experienced by379

both species and thereby altering their cumulative interactions. We therefore expect HOIs to380

be widely observed whenever more than two community members interact with a single in-381

termediate, echoing simulational62 and experimental25 findings. We note however that many382

forms of HOI, such as those arising from phenotypic changes induced by a third species,64383

are not readily incorporated into EO models and consequently must be investigated by other384

means.385

Nevertheless, there are some limitations to our framework. Perhaps most important is its limita-386

tion to closed ecosystems, contrary to most microbial communities in nature which are typically387

subject to external influxes and effluxes of material. In our framework, this assumption is ex-388

pressed by assuming that the source term σ is equal to zero, but more generally a non-zero389

value of this term might represent the flow of resources into a well-mixed community (for exam-390

ple in a chemostat65) or diffusive transport of intermediates between neighbouring locations in391

a spatial model.51 While we can derive an expression equivalent to the cEO equation for such392

open systems (Supplementary Note 1), the additional integral involving σ complicates its inter-393

pretation; certainly the analogy to the familiar gLV framework is lost. However, open systems394

more closely match the modelling assumptions of the gLV framework, 15 meaning direct gLV-395

based descriptions may be an appropriate alternative. Indeed, around an equilibrium point in396

an open system the quantity a′αβ becomes equivalent to the community matrix of the gLV frame-397

work aαβ ,22 providing a tantalising connection between the two approaches. In addition, our398

assumption that indirect interactions dominate in microbial ecosystems, while well-supported399

for many systems, 16 cannot account for direct interaction mechanisms such as predation66400

or contact-dependent systems.67 These may be incorporated into Eq. 3 simply by adding the401

standard gLV description of density-dependent interactions (
∑

β aαβsβ), although this hybrid402

direct/indirect interaction description is again less simple to interpret than the base cEO equa-403

tion. We intend to address these extensions in future work.404
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In summary, our work shows that much of the diversity of interaction context-dependencies405

can be explained by reciprocal feedbacks between organisms and their environment. We give406

multiple examples of how explicit theoretical representation of these feedbacks can be used to407

predict and interpret interaction changes, providing a path forwards in the effort to manipulate408

interactions to predictable ends. Ultimately, we anticipate that a renewed focus on the role of409

the environment in determining the properties of microbial ecosystems will open new methods410

for controlling communities, as well as help to resolve longstanding questions regarding their411

composition and diversity.412
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6 Materials and methods422

6.1 Modelling423

6.1.1 Toxin-nutrient model424

Our single-species toxin-nutrient model (Fig. 2A) is adapted from a previously described EO425

framework. 11 We model the growth rate of a single speciesA, with abundance denoted as sA, as426

being positively dependent upon the concentration of a nutrient [n] and negatively dependent427

upon the concentration of a toxin [q]. We assume that both of these positive and negative428

growth impacts are saturating functions of their respective intermediates, modelled as Monod429

functions. We further assume that the concentrations of the intermediates are measured in units430

of the half-velocity constant of the two Monod terms and that a fraction f of the utilised nutrient431

is invested into detoxification and the remainder into growth. Together, these assumptions give432

the per-capita growth rate as433

1

sA

dsA
dt

= (1− f)
νn[n]

[n] + 1
− νq[q]

[q] + 1
, (6)

where νn is the maximal nutrient uptake rate and νq is the maximal toxin impact.434

The impact functions of the original model incorporate a yield parameter that describes the435

efficiency at which resources are converted into biomass. 11 However, we can remove this pa-436

rameter by non-dimensionalisation if we define the bacterial abundance sA as being measured437

in terms of the amount of biomass produced by one unit of nutrient with zero toxin degradation438

investment (f = 0) and zero toxin ([q] = 0). Then we can write the nutrient dynamics as439

d[n]

dt
= −sA

νn[n]

[n] + 1
. (7)

Toxin dynamics are modelled similarly but involve an additional term, the detoxification effi-440

ciency δ, which sets the amount of toxin removed from the environment for each unit of nutrient441

invested. Thus we obtain442

d[q]

dt
= −sAδf [q]

νn[n]

[n] + 1
. (8)
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For simplicity, we do not incorporate a passive (nutrient-independent) toxin uptake term as443

in. 11444

Defining the environment vector r =
(

[n]
[q]

)
, the impact function fA(r) can be written from Eqs.445

7 and 8 as446

fA(r) = − νn[n]

[n] + 1

 1

δf [q]

 . (9)

We note that Eq. 6 is already in the form of a sensitivity function gA(r). We can therefore derive447

its gradient as448

∇gA(r) =

 (1−f)νn
([n]+1)2

−νq
([q]+1)2

 , (10)

and so,449

a′AA = ∇gA(r) · fA(r) =
νn[n]

[n] + 1

(
νqδf

[q]

([q] + 1)2
− (1− f)

νn
([n] + 1)2

)
, (11)

with a non-trivial nullcline a′AA = 0 at450

[n] = −1 +

√
(1− f)νn([q] + 1)2

[q]fδνq
. (12)

Parameter values for this model as used in this manuscript are given in table 1. These were451

not explicitly fitted to our experimental data but were chosen to qualitatively match our experi-452

mental results, representing a regime in which the toxin has a comparable negative growth rate453

impact as the nutrient’s positive impact (νn = νq) but is efficiently degraded with a relatively low454

degradation investment. Given our non-dimensionalisation of the half-velocity constants, the455

range of initial concentrations [n]0 and [q]0 shown in Fig. 3H,I is also of significance; our choice456

of 0.5 < [n]0 < 5 and [q]0 < 0.5 indicates that the nutrients are close to saturation for most457

of the simulated conditions, while the toxin will have an approximately linearly concentration-458

dependent effect. Large changes to these parameter values do not generally have a strong ef-459

fect on the overall interaction patterns, although we do observe qualitatively different outcomes460
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νn νq f δ

