
Indistinguishable network dynamics can emerge from unalike
plasticity rules.

Poornima Ramesh 1, Basile Confavreux 2, Pedro J. Gonçalves 1,3,4 †, Tim P. Vogels 2 † and Jakob H. Macke 1,5 †

(1) University of Tübingen, Germany
(2) Institute of Science and Technology, Austria

(3) VIB-Neuroelectronics Research Flanders (NERF), Belgium
(4) imec, Belgium

(5) Max Planck Institute for Intelligent Systems, Tübingen, Germany
† These authors contributed equally to this work.

Synaptic plasticity is thought to be critical for building and maintaining brain circuits. Models of plasticity, or
plasticity rules, are typically designed by hand, and evaluated based on their ability to elicit similar neuron or
circuit properties to ground truth. While this approach has provided crucial insights into plasticity mechanisms,
it is limited in its scope by human intuition and cannot identify all plasticity mechanisms that are consistent with
the empirical data of interest. In other words, focusing on individual hand-crafted rules ignores the potential
degeneracy of plasticity mechanisms that explain the same empirical data, and may thus lead to inaccurate
experimental predictions. Here, we use an unsupervised, adversarial approach to infer plasticity rules directly
from neural activity recordings. We show that even in a simple, idealised network model, many mechanistically
different plasticity rules are equally compatible with empirical data. Our results suggest the need for a shift
in the study of plasticity rules, considering as many degenerate plasticity mechanisms consistent with data as
possible, before formulating experimental predictions.
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1 Introduction
Synaptic plasticity is the ability of synapses to change their
efficacy based on their pre- and postsynaptic environments
and it is thought to be critical for the brain’s ability
to learn from and remember past experiences [1, 2].
Experimental efforts to understand the "plasticitome",
i.e., the combined action of many synapses [3, 4, 5,
6] are still hampered by the inability to record from
multiple synapses simultaneously, in vivo, during learning.
Theoretical models fill this void, allowing us to link
analytical arguments and the available empirical data to
propose putative mechanistic plasticity rules to serve a
given network function [7, 8, 9, 10, 11].

Critically, such rules rely on human intuition and
hand-tuning [12, 13], but they rarely test if more than
a single plasticity rule could produce a desired network
effect (Fig. 1A). Indeed, any possible degeneracy is
difficult to explore in hand-tuned systems. On the other
hand, degeneracy is so widely observed in neuroscience
[14, 15, 16] — and biology more generally — that it
would be erroneous to assume singular solutions for a
given plastic system.

A promising approach to unveil potential degeneracy
in plasticity is to use automated methods to either
propose a range of potential plasticity rules for further
hand-crafted modelling, or to systematically explore the
space of plausible plasticity rules underlying empirical

observations or subserving network computations. Such
recent attempts to infer plasticity mechanisms with
automated methods [17, 18, 19, 20, 21] use flexible
parametrizations of plasticity rules, such as Volterra
expansions [17, 18, 20] or neural networks [19, 21], to
capture the widest possible range of plasticity mechanisms.
Handcrafted loss functions (or meta-objectives) are then
used to shape the parameters of these rules to satisfy
a given biological constraint, e.g., network stability
or familiarity detection. Unfortunately, hand-crafted
loss functions come with similar issues as hand-crafted
rules, in that they can only produce the results within
reach of human intuition. For instance, it is difficult
to glean a comprehensive loss function from given
experimentally recorded neural activity. What’s more,
it is near impossible to exclude non-plasticity-related
contributions to network activity such as changes in
state or input to the network, or measurement variability
(Fig. 1A).

