New Results
Flow-field inference from neural data using deep recurrent networks
View ORCID ProfileTimothy Doyeon Kim, View ORCID ProfileThomas Zhihao Luo, View ORCID ProfileTankut Can, View ORCID ProfileKamesh Krishnamurthy, View ORCID ProfileJonathan W. Pillow, View ORCID ProfileCarlos D. Brody
doi: https://doi.org/10.1101/2023.11.14.567136
Timothy Doyeon Kim
1Princeton Neuroscience Institute, Princeton University, Princeton, NJ
Thomas Zhihao Luo
1Princeton Neuroscience Institute, Princeton University, Princeton, NJ
Tankut Can
2School of Natural Sciences, Institute for Advanced Study, Princeton, NJ
Kamesh Krishnamurthy
1Princeton Neuroscience Institute, Princeton University, Princeton, NJ
3Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ
Jonathan W. Pillow
1Princeton Neuroscience Institute, Princeton University, Princeton, NJ
Carlos D. Brody
1Princeton Neuroscience Institute, Princeton University, Princeton, NJ
4Howard Hughes Medical Institute, Princeton University, Princeton, NJ

Article usage
Posted November 16, 2023.
Flow-field inference from neural data using deep recurrent networks
Timothy Doyeon Kim, Thomas Zhihao Luo, Tankut Can, Kamesh Krishnamurthy, Jonathan W. Pillow, Carlos D. Brody
bioRxiv 2023.11.14.567136; doi: https://doi.org/10.1101/2023.11.14.567136
Subject Area
Subject Areas
- Biochemistry (13850)
- Bioengineering (10540)
- Bioinformatics (33486)
- Biophysics (17275)
- Cancer Biology (14344)
- Cell Biology (20317)
- Clinical Trials (138)
- Developmental Biology (10963)
- Ecology (16159)
- Epidemiology (2067)
- Evolutionary Biology (20489)
- Genetics (13496)
- Genomics (18776)
- Immunology (13897)
- Microbiology (32437)
- Molecular Biology (13508)
- Neuroscience (70740)
- Paleontology (532)
- Pathology (2219)
- Pharmacology and Toxicology (3770)
- Physiology (5942)
- Plant Biology (12117)
- Synthetic Biology (3400)
- Systems Biology (8222)
- Zoology (1860)