0.05 0.05 0.2 10

Table 1: Parameter values used for the toxin-nutrient model of section 6.1.1

when the strength of the toxin compared to the nutrient is increased to such an extent that it461

entirely abolishes growth in either the low inoculation density condition or both conditions (Fig.462

S4).463

6.1.2 Degrader-crossfeeder model464

Wemodel the system described in Fig. 4A by considering the dynamics of the degrader popula-465

tion D, the crossfeeder population C, the polymer p and the crossfed metabolitem. We assume466

that D consumes p according to Monod kinetics, utilising a fixed fraction 1 − ϕ for its own467

growth and converting the remaining fraction ϕ into m. This is in turn utilised by both C and D468

for growth, again according to Monod kinetics.469

We note that our model is structured such that D has priority access to the breakdown products470

of p. In similar systems, these breakdown products act as extracellular public goods, with both471

degraders and crossfeeders having equal access to them.68 However, in the studies we consider472

here, two similar mechanisms preserve the priority status of the degrader: in Wong et al. 35 , the473

degrader Bacteroides thetaiotaomicron appears to import dextran and degrade it internally, as474

suggested by the upregulation of various nutrient importers and cytosolic dextranases in the475

presence of dextran. The breakdown products - principally glucose - can therefore largely be476

maintained as internal private goods, with the excess leaking out and acting as the nutrient477

source for the crossfeeder Bacteroides fragilis. Similarly, while the degrader Vibrio natriegens478

of Daniels et al. 33 does appear to release digestive enzymes to break down chitin externally, the479

resulting breakdown products cannot be metabolised directly by the crossfeeder Alteromonas480

macleodii. Instead, they must first be converted to acetate by the internal catabolic metabolism481

of the degrader. Thus, the crossfeeder must again wait until the substrate has passed through482

a stage in which it is a private good of the degrader, effectively separating the two species into483

different trophic levels.69484

Denoting the environment vector r =
(

[p]
[m]

)
and subscripting yield parameters Y , half-saturation485

constants K and maximal rate constants ν with labels denoting species and intermediate, this486

model is described by the sensitivity functions487
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gD(r) = (1− ϕ)
νDp[p]

[p] + 1
+

νDm[m]

[m] +KDm
, (13a)

gC(r) =
νCm[m]

[m] +KCm
. (13b)

488

Note that a similar non-dimensionalisation has been applied here as for the toxin-nutrient489

model, with the polymer concentration being measured in terms of the half-saturation constant490

for the degrader (KDp).491

We also have corresponding impact functions given by:492

fD(r) =

 −νDp[p]
[p]+1

ϕ
νDp[p]
[p]+1 − 1

YDm

νDm[m]
[m]+KDm

 , (14a)

fC(r) =

 0

− 1
YCm

νCm[m]
[m]+KCm

 , (14b)

493

where the yield constant YDp has likewise been eliminated via non-dimensionalisation, along494

with a factor specifying the number of units of metabolite produced per unit of polymer.495

The gradients of the sensitivity functions are given as496

∇gD(r) =

(1− ϕ)
νDp

([p]+1)2

νDmKDm
([m]+KDm)2

 , (15a)

∇gC(r) =

 0

νCmKCm
([m]+KCm)2

 , (15b)

leading to the instantaneous interactions497
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νDp νDm νCm YDm YCm KDm KCm ϕ

1 1 1 1 1 1 1 0.6

Table 2: Parameter values used for the degrader-crossfeeder model of section 6.1.2

a′CC(r) = − 1

YCm

ν2CmKCm[m]

([m] +KCm)3
, (16a)

a′CD(r) =
νCmKCm

([m] +KCm)2

(
ϕ
νDp[p]

[p] + 1
− 1

YDm

νDm[m]

[m] +KDm

)
, (16b)

a′DC(r) = − 1

YCm

νDmKDm

([m] +KDm)2
νCm[m]

([m] +KCm)
, (16c)

a′DD(r) = (ϕ− 1)
ν2Dp[p]

([p] + 1)3
+

νDmKDm

([m] +KDm)2

(
ϕ
νDp[p]

[p] + 1
− 1

YDm

νDm[m]

[m] +KDm

)
. (16d)

The non-trivial nullcline of the inter-specific instantaneous interaction a′CD = 0 is given by498

[p] =
[m]νDm

ϕνDpYDm([m] +KDm)− νDm[m]
. (17)

The nullcline of the intra-specific instantaneous interaction a′DD = 0 was found numerically499

using scipy’s root function.500

Parameter values for this model are given in table 2. Similarly to the toxin-nutrient model these501

are not explicitly fitted to the experimental data, and indeed we expect that they are substantially502

different between the two systems used in the studies we discuss here.33,35 Such a qualitative503

approach does, however, allow us to determine the minimal differences between the underlying504

metabolic processes needed to bring about the observed interaction patterns in both systems.505

In particular, we find that we can reproduce the observed patterns if all metabolic processes506