Here, we propose to deduce both plasticity rules and loss
functions directly from empirical data in an adversarial
game in which a generative Deep Neural Network (DNN)
produces plasticity rules that create simulated data good
enough to trick a second, discriminative DNN into
classifying it as empirical. This pair of DNNs, termed
Generative Adversarial Networks [22, GANs] attempt to
reproduce the statistical properties — rather than achieve
a point-to-point match — of a specified dataset.
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Figure 1: (A) We hypothesise that multiple plasticity mechanisms could lead to the same neural network activities, i.e.,
there is degeneracy of plasticity mechanisms. (B) Adversarial learning of plasticity rules: empirical data are simulations
of the postsynaptic activity of a rate network with plastic synapses evolving according to Oja’s rule. The generator G
is a rate network with synapses evolving according to a tunable MLP rule. The discriminator D is a flexible network
trained to distinguish empirical data from the generator output. In our framework, the generator and discriminator are
trained so that at convergence, the learned MLP rule makes the generator produce postsynaptic neural activity traces
indistinguishable from the empirical data.

We hypothesise that this approach allows us to
unveil degeneracy in meta-learned plasticity rules while
disregarding confounding factors not related to plasticity.
Indeed, by construction, GANs enforce a separation
between a systematic component due to the plasticity
mechanisms and a noisy component due to other
confounding factors: since the adversarial game trains the
generative DNN to match the distribution of activity traces
[22], and the only tunable parameters are associated with
the systematic component, i.e., the plasticity mechanisms,
the generator is forced to disregard the confounding
factors while updating the plasticity rule parameters.

In a proof-of-principle, we show that GANs find multiple,
mechanistically different plasticity rules that can produce
activity consistent with synthetic empirical dynamics.
More specifically, our adversarial approach identifies
degenerate plasticity rules on synthetic data simulated
with a known plasticity rule, i.e., Oja’s rule [23]. Using
synthetic data from a known rule allows us to compare
the rules learned with our framework to the ground-truth
rule without any unknown additional factors. All the
plasticity rules learned by our approach plausibly and
robustly generate activity traces that are statistically
indistinguishable from the training data, even though
their synaptic weight dynamics differ substantially from
those produced with Oja’s rule. Our findings point
towards a necessary shift from looking for the correct
synaptic plasticity rule for a given network function, to
inferring entire families of rules with similar network-level
function.

2 Results

To investigate if multiple plasticity rules could achieve
similar neural dynamics, we used an adversarial approach

to deduce both the plasticity rules and the loss function
from (simulated) empirical neural activity. The GAN
approach implicitly selects the features of the empirical
data [24, 25, 26] relevant to the determine the plasticity
mechanisms at play, thus requiring no additional
pre-specified constraints on the data (Fig. 1B, but
see discussion). We show that our approach reveals
many mechanistically different rules consistent with the
empirical data, indicating that the plasticity mechanisms
are degenerate, even in the idealised setting of our rate
networks. Moreover, the recovered rules exhibit similar
generalization properties to the ground-truth rule, such as
scale-invariance and robustness to measurement noise.

2.1 Model set-up and empirical data collection

We considered an idealized setting with a two-layer
linear feedforward network with plastic weights (Fig. 1B).
We then produced an ensemble of weight- and activity
traces using a known plasticity rule, i.e., Oja’s rule
[23] (Fig. 2, top row; Sec. Empirical data and Oja’s
rule), in which the weights converge to the first principal
vector of the input data (Fig. 2C) while the postsynaptic
activity assumes the value of the first principal component
(Fig. 2B, black traces, Methods). Subsequently, we used
this empirical data to train and evaluate our GAN-based
solutions. We flexibly parameterized plasticity rules
with a multi-layer perceptron (MLP, 3-layers, Methods,
Parametrized learning rules). This MLP approximates
local plasticity rules, i.e., it updates each synapse in the
linear network at timepoint t based on the pre-synaptic
activity xtj , postsynaptic activity yti and current synaptic
weight of the given synapse ωtij . As a control, we
confirmed that the plasticity parameterization with the
MLP is flexible enough to approximate Oja’s rule, and
that the GAN approach is capable of rediscovering Oja’s
rule using a constrained search space (Supp. Fig. 5).
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Figure 2: Disparate plasticity rules with same postsynaptic activity. (A) Investigated plasticity rule. (B) Postsynaptic
activity traces of a rate network simulated with Oja’s rule (black) and local MLP rule (blue) for different initial synaptic
weights (top). Learned-rule activities versus the original Oja’s rule activities at different time points and for different
initial synaptic weights (bottom). (C) Weight trajectories, as measured by ||PC1 − ω||. Oja’s rule (top), local MLP
(bottom). (D) Synaptic weight updates ∆ω for a range of presynaptic activities x and postsynaptic activities y and
ω = 0.01. Oja’s rule (top), local MLP (bottom). (E) Vector field of ω versus postsynaptic activity y with presynaptic
activity fixed at x = 0.5 (nullclines in black, fixed points in red). Oja’s rule (top), local MLP (bottom).

