New Results
SuPreMo: a computational tool for streamlining in silico perturbation using sequence-based predictive models
View ORCID ProfileKetrin Gjoni, View ORCID ProfileKatherine S. Pollard
doi: https://doi.org/10.1101/2023.11.03.565556
Ketrin Gjoni
1Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA
2Department of Epidemiology & Biostatistics, University of California, San Francisco, CA 94158, USA
Katherine S. Pollard
1Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA
2Department of Epidemiology & Biostatistics, University of California, San Francisco, CA 94158, USA
3Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
Posted November 05, 2023.
SuPreMo: a computational tool for streamlining in silico perturbation using sequence-based predictive models
Ketrin Gjoni, Katherine S. Pollard
bioRxiv 2023.11.03.565556; doi: https://doi.org/10.1101/2023.11.03.565556
Subject Area
Subject Areas
- Biochemistry (13383)
- Bioengineering (10189)
- Bioinformatics (32583)
- Biophysics (16774)
- Cancer Biology (13862)
- Cell Biology (19686)
- Clinical Trials (138)
- Developmental Biology (10635)
- Ecology (15741)
- Epidemiology (2067)
- Evolutionary Biology (20052)
- Genetics (13242)
- Genomics (18380)
- Immunology (13478)
- Microbiology (31564)
- Molecular Biology (13161)
- Neuroscience (68745)
- Paleontology (510)
- Pathology (2131)
- Pharmacology and Toxicology (3681)
- Physiology (5738)
- Plant Biology (11791)
- Synthetic Biology (3311)
- Systems Biology (8042)
- Zoology (1817)