(polymer degradation by the degrader and monomer uptake by both species) have equivalent507

kinetics (νDp = νDm = νCm andKDm = KCm), the yields of the monomer and polymer are equal508

(YDm = YCm) and a fairly high proportion of polymer is converted to monomer and secreted (ϕ =509

0.6). We also assume that the polymer is introduced at a concentration below the corresponding510

half-velocity constant of the degrader ([p]0=0.8), meaning the rate of polymer degradation will511

be strongly impacted by concentration changes over time and/or space.512
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6.1.3 Batch culture simulations513

To generate trajectories representing the time evolution of batch culture experiments, the cou-514

pled systems of ODEs for both models were numerically integrated using scipy’s solve_ivp515

function, using the Runge-Kutta method of order 5(4). The starting population sizes for the516

toxin-nutrient model were 0.001 (low inocultion density) and 0.004 (high inoculation density),517

while both the degrader and crossfeeder populations were initiated at a density of 0.01 for518

the degrader-crossfeeder model. Initial environmental compositions (r0) are indicated in the519

relevant figures.520

6.1.4 Microfluidic simulations521

Our simulations of spatially-structured flowing systems require that we move from a purely522

temporal model of intermediate and species changes to a spatio-temporal model. To do this,523

we represent the concentration profiles of the full set of intermediates as a set of 1D scalar524

fields r(x, t), with the position along the channel represented by the spatial coordinate x. This525

varies from the inlet position x = 0 to the outlet position x = L. Likewise, the profile of the526

species abundances s is represented by the set of 1D scalar fields s(x, t). Implicitly, we assume527

that the system is small enough in the y and z dimensions that it is effectively well-mixed along528

these axes by diffusion, allowing us to make use of the 1D approximation to study longitudinal529

structure.530

We simulate the dynamics of the media composition using the 1D advection-diffusion equa-531

tion:532

∂r(x, t)

∂t
= D

∂2r(x, t)

∂x2
− vx

∂r(x, t)

∂x
+R. (18)

Here, on the right hand side, the first term represents the diffusive fluxes of intermediates533

along the length of the channel, with a rate set by the diffusion coefficient D = 0.5 which we534

take to be equal for all intermediates. This value is high enough to ensure numerical stability535

of the resulting environmental trajectories. The second term represents the advective fluxes536

mediated by active flow, with a rate set by the flow velocity vx. We choose values of vx to ensure537

that advection dominates over diffusion given the channel length L and the diffusion coefficient538

D, a necessary condition of our framework (Supplementary Note 2). The final term represents539
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the sources and sinks of intermediates at each position, in this case given by an adjusted form540

of the impact functions for the degrader-crossfeeder model (Eq. 14). Together, these terms541

give the total rate of change of the intermediate concentrations at a particular location in the542

channel. Microbial population dynamics are simulated at each spatial location and are assumed543

to grow statically (i.e. to not be transported by diffusion or flow), with local dynamics based on544

an adjusted form of the sensitivity functions of the degrader-crossfeeder model based on the545

local concentrations of intermediates (Eq. 13). We describe the necessary adjustments to the546

impact and sensitivity functions next, along with their implications for the calculation of the547

cumulative interaction.548

As we discuss in Supplementary Note 2, application of our framework to such systems requires549

that the dynamics approach a steady-state. To ensure this, we make two additions to our impact550

and sensitivity functions. Firstly, we assume that the microbial populations can grow only to a551

maximal density at a given location along the device, given by the channel capacity λ = 1.552

This is applied to each population independently in order to prevent a inter-specific density553

dependence, which would act as a direct interaction which could not be integrated into our554

framework; the maximal total abundance at a given site is therefore equal to λmultiplied by the555

number of different populations. Both growth rates and associated impacts on concentrations556

of intermediates slow down as this capacity is approached. Secondly, we assume that microbes557

are flushed out of the system by flow at a rate θ = 0.005 vx, analogous to the wash-out term558

in chemostat models.65 The dependence of this wash-out rate on the flow rate vx is based559

on observations that suggest that biofilms are more strongly eroded at higher flow rates.35,70560

Microbial growth rates are therefore given as561

1

sα(x, t)

dsα(x, t)

dt
=

λ− sα(x, t)

λ
gα(r(x, t))− θ, (19)

while the effective impact rates on the intermediates are given as562

dr(x, t)

dt
=

∑
β

fβ(r(x, t))sβ(x, t)
λ− sβ(x, t)

λ
. (20)

This latter expression is the explicit form of the term R in Eq. 18.563

The introduction of this density-dependent scaling term in the dynamics of the intermediates564
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also requires an adjustment in the way the cumulative interaction is calculated. This arises565

because this term slows down the simulated metabolic rate of cells at high densities, reducing566

their effective impact on their environment. Once steady-state is achieved (Supplementary Note567

2), the microbial abundances and resource concentrations become dependent solely on the568

position in the channel (r(x, t) → r∗(x) and s(x, t) → s∗(x)). The cumulative interaction from β569

to α is therefore given as 1
vx

∫ x
0 a′αβ(r

∗)s∗β
λ−s∗β
λ dχ. Here, χ acts as a variable that parameterises570

the spatial trajectory of the system from the inlet to the query position x, analogously to how τ571

parameterises the temporal trajectory of batch-culture systems in Eq. 3.572

To ensure the simulated composition of the inflowing media remains fixed, we set dr(x=0,t)
dt = 0.573