2.2 Disparate plasticity rules with same
postsynaptic activity

We began our investigation by adversarially training the
MLP-rule on a large collection of (synthetic) empirical
data (Fig. 2, bottom row). The thus-trained MLP-rule
elicited activity traces that qualitatively captured the
salient features of the empirical postsynaptic activity,
e.g., the transient increase in postsynaptic activity at
earlier timepoints, and the convergence to a stable value
at later time points (Supp. Fig. 6). Importantly, the
MLP rule reproduced the statistics of held-out empirical
data (Fig 2B, bottom panels), even when single trials
diverged from the empirical activity traces, in line with
our expectation that GANs train on the ensemble rather
than on the individual trials.

However, the evolution of the synaptic weights dictated
by the trained MLP-rule diverged from the trajectories
predicted by Oja’s rule (Fig. 2C), as quantified by the
Euclidean distance between the synaptic weights and the
first principal component of the pre-synaptic activity PC1

at each time point [17]. As expected this distance decayed
to 0 for Oja’s rule [23] but not for the trained MLP-rule
(Fig 2C), indicating that although the network activity was
similar, the synaptic weights evolving with the trained
MLP rule never converged to PC1.

We could also compare the ground-truth and trained MLP
rules more systematically by computing the hypothetical

synaptic weight update for a range of presynaptic xj
and postsynaptic yi activities — the observable network
variables — at the fixed synaptic weight ωij = 0.01. The
resulting heatmap of synaptic weight-updates ∆ωij =
f(xj , yi, ωij = 0.01) shows a large qualitative difference
between Oja’s rule (used to produce the empirical data)
and the trained MLP rule, both regarding the magnitude
of weight updates and the ranges of pre- and post-synaptic
firing rates leading to potentiation (∆ωij > 0) and
depression (∆ωij < 0) (Fig. 2D). For instance, Oja’s
rule is symmetric along the diagonal and anti-diagonal,
whereas no such symmetry could be observed in the
trained MLP rule.

In order to further compare the interaction of synaptic
weights and post-synaptic activity of Oja’s and the MLP
rule, we computed the vector-field of the postsynaptic
activity and the synaptic weight for a fixed pre-synaptic
activity of 0.5 (Fig. 2E). Plotting this vector-field allowed
us to understand how the coupled dynamical system of
weights and network activity evolved, and thus compare
different rules. Like for other measures, the weight update
diagrams and their subsequent dynamics of the MLP rule
showed large differences from Oja’s rule. Interestingly,
the trained MLP rule had only one stable fixed point.
Collectively, our results suggest that there exists at least
one plasticity rule that is mechanistically different from
Oja’s rule but produces statistically indistinguishable
activity.
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Figure 3: Learned rules have same generalisation properties as Oja’s rule. (A) MLP rule on 3 presynaptic neurons
and a noisy postsynaptic neuron: trained with GAN and tested on the same network (top, light brown), trained with a
mean-squared error loss and tested on the same network (middle, brown), and trained with GAN and tested on a network
with 3 presynaptic neurons and a noiseless postsynaptic neuron (bottom, dark brown). (B) MLP rule on 39 presynaptic
neurons and a noiseless postsynaptic neuron: trained with GAN and tested on the same network (top, pink) and on a
network with 3 presynaptic neurons and a noiseless postsynaptic neuron (bottom, red). (I) Trajectories of postsynaptic
activity for various synaptic weight initialisations generated with GAN-learned MLP rules are qualitatively similar to
those from Oja’s rule. (II) Activites from GAN-learned rule at different time points match the statistics of Oja’s rule
for both held-out data from the training network and test network. (III) Weight trajectories for learned plasticity rules.
Oja’s rule in black.