Additionally, we use an absorbing boundary condition at x = L to simulate free variation of574

the composition of the media at the outlet. The initial composition of the environment was set575

uniformly as r(x, t = 0) = r0, i.e. equal to the composition of the inflow.576

Both populations were seeded uniformly throughout the system at a density of s(x, t = 0) = 0.01.577

The set of PDEs was numerically integrated using the solve_ivp function. We simulated dynamics578

for t = 1000 time units until the system reached a steady-state (Fig. S7), allowing application of579

our theoretical framework.580
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M9 10x K2HPO4 30 g
NaCl 5 g
NH4Cl 10 g

Na2HPO4 60 g
Metals 44 1000x Na2EDTA · 2H2O 0.387 g

ZnSO4 · 7H2O 1.095 g
FeSO4 · 7H2O 0.914 g
MnSO4 · 7H2O 0.154 g
CuSO4 · H2O 0.0392 g

Co(NO3)2 · 6H2O 0.0284 g
Na2B4O7 · 10H2O 0.0177g

H2O to 1 l
Hutner’s mineral base (HMB) 50x Nitric triacetic acid (NTA) 10 g

MgSO4 · 7H2O 14.45 g
CaCl2 · 2H2O 3.33 g

(NH4)6Mo7O24 · 4H2O 0.00974 g
FeSO4 · 7H2O 0.099 g

Metals 44 1000x 50 ml
H2O to 1 l

Base minimal media HMB 50x 20 ml
M9 10x 100 ml
H20 850 ml

Table 3: Composition of base minimal media.

6.2 Experiments581

6.2.1 Strains and growth conditions582

Our C. testosteroni strain MWF001 comes from a pre-existing study. 11 Cells were streaked onto583

TSA plates from freezer stocks and grown overnight. Single colonies were then picked (one584

colony per biological replicate), and cells grown overnight in glass Erlenmeyer flasks under585

continuous shaking in base minimal media (Table 3) supplemented with 10 mM proline. Due586

to the slow growth of C. testosteroni under these conditions, cells were in exponential phase at587

the end of this period. Cells were then washed twice in PBS. The OD600s of the washed cultures588

were then measured and cultures diluted to initialise experiments at the appropriate starting589

densities as described below. Cultures were grown at 28◦C in all cases.590

6.2.2 β-lactamase activity measurements591

Exponential-phase cultures of C. testosteroni were inoculated into two Erlenmeyer flasks con-592

taining 20 ml of minimal media supplemented with 5mM proline at a starting OD600 adjusted to593

0.00025. To one of these flasks we added ampicillin at a label concentration of 100 µg ml−1,594
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however subsequent experiments suggested that degradation of our antibiotic freezer stocks595

had reduced the effective concentration to ≈ 30 µg ml−1. The resulting cultures were grown596

under continuous shaking, and samples taken at 0, 6, 30, 54 and 78 hr. To measure the ex-597

tracellular β-lactamase activity of cultures, samples were first spun down and the supernatant598

pipetted off. The enzymatic activity of the supernatant was then measured using a β-lactamase599

activity assay kit (Sigma-Aldrich, MAK221). In Fig. S2, the β-lactamase detection limit is de-600

fined as two times the standard deviation of the signal estimated from sample-free control601

wells.602

6.2.3 Intra-specific interaction measurements603

We prepared 96-well plates with a variety of environmental conditions by filling each well with604

180 µl of basal media supplemented with varying concentrations of proline ([pro]0 = 0.5, 1, 2, 5605

mM) and ampicillin ([amp]0 = 0, 10, 20, 30 µg ml−1). 20 µl of an exponential-phase culture of C.606

testosteroni was then added, with three wells of each condition containing culture adjusted to607

high density (OD600 in well = 0.004) and three wells containing culture adjusted to low density608

(OD600 in well = 0.001). The plate was placed into a plate reader (BioTek Synergy H1) and OD600609

readings for each well taken every 30 mins for 120 hr at 28 ◦C under continual shaking between610

timepoints. The background signal was subtracted from the resulting raw growth curves by first611

estimating the OD contribution from the cells in the high inoculation OD wells (κ) using the612

equation613

κ =
4

3
(< ODh(0) > − < ODl(0) >), (21)

where < ODh(0) > and < ODl(0) > represent the plate-wide average initial OD readings for the614

high inoculation density and low inoculation density wells, respectively. The factor of 4
3 stems615

from the 1:4 inoculation density ratio. Each curve was now individually adjusted by subtracting616

the average OD of the specified curve’s first 3 timepoints and adding either κ for the high617

inoculation density wells or κ
4 for the low inoculation density wells. The average OD curves were618

then calculated from the three replicates for each condition and used to calculate the abundance619

differences shown in Fig. 3D-G.620
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6.2.4 MIC measurements621

To confirm that the intrinsic resistance of C. testosteroni had not changed over the duration of622

the intra-specific interaction assay, we measured the Minimum Inhibitory Concentration (MIC)623

of ampicillin for each of the cultures in the 96-well plate at the end of one biological repli-624

cate of our experiment. Concentration gradients of ampicillin were first prepared in 96-well625

plates containing LB media, to which we added samples from the interaction measurement626

plate (specifically, from the low inoculation density wells as these were subject to the strongest627

selective pressure). As the β-lactamase resistance mechanism results in different MICs based628

on the starting density of culture (the inoculum effect38,39), we adjusted the inoculation volume629

to ensure approximately equal numbers of cells were added regardless of the final density of the630

cultures being measured. To do this, we took advantage of the fact that the final density of the631

samples was directly proportional to the initial proline concentration [pro]0 (Fig. S5A), allowing632

us to simply scale the inoculation volume by [pro]0. Specifically, we used 20 µl of [pro]0 = 0.5633

mM cultures, 10 µl of [pro]0 = 1 mM cultures, 5 µl of [pro]0 = 2 mM cultures and 2 µl of [pro]0 = 5634

mM cultures. These inoculua resulted in starting densities around 10 times greater than those635

of the interaction assay, explaining why the resulting MICs were substantially higher than the636

values of [amp]0 used during interaction measurements. The total volume in each well was fixed637

at 200 µl. Plates were incubated at 28◦C under continuous shaking. Final MICs were defined638

as the lowest concentration of ampicillin at which the OD600 of a given sample was reduced by639

at least 80% relative to an antibiotic-free control after 20 hrs.640

26

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 2, 2023. ; https://doi.org/10.1101/2023.10.31.565024doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.31.565024
http://creativecommons.org/licenses/by-nc/4.0/


7 Figures641

Figure 1: Multiple interaction context-dependencies are explained with a single theo-
retical framework. A Indirect interactions between organisms - those mediated by changes
in the abundance of intermediates - can be broken into elementary components by consider-
ing the role of each intermediate rρ separately. The ‘sensitivity function’ of a target species α
with respect to a given intermediate r (purple) denotes the effect of r on the growth rate of α
(i.e. whether it is a toxin – bar – or nutrient – arrow), while the ‘impact function’ of an effector
species β with respect to r (blue) denotes the effect of β on the abundance of r (i.e. whether it
is produced – arrow – or consumed – bar). Combinations of the signs of these functions imply
four elementary metabolic interaction types: enrichment and detoxification which enhance the
growth of the impacted species α, and depletion and pollution which reduce α’s growth.22,37 B
These can be combined to generate composite metabolic interactions, with the sign of the mea-
sured interaction depending on the individual effects of the composed elementary metabolic
interactions. In cases where the elementary interactions have a mixture of positive and nega-
tive growth rate impacts, the measured interaction will depend on the relative concentrations
of the intermediates - i.e. the environmental context. C Our theoretical framework shows how
Environment-Organism (EO) models in which such indirect interaction mechanisms are explic-
itly represented give rise to an instantaneous interaction that depends on the environment. As
the environment changes over time (e.g. in batch culture) or over space (e.g. in microfluidic
channels at steady-state), this environmental dependency in turn gives rise to time and spatial
dependencies.
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Figure 2: Intra-specific interactions mediated by mixtures of positive and negative mech-
anisms are predicted to switch sign over time in batch culture. A One of the simplest
examples of a system with mixed pairwise elementary interactions is a single species A which
increases the growth of other members of its population by detoxifying an environmental toxin
while reducing their growth by depleting a common nutrient. B, C We can represent the impact
and sensitivity functions forA using the ‘environment space’, which denotes the concentrations
of the different intermediates in the system (in this case, the concentrations of the nutrient
[n] and of the toxin [q]). Impact functions are vector fields sitting in this space (black arrows,
B), while sensitivity functions are scalar fields (C). The gradient of the sensitivity function then
represents the direction in the environment space in which the growth rate of A increases most
rapidly, as well as how quickly it increases (black arrows, C). D Taking the scalar product of the
impact function and the gradient of the sensitivity function yields the instantaneous interaction
a′AA, representing the instantaneous effect thatA has on its own growth rate at a given position
in the environment space. E Closed systems such as batch culture experiments trace out trajec-
tories in this environment space, starting from an initial position [n]0, [q]0. F We can calculate
both a′AA and the integrated effect ofA on its own growth (main text), demonstrating a switch in
the effective intra-specific interaction: at early timepoints, when the toxin concentration is high,
detoxification dominates and the interaction appears positive. By contrast, at late timepoints
when the toxin has mostly been removed, depletion of the single nutrient dominates and the
instantaneous intra-specific interaction becomes negative.
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Figure 3: An antibiotic-based model system demonstrates sign switching of measured
intra-specific interactions over time. Comamonas testosteroni is a β-lactamase producing
soil bacterium which can degrade environmental ampicillin. Combined with competition over a
single limiting carbon source (proline), we used this as an experimental analogue of the model
shown in Fig. 2. A Exponential-phase cells were transferred to a 96-well plate containing wells
with different initial ampicillin concentrations [amp]0 and proline concentrations [pro]0. Six
wells were prepared for each condition, consisting of three replicates each of low and high ini-
tial inoculation densities at a 1:4 density ratio. B, C We measured the growth curve of each well
and averaged the technical replicates. We then calculated the abundance difference over time
by normalising the averaged high OD curve by the ratio of the starting ODs (B) and subtracting
the low OD curve (main text, Fig. S1) (C). Abundance differences greater than 0 indicate that
growth of a matched sub-population of C. testosteroni (black dots) was enhanced by the pres-
ence of additional members of the same species in the high-OD wells relative to the low-OD
wells (a positive intra-specific interaction), while differences less than 0 indicate growth sup-
pression (a negative intra-specific interaction). D, E Comparing abundance differences across
different proline (D) and ampicillin (E) concentrations demonstrates the environment-dependent
shift in positive to negative interactions predicted by the model. We summarise this shift for
each condition by measuring the peak (purple circles) and final (orange circles) abundance dif-
ference for each condition (F,G). H,I These qualitatively match predictions from our modelling
framework. The general pattern that emerges from these simulations is robust to changes in
simulation parameters (Fig. S4). Faint lines in D indicate n = 3 separate biological replicates
performed on separate days, while bold lines indicate LOESS-smoothed averages. Biological
replicates are indicated in F and G by separate horizontal strips.
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Figure 4: Our framework shows that interaction time dependencies and spatial structure
can arise from closely-related processes. A Two recent studies33,35 describe the ecological
patterns arising in a two-species community consisting of a degrader D that consumes a poly-
mer p and produces a metabolic by-product m which is consumed by a second crossfeeding
species (C). At low concentrations of p, D switches from net production of m to consumption.
B Daniels et al. 33 find that this type of community displays time-dependent inter-specific in-
teractions in batch culture, with the impact of D on C increasing early on and decreasing later
(red) and the impact of C on D switching from neutral to negative (orange). C By contrast, Wong
et al. 35 show how a similar community patterns itself in microfluidic channels with unidirec-
tional flow, with C only being able to grow towards the outlet of the device. DWe constructed an
EO model of this community and applied our analytical techniques to obtain the instantaneous
interaction matrix for each possible pair of community members (main text, methods). We then
simulated the environmental trajectories of batch culture (dashed lines) and the microfluidic
device (solid lines) inoculated with this community (methods). In the case of the microfluidic
device, the initial environment [p]0, [m]0 corresponds to the composition of the media injected
into the system at the inlet, while points along the environmental trajectory indicate the steady-
state media composition at different positions along the channel. E, F In the batch-culture
model, the gradual enhancement of the environment by D for C via conversion of p tom results
in a gradual increase in the cumulative interaction from D to C. Later, once p has been largely
exhausted, the switch in the behaviour of D from net production to net uptake of m leads to
competition between the two species, and a downward trend in both inter-specific cumulative
interactions (E). These dynamics are difficult to dissect from the raw growth curves (F). G, H
When this community is placed into the spatial context of a simulated microfluidic channel, we
observe a similar interaction pattern from the inlet to the outlet, with a positive interaction ac-
cumulating from D to C. At a certain position, this positive cumulative interaction exceeds the
mortality rate θ representing the flushing of cells by flow. Beyond this point, the net growth rate
of C is positive, reflecting the opening of a niche for C (G). This leads to the spatial structuring
of the two species observed in experiments (H).
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8 Supplementary Notes642