2.3 Learned rules with same generalisation
properties as Oja’s rule

Plasticity is only one of many neural mechanisms
underlying network dynamics. Thus, it is plausible that
two networks with the same plasticity rule have different
recorded dynamics, due to a plethora of other sources
of variability such as changing inputs, noisy individual
neuron dynamics, and noisy measurements. We wondered
whether our GAN approach is able to ignore contributions
to neural variability from sources unrelated to plasticity.

In order to address this, we generated data from two
networks with Oja’s rule, with different settings compared
to the original network: additive noise in the post-synaptic

neuron (Fig 3A); and increased number of pre-synaptic
neurons (from 3 to 39, Fig 3B, see Methods for details).
We trained a local MLP rule with the GAN approach on
each of these two different datasets. We then used the
two resulting MLP rules to generate post-synaptic activity
in the original setting, i.e., rate networks with only 3
pre-synaptic neurons and noiseless post-synaptic activity.
Note that the rules were not trained on the original setting.

We found that the two MLP rules, specifically the same
rules that captured the activity statistics of the training
data, accurately reproduced the statistics of the empirical
activity traces from the original test dataset, and therefore
successfully ignored the perturbations included in both

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 4, 2023. ; https://doi.org/10.1101/2023.11.01.565168doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.01.565168
http://creativecommons.org/licenses/by/4.0/


Figure 4: Different learned rules due to modeller bias. (A) Parametrized plasticity rules. Oja+Local MLP (top),
semi-global MLP (middle) and global MLP (bottom). (B) Learned-rule activities versus the original Oja’s rule activities
at different time points and for different initial synaptic weights. (C) Weight trajectories, as measured by ||PC1 − ω||
for Oja + local MLP (top, purple), semi-global MLP (middle, green), global MLP (bottom, yellow). (D) Synaptic
weight updates ∆ω for a range of presynaptic activities x and postsynaptic activities y and ω = 0.01. (E) Vector field
of ω versus postsynaptic activity y with presynaptic activity fixed at x = 0.5.

training datasets (Fig. 3 I, II). As before, the evolution of
the weights of the two learned rules and their vector-field
dynamics differed substantially from Oja’s rule (Fig. 3III
and Supp. Fig. 7). In addition, the ability of our
GAN-learned MLP rules to generalise over different
datasets such as the perturbed datasets used above was
not matched by MLP rules trained with supervised loss
functions (Fig. 3A, Mean Squared Error on the activity
trajectories), highlighting again that selecting the features
of the data, and by extension, crafting a loss function to
fit plasticity — and avoid overfitting — is crucial and
non-trivial.

Collectively, these findings confirm that multiple,
mechanistically different plasticity rules can shape
networks to elicit similar activity as Oja’s rule.
Moreover, our adversarially-trained plasticity rules exhibit
remarkable generalization properties between disparate
training data and succeed in retaining only the features
from the training data that are directly connected to
the plasticity mechanisms. In other words, the variety
of learned rules we observed stems from a degeneracy
in plausible plasticity mechanisms and not from other
sources of variability in the data.

2.4 Different learned rules due to modeller bias

Next we considered the effect of training different classes
of plasticity rules on the same empirical data. So far, we

used a parametrization that relied exclusively on local
synaptic information, i.e., pre- and post-synaptic activity,
and the synaptic weight. We expanded the parametrization
so that the weight-update was also dependent on the
average pre-synaptic activity and average synaptic weight
of all synapses at the time of the update. We called this
parametrization "semi global". In addition, we considered
a "global" parametrization in which all neurons’ rates
and all synaptic weights were available to every synaptic
weight update. Finally, we considered a local MLP biased
towards Oja’s rule (see Methods).