8.1 Supplementary Note 1: Derivation of the cEO equation643

To obtain our expression for the per-capita growth rate of a species α in a closed Environment-644

Organism system (Eq. 3), we begin from our definitions of the impact and sensitivity functions645

(Eqs. 1 and 2). We assume that the system sweeps out some trajectory Γ in the environment646

space which can be parameterized by the variable τ . τ can be interpreted as representing the647

history of the system up to the current query time t. At τ = 0, the system begins at an initial648

position r0 in the environment space, while at τ = t it has reached an end position r(t). We649

seek to express the per-capita growth rate at this query time.650

By our definition of the sensitivity function, we have651

1

sα

dsα
dt

= gα(r). (22)

From the gradient theorem, we can rewrite this as652

gα(r) = gα(r0) +

∫
Γ
∇gα(r) · dr, (23)

where the second term is the path integral of the gradient of the sensitivity function over the653

trajectory Γ. We can use the definition of a path integral over a vector field to express this654

as655

∫
Γ
∇gα(r) · dr =

∫ t

0
∇gα(r) ·

dr

dτ
dτ

=

∫ t

0
∇gα(r) ·

σ +
∑
β

fβ(r) sβ

 dτ

=

∫ t

0
∇gα(r) · σ dτ +

∑
β

∫ t

0
∇gα(r) · fβ(r) sβ dτ.

(24)

We find the term ∇gα(r) · fβ(r) naturally arising in this expression. Calling this a′αβ(r), we can656

put together our final expression for open ecosystems:657
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1

sα

dsα
dt

= gα(r0) +

∫ t

0
∇gα(r) · σ dτ +

∑
β

∫ t

0
a′αβ(r) sβ dτ. (25)

For closed systems, we can assume that σ = 0, thus we obtain the cEO equation:658

1

sα

dsα
dt

= gα(r0) +
∑
β

∫ t

0
a′αβ(r) sβ dτ. (26)
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8.2 Supplementary Note 2: Use of the EO framework to model systems under659

flow660

In using our EO framework to simulate the dynamics of systems subject to flow, we need to be661

careful to specify the conditions under which our closed-system assumption (σ = 0) holds true.662

Indeed, by having an inlet into which fresh nutrients can be continuously fed, this assumption663

would seem to be grossly violated by such systems. However, we can consider a fluid parcel664

travelling along the length of the system to behave as a closed system (in the sense that changes665

to its composition are only mediated by the local microbial populations at position x) as long666

as the rate of flow is large relative to the diffusion rate of intermediates.667

We can show this formally by beginning with the 1D advection-diffusion equation used to specify668

the evolution of the distribution of intermediates along the system over time (Eq. 18):669

∂r(x, t)

∂t
= D

∂2r(x, t)

∂x2
− vx

∂r(x, t)

∂x
+R. (27)

We proceed by making two assumptions: firstly, we assume that the system reaches a steady-670

state concentration profile r∗(x) (associated with a static distribution of species s∗(x)), allowing671

us to set this equation to zero. Secondly, we assume that the Péclet number Pe, which is672

defined as the ratio of the advective to diffusive transport rates, is substantially greater than 1.673