As before, the trained rules reproduced the statistics of
the empirical data (Fig 4B), while their weight dynamics
differed from Oja’s rule (Fig 4C). Notably, they also
differed from the weight dynamics of the previously
learned rules (Fig 4D,E), showing that different rule
parametrizations lead to different learned rules, and thus
suggesting the existence of several optimum points in the
landscape of learning rules that are all equally consistent
with the empirical data. Varying model architectures may
nudge the parametrized rule closer to one of these points in
the rule landscape, resulting in convergence to a different
plasticity rule depending on the model architecture.
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3 Discussion

Theoretical studies about synaptic plasticity typically
postulate specific, biologically plausible network
functions and hand-design rules to produce them. They
often focus on small numbers of canonical rules, with a
few terms capturing first-order dependencies on synaptic
variables [27, 8, 11]. However, each specific rule provides
only one of potentially many consistent explanations for
a given dataset, and might overfit to confounding factors
inherent to the empirical data. Without exploring the
space of possible solutions, it is difficult to assess the
validity, completeness, and robustness of a given rule, or
to judge its role in memory and learning.

Here, we introduced a GAN framework that allowed
us to flexibly explore a larger and less biased space of
solutions by algorithmically identifying plasticity rules
directly from data. By adversarially training the plasticity
rule and the loss function, we found a multitude of
rules that captured the same neural dynamics. Crucially,
these GAN-learned rules were not variations of the same
rule with multiplicative or additive factors, but exhibited
a wide range of different weight dynamics and fixed
points. Furthermore, these novel rules also differed
depending on the rule parametrizations, i.e., modeller bias.
Finally, we showed that under subsampling conditions or
added observation noise, the inferred rules still captured
the statistics of the original unperturbed test dataset.
This robustness to different sources of variability in the
empirical data indicated that the underlying plasticity
mechanisms were truly degenerate.

Degeneracy is present all throughout biology, and more
specifically in neuroscience [14], and it would be
surprising if synaptic plasticity mechanisms were the
exception. Our study shows that degeneracy is present
even in idealized systems, and that learned plasticity
rules are strongly influenced by modeller bias. Our
results suggest that we must account for degeneracy in
plasticity mechanisms in order to gain meaningful insights
about their role in neural computations. However, the
theoretical possibility of degenerate solutions as shown
here does not prove their biological implementation, and
several more steps are necessary to provide experimentally
tractable rules and testable predictions. Since the number
of observable neurons in a given experiment is much
smaller than the number of synaptic variables in the
system, constraining plasticity rules by neural activity
measurements alone may not resolve the issue. It will thus
be helpful to build more biologically detailed models to
make predictions on what experimental features to focus
our attention on. Alternatively, some of these issues might
be resolved by adopting probabilistic machine learning
approaches to obtain uncertainty estimates for plasticity
rules inferred from neural activity [28], although this
remains a subject for future work.

Our investigations focused solely on Oja’s rule: while this
is a canonical rule which has been extensively studied,
it is likely too simple to form a realistic representation

of plasticity mechanisms in the brain. In principle,
it is conceivable that more complex rules [12, 13],
operating in larger neural populations implementing more
sophisticated computations, could be inferred from data
unambiguously. However, it is possible (and we would
argue probable) that adding complexity in the system will
make degeneracy even more likely.

We chose GANs because of their ability to automatically
and implicitly select features from data, thus removing
the need to hand-craft loss functions. In addition, since
GANs attempt to capture distributions of activity traces
rather than specific traces, the learned rules are largely
agnostic to trial-specific features which are uncontrolled
for in the experimental setting and independent of synaptic
plasticity, such as e.g., the attentional state of an animal
[29], or experimental noise. However, despite the
flexibility to learn synaptic plasticity rules that GANs
enable, their application can be technically demanding:
they are notoriously hard to train, sensitive to initial
conditions, and prone to mode collapse [30, 31, 32].
Furthermore, GANs only provide one consistent plasticity
rule per training run, such that full exploration of the space
of solutions is arduous. How this approach scales to more
complex, higher-dimensional systems is a question for
future work.

Conclusion: Degeneracy is an ubiquitous phenomenon
in neuroscience, and its implications are crucial for our
understanding of neural computation in general and the
mechanisms of plasticity in particular. Our attempt to
flexibly learn rules directly from data in a simple scenario
reveals that different plasticity rules can explain the
same data equally well, provided the generative model
of plasticity is expressive enough. This suggests we
should shift the way we think about plasticity rules: not
as a singular mechanism implemented by every synapse,
but rather as families of rules with similar network-level
function and with potential mechanistic differences across
different synapses. And rather than studying one rule
at a time, one might attempt to characterize properties
across ranges of rules, and potentially derive predictions
shared across plasticity rules. These predictions are likely
to be more robust than predictions idiosyncratic to a
specific rule, and also suggest a more topological view of
plasticity.
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4 Methods

Below, we introduce the rate network model, Oja’s rule:
the rule underlying our empirical (synthetic) data, the
different parametrizations of the learning rules and the
GAN-based meta-learning framework.

4.1 Network model

We consider a linear feedforward rate network with
N presynaptic neurons with activity xj(j = 1 . . . N ),
M postsynaptic neurons with activity yi(i = 1 . . .M ),
and synaptic weights ωij . The postsynaptic activity at
(discretized) time t is updated as follows:

yti =
∑
j

ωtijx
t
j (1)

4.2 Empirical data and Oja’s rule

In lieu of experimental data, and to test our framework,
empirical data consisted of activity traces from the rate
network defined above, evolving with Oja’s rule. This rule
consists of a Hebbian term, with an added normalization
term for stability:

∆ωtij = xtj ∗ yti − (yti)
2ωtij (2)

This Hebbian plasticity rule, when used to update the
synaptic weights ωij of the feedforward rate network
in Eqn 1, causes ωij to converge to the first principal
component PC1 of the presynaptic activity x = {xi}Ni=1
[23]. Concurrently, under Oja’s rule, the postsynaptic
activity y converges to a projection of x onto its first
principal component. In order to simulate activity
traces yi, we sampled presynaptic activity x from
a N-dimensional Gaussian distribution, with a given
covariance structure (details in Supp. Sec. B.1). Note
that we fixed the presynaptic activity to be constant
across time, and that the synaptic weight update ∆ωij
at each time step was computed by averaging over an
ensemble of pre- and postsynaptic activities corresponding
to K = 100 different x samples from the multivariate
Gaussian distribution. In other words, we have implicit
batch learning for the synaptic weights:

∆ωij =
1

K

K∑
k=1

x
(k)
j ∗ y

(k)
i − (y

(k)
i )2wij (3)

We simulated the plastic network for T = 200
time steps. The empirical data consisted of the
postsynaptic activity at every time step for each of K =
100 different 3-dimensional presynaptic activities and
randomly initialised synaptic weights ω0

ij ∼ N (0, 0.12).

In Fig 3, we used two other types of data: (1) we
introduced noise in the postsynaptic activity: yti =∑
j ω

t
ijx

t
j + ε, ε ∼ N (0, 0.252); (2) 39 input neurons

instead of 3 were simulated, the training was otherwise
similar.

4.3 Parametrized learning rules

In order to meta-learn the synaptic plasticity rules from
the empirical data, we formalized the learning rule with a
parametrized function hθ:

∆ωij = hθ(ω
t
ij , x

t
j , y

t
i). (4)

First, for a proof of principle (Supp. Fig. 5), we
parametrized Oja’s rule with learnable coefficients θ1 and
θ2:

hθ(ω
t
ij , x

t
j , y

t
i) = θ1x

t
j ∗ yti + θ2(yti)

2ωtij (5)

For all other experiments, the plasticity rules were
parametrized using multi-layer perceptrons [MLPs, 33],
with different inputs from the rate network, depending on
the chosen model:

• Local MLP: the plasticity rule is parametrized by
a 3-layer MLP, i.e., hθ(·) = MLPθ(ω

t
ij , x

t
j , y

t
i).

This MLP represents a local update, i.e., it
transforms each xtj , y

t
i and ωtij in the same way,

independently of the indices i, j and t.