This allows us to neglect the diffusive term in the advection-diffusion equation. We therefore674

obtain675

vx
dr∗(x)

dx
= R =

∑
β

s∗β(x)fβ(r
∗(x)). (28)

We note the similarity of this expression to our original definition of the rate of change of the676

environment in a batch culture system (Eq. 1). We can match these two expressions exactly677

by noting that vx = dx
dt and reparameterising the environmental trajectory r

∗(x) in terms of the678

time coordinate of a fluid parcel relative to the time of its emergence at the inlet (x = 0). We679

can use this same reparameterisation to write Eq. 2 in terms of the steady-state concentration680

profile as traversed by the fluid parcel. These can finally be combined together to obtain a681

spatial version of Eq. 3, and a corresponding definition of the cumulative interaction (Methods).682

Thus, as long as we can justify the two original assumptions, our framework should be directly683
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applicable to such systems.684

Beginning with the assumption that the system approaches a stationary distribution, we show in685

Fig S7 the environmental trajectories traced out along the length of the channel as a function of686

increasing simulated time. We observe, as expected, convergence on a static distribution r∗(t)687

over long timescales. It is difficult to define precise criteria under which this convergence will688

occur for general EO models, but a necessary condition is that the sensitivity functions gα must689

contain a negative mortality term against which positive growth rates can be balanced in the690

long term. In our model, this is provided by θ, which describes the rate at which cells are washed691

off the surface of the channel by flow. An additional factor which we have found to be important692

is the inclusion of a density-dependent mechanism for capping growth at a particular spatial693

location, given in our case by the capacity λ. In the absence of this, species that are able to694

grow on the source media simply accumulate indefinitely at the inlet, rather than spreading out695

along the channel. Addition of these elements requires an adjustment to how the cumulative696

interaction is calculated, which we specify in the methods (section 6.1.4).697

Now turning to Pe, we note that it is defined as Pe = Lvx
D , where L is the characteristic length-698

scale of the system (in this case, the length of the channel). We can readily obtain approximate699

values for the diffusion constants of dextran and glucose (approximately 3× 10−8 cm2 s−1 and700

5 × 10−6 cm2 s−1, respectively). Furthermore, in the experiments described in Wong et al. 35 ,701

L = 2 cm and vx varied between 0.0003 cm s−1 and 0.003 cm s−1. This gives us a range of Pe be-702

tween 120 and 200,000, both substantially higher than 1 and firmly placing these experiments in703

the advection-dominated regime. We have also chosen the equivalent model parameters such704

that Pe varies between 75 and 1200, similarly placing the model in the advection-dominated705

regime.706
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9 Supplementary Figures707

Figure S1: Simulated batch cultures show abundance differences capture time-dependent
interactions. A We illustrate the relationship between the instantaneous, cumulative and mea-
sured intra-specific interactions for the toxin-nutrient system by simulating batch cultures ini-
tialised at high and low inoculation densities (compare Fig. 2F). B The per-capita growth rate
of cells in each of these populations is given by adding a constant gA(r0) – representing the
growth rate ofA in the initial environment r0 – to the cumulative interaction. C Integration of the
per-capita growth rate yields growth curves for the two conditions. Here, normally distributed
noise (s.d. = 0.005) has been added to simulate measurement noise. As in Fig. 3C, we mea-
sure the size of the sub-population in the high starting-density condition (black dashed line)
matched to the low starting-density population (black solid line) by dividing the high-density
growth curve (gray dashed line) by the ratio of inoculation densities. D One option to estimate

interactions from these growth curves is to calculate the quantity 1
sA

d
dt

(
1
sA

dsA
dt

)
(shown for the

high inoculation-density population), which from the cEO equation is expected to return the
instantaneous intra-specific interaction for monocultures. E Alternatively, the ratio between the
sub-populations over time indicates whether the sub-population in the high starting-density
culture has grown more (positive interaction) or less (negative interaction) than that in the low
starting-density culture.9,10,41 While both of these approaches work in principle, in practice mea-
surement noise is so strongly amplified at early time points when abundances are small that
useful information cannot be reliably extracted. F The difference between the areas under the
growth curves (AUCs) from the beginning of the experiment up to a query time is another alter-
native. 11,12 This captures the shape of the intra-specific interaction initially, but fails to stabilise
once the cumulative interaction stops changing. G The abundance difference 13 displays low
initial noisiness and long-term stability while also capturing the overall shape of the cumulative
interaction, and is the primary experimental interaction measurement we use in this manuscript.

35

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 2, 2023. ; https://doi.org/10.1101/2023.10.31.565024doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.31.565024
http://creativecommons.org/licenses/by-nc/4.0/