• Oja + local MLP: hθ(·) = MLPθ(ω
t
ij , x

t
j , y

t
i) +

xtj ∗ yti − (yti)
2ωtij . This learning rule is "biased"

since, by construction, it is initialised close to the
ground-truth solution and any non-zero outputs
of the MLP are perturbations to Oja’s rule.

• Semi-global MLP computes the synaptic weight
update ∆ωtij for a single synapse. It takes into
account the mean presynaptic activity and the
mean across the network synaptic weights at
the current time step, in addition to the local
presynaptic activity xtj , synaptic weight ωtij and
postsynaptic activity yti : ∆ωtij = hθ(·) =

MLPθ(ω
t
ij , x

t
j , y

t
i ,

1
N

∑
j x

t
j ,

1
N

∑
j ωij).

• Global MLP takes into account all pre- and
postsynaptic activities and synaptic weights:
∆ωij = hθ(·) = MLPθ({ωtij , xtj , yti}

M,N
i=1,j=1).

Note that these parametrized rules are progressively less
constrained, and that each MLP could, in principle, be
reduced to the one above it.

4.4 Meta-learning framework

Our meta-learning framework uses a GAN to learn the
parameters θ of the plasticity rule hθ, given neural activity.
Below, we first introduce the GAN formalism, and then
show how one can recast the problem of meta-learning
within this formalism.

GANs are a machine learning approach to obtain
generative models of data, by training a model to match
a target distribution p(d′), which we only have access
to via samples d′ from the distribution. GANs consist

To lighten the notation, we elide the dependence on time t in this equation.
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of two deep neural networks: a generator network gθ
that produces data d = gθ(z), by deterministically
transforming latent random variables z sampled from
a known distribution p(z). The second network is
a discriminator Dψ which aims to classify generated
samples d as fake (i.e., from the generator), and d′ as
real (i.e., from the target distribution, Fig. 1B). After the
two networks have been trained with a minimax loss

θ∗, ψ∗ = min
θ

max
ψ

Ep(d′) log Dψ(d′) +

Ep(z) log
(
1−Dψ(gθ(z))

)
,

(6)

in the limit of infinite data, the generator implicitly
represents p(d′) at convergence. Thus, convergence yields
a generative model of d′. Note that the GAN does not
impose any restrictions on the architecture of the generator
network. Furthermore, it does not define an explicit
loss function for the target data d′ and generated data d:
instead, the discriminator implicitly represents a distance
function between the two data distributions, and this
function is also learned end-to-end with the generator.
This leads to GANs not attempting to reproduce the data
d′ in minute detail, but rather to capture the general
statistics of the data. In other words, the GAN matches
the distributions p(d) and p(d′), rather than individual
samples d and d′.

This flexibility in the GAN framework is advantageous for
meta-learning plasticity rules from neural activity. We first
recast the system composed of the postsynaptic update
(Eqn 1) and the plasticity rule (Eqn 4) as a generative
model of postsynaptic activity traces for T time steps, i.e.,
y = yti

M,T
i=1,t=1 = gθ(x, ω

0), where x = {xtj}
N,T
j=1,t=1

and ωt = {ωtij}
M,N
i=1,j=1 (Fig. 1B). We then define a

discriminator Dψ that differentiates between generated
activity traces y and empirical activity traces y′ ∼ p(y′).
Note that y is a random variable, since the rate network is
initialised randomly before every forward pass from the
generative model. We learn the parameters of the plasticity
rule θ and the discriminator ψ using the same minimax
loss as in Eqn 6:

θ∗, ψ∗ = min
θ

max
ψ

Ep(y′) log Dψ(y′) +

Ep(ω0)p(x) log
(
1−Dψ(gθ(x, ω

0))
)
.

(7)

At convergence, the GAN will have learned a plasticity
rule hθ that is consistent with the empirical neural activity
y′. The GAN framework thus allows us to flexibly
parametrize the plasticity rule. It also allows us to learn
the rule from neural activity, without having to specify
a loss function on the neural activity. Details on method
implementation and numerical experiments are in Supp.
Sec. B.
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