Figure S2: C. testosteroni secretes β-lactamases when grown with ampicillin. n = 2
cultures of C. testosteroni initialised from separate colonies were grown in media containing 5
mM proline and either with (blue) or without (red) ampicillin. Samples were taken from cultures
at the indicated timepoints and cell densities (A) and β-lactamase activities (B) measured. One
unit of β-lactamase is defined as the amount of enzyme needed to hydrolyse 1 nmol of nitrocefin
in 1 ml of solution in 1 minute. Points with equal shapes and colours in B indicate n = 2 technical
replicates of the β-lactamase assay performed on the same C. testosteroni culture at the same
time.
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Figure S3: Raw C. testosteroni growth curves under varying environmental conditions.
Raw growth curves (faint lines, n = 3 technical replicates for each condition) and cross-condition
LOESS-smoothed averages (bold lines) for one biological replicate of the experiment shown in
Fig. 3. Dashed lines indicate cultures inoculated at high OD, while solid lines indicate cultures
inoculated at low OD. A All samples for which [amp]0 = 0, representing the antibiotic-free
control samples. B All samples for which [pro]0 = 5mM.
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Figure S4: Large shifts in the parameters of the toxin-nutrient model do not substan-
tially impact the qualitative interaction patterns observed. To investigate the robustness
of the time-dependent interaction patterns observed in our toxin-nutrient model (Fig. 3H,I),
we repeated our simulations with doubled and halved maximum nutrient uptake rate (νn, top),
maximal toxin impact (νq , top-middle), toxin degradation investment (f , bottom-middle) and
detoxification efficiency (δ, bottom). In the case of doubled νq and halved νn, we observe that
in some environments with high toxin concentrations and low nutrient concentrations either
only cells in the high inoculation OD conditions are able to grow (denoted ‘h.o.’) or that there is
no growth for either inoculation density (denoted ‘n.g.’).
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Figure S5: C. testosteroni evolves stronger β-lactam resistance over experimental
timescales. Following one biological replicate of the experiment shown in Fig. 3, the mini-
mum inhibitory concentration (MIC) of ampicillin was measured for each of the 48 low inocu-
lation density wells (Methods). To prevent the inoculum effect from influencing our measure-
ments,38,39 we scaled the inoculation volume of culture by the concentration of proline in the
environment. A This is directly proportional to the final yield of C. testosteroni, shown here as
the OD measurement at 100 hours. This procedure thus ensured that the inoculated population
size was approximately constant. B Heatmap showing the MIC of ampicillin measured for each
environmental condition. For each condition, we show the result for each technical replicate as
a separate horizontal strip.
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Figure S6: Evolution of toxin resistance attenuates measured positive interaction
strengths. To investigate the effect of evolution of toxin resistance on interaction measure-
ments in our toxin-nutrient system, we performed batch culture simulations in which an ances-
tral population was co-cultured with a small population (1 %) of mutant cells with either the
same properties as the ancestral population (left), 5x stronger intrinsic resistance (νq/5, mid-
dle) or 5x more efficient toxin degradation (5δ, right). A We show raw simulated abundance
curves of the ancestral (red) and mutant (blue) populations when inoculated at high (dashed
lines) and low (solid lines) densities. To assist comparisons, high inoculation density curves
have been normalised by the inoculation ratio (compare Fig. 3B). B From these, we calculate
time-dependent abundance differences between the total population sizes (sum of ancestral
and mutant populations) in the high and low inoculation density conditions (grey lines, compare
Fig. 3C). By comparing to a null model in which only the ancestral population is present (black
dashed lines), we see that only the mutant with an increase in intrinsic resistance influences the
measured interaction, weakly reducing the strength of the positive phase of the measurement.
C,D This conclusion is supported by comparing the peak (C) and final (D) abundance differences
across multiple environments (compare Fig. 3H,I). Purple and orange points indicate the initial
environmental composition of the simulations shown in A and B.
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Figure S7: Our spatial model of a microfluidic channel stabilises over long timescales.
An assumption necessary for our framework to be applied to spatially varying environments is
that the composition of the environment is static (Supplementary Note 2). A To confirm this
condition was met in our model of the microfluidic channel at long timescales, we plotted the
trajectories representing the spatially-varying environment after different simulation lengths (t)
when the flow velocity vx = 2.5. These sweep out a curve from the position representing the
inlet composition ([p]o = 0.8, [m]o = 0) to the composition at the outlet (circular points). After
an initial transient during community establishment, we observe that the environmental trajec-
tory traces out a consistent curve beyond t = 200. B, C This stabilisation of the environment
corresponds to a stabilisation of the spatial structure of the community, as shown by the chang-
ing distribution of the degrader (B) and cross-feeder (C) along the length of the channel over
time. Increasingly dark shades of blue and green in these plots indicate later sampling times
of the simulation and correspond to the same sampling times in panel A. All other microfluidic
simulations in this manuscript are sampled at t = 1000.
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Figure S8: Changes in the spatial structure of simulated microfluidic communities under
varying flow speeds matche experimental observations. A Variation of the flow speed vx in
simulated microfluidic channels results in different environmental trajectories swept out along
the length of the system. Here we plot the resulting steady-state environmental trajectories on
top of the instantaneous interaction maps for the degrader D and crossfeeder C species (Fig.
4D). These curves represent the variation in the composition of the environment from the inlet
([p]0 = 0.8, [m]0 = 0) to the outlet (circular points). B, C These different trajectories, combined
with variations in the wash-out rate θ induced by different flow rates, result in different spatial
structuring of the cross-feeder (B) and the degrader (C) along the length of the device. D, E The
impact of flow rate on the total abundance of the cross-feeder (D, replotted from Wong et al. 35 )
and the spatial separation between the the degrader and the cross-feeder growth zones (E,
replotted fromWong et al. 35 ) were previously quantified experimentally. F, GWe evaluated these
quantities from the steady-state species abundance profiles from our model, finding identical
trends as in the experiments. The dashed line in G indicates the channel length L. As we do
not observe growth of the crossfeeder in the highest flowrate simulation, we indicate that the
separation between the degrader and crossfeeder growth zones is not defined for this simulation
with an asterisk.
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