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Abstract

Protein engineering is essential for a variety of applications, such as designing
biologic drugs, optimizing enzymes, and developing novel functional molecules.
Accurate protein fitness landscape modeling, such as predicting protein proper-
ties in sequence space, is critical for efficient protein engineering. Yet, due to
the complexity of the landscape and high-dimensional sequence space, it remains
as an unsolved problem. In this work, we present µFormer, a deep learning
framework that combines a pre-trained protein language model with three scor-
ing modules targeting protein features at multiple levels, to tackle this grand
challenge. µFormer achieves state-of-the-art performance across diverse tasks,
including predicting high-order mutants, modeling epistatic effects, handling
insertion/deletion mutations, and generalizing to out-of-distribution scenarios.
On the basis of prediction power, integrating µFormer with a reinforcement
learning framework enables efficient exploration of the vast mutant space. We
showcase that this integrated approach can design protein variants with up to
5-point mutations and potentially significant enhancement in activity for engi-
neering tasks. The results highlight µFormer as a powerful and versatile tool for
protein design, accelerating the development of innovative proteins tailored for
specific applications.
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1 Introduction

Protein engineering aims to design proteins with desired functions and properties
that are important for technology, agriculture, and medicine [1–5]. Efficient protein
engineering, achieved through optimization of protein sequences, can greatly benefit
the design of biologic drugs, enzymes, and beyond. A promising approach to achieve
this goal is to accurate map protein sequences to their corresponding functionalities,
ergo enabling efficient search of sequences with desired functions/properties.

However, the mapping between sequences and versatile functions in the space
of protein sequences, known as fitness landscape, is complex and rugged. Advanced
experimental techniques, such as Deep Mutational Scanning (DMS) [6] and Multiplex
Assays of Variant Effects (MAVEs) [7], have been developed to couple functional assays
with protein mutation detection. These assays can be measured in high throughput
manners, enabling targeted and systematic probing of a wide range of quantification
on fitness scores of protein variants around a starting sequence. Nonetheless, quantifi-
cation from these experiments is still far from providing comprehensive landscapes,
considering the vast protein sequence space and complex coupling between residues in
proteins [4, 8, 9].

To accurately model a comprehensive landscape of fitness from limited experi-
mental observations, many computational approaches have been proposed. Several
methods rely on evolutionary information, such as Multiple Sequence Alignments
(MSAs), to capture mutational effects of residues from natural homologous sequences
of the proteins to be optimized. These approaches make predictions by utilizing
site-wise information [10], pairwise features by a Potts model [1, 11], or hidden rep-
resentations from a variational autoencoder [2, 12]. While these methods do not rely
on experimental observations, they are limited to proteins with abundant homologs.
They also struggle to extend to sequences with varying lengths, due to their depen-
dence on fixed-length axial systems built on prepared MSAs. Recently, researchers
start to leverage language models for mutational effect prediction and fitness landscape
modeling. Language models are computational algorithms widely applied in natural
language processing [13, 14]. Numerous efforts have applied language models to pro-
teins by treating protein sequences as ‘sentences’ and residues as ‘words’ in natural
language, demonstrating their capability in various fields [12, 15–17]. Pre-trained with
large corpora of protein sequences collected from databases such as UniRef and Pfam,
language models learn the probability of 20 amino acids for each position in given
protein sequences, which can be connected to a proxy of mutational effect for each sub-
stitution [5, 18]. Although such approaches, known as a ‘zero-shot’ setting, alleviate
reliance on homologs and MSAs, their phenotype-agnostic nature results in a dis-
cernible gap between predictions and ground truth, and prevents them from handling
landscapes for different types of properties exhibited by the same protein.
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Learning-based models that utilize DMS or MAVEs data of proteins for train-
ing [4, 9, 19–23] have also been applied to the fitness landscape prediction task,
independently or combined with MSA information or language models. However, these
models, mostly data-driven, often struggle to make reasonable predictions when exper-
imental data is limited. To address this bottleneck issue, we propose a deep learning
framework featuring three learning-based scoring modules that are designed to capture
protein mutational effects at different levels of sequence features: single-residue valid-
ity, motif-level patterns, and sequence-level semantics. Combining with a pre-trained
protein language model, our framework, named µFormer, is capable of modeling pro-
tein fitness landscape more accurately and comprehensively, with less dependency on
observational data.

We demonstrate that µFormer can handle a variety of challenging scenarios,
including limited number of measurements, orphan proteins with few homologs,
complicated variants with multiple-point mutations, insertions and deletions, and out-
of-distribution predictions. Extensive experiments indicate that µFormer outperform
its counterparts on different tasks. More importantly, observing that µFormer excels at
high-order mutational effect prediction when trained with single mutants, we deployed
µFormer as a general tool navigating protein design in combination with a reinforce-
ment learning protocol supporting efficient sequence search in the vast and rugged
fitness landscape. Demonstrating an efficient and comprehensive exploration of mutant
space consisting of an astronomical number of sequences with this pipeline, we engi-
neered a beta-lactamase enzyme to hydrolyze a new substrate molecule and identified
a number of variants with up to 5-point mutations that potentially exhibit significantly
enhancement in activity against the new substrate.

2 Results

2.1 µFormer accurately predicts fitness scores of proteins

µFormer is composed of a self-supervised protein language model and a set of super-
vised scoring modules (Fig. 1). In the pre-training stage, the protein language model is
trained with over 30 million protein sequences collected from UniRef50. By adopting
a masked language modeling strategy, the protein language model learns to predict
the most likely amino acids at targeted positions given the rest of residues in a pro-
tein sequence. Later, in the fine-tuning stage, the embeddings (representative vectors
of numerical values) of the full-length query proteins and each residue, as well as the
predicted probability for each amino acid in the proteins, are fed into 3 scorer modules
respectively:

- The sequence-level scoring module learns to predict protein mutational effects from
the embeddings of full-length protein sequences generated by the protein language
model. This is motivated by the observation that embedding-derived semantics of
protein sequences are relevant to their functions [15, 24, 25].

- The motif-level scoring module aims to extract consequential sequence patterns that
are important for protein functions [26, 27].
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- The residual-level scoring module calculates the fitness scores of given sequences
by averaging the probability values of all amino acids in the sequence, while the
probability values reflect the grammatical validity for each position conditioned on
the entire sequence [16, 18, 28].

The outputs of the three scoring modules are then combined as the final prediction for
the query sequence. We expect that the integration of these modules, each focuses on
protein features at different levels and enhanced by the pre-trained protein language
model, captures a more comprehensive fitness landscape of query proteins, with a
boost in both robustness and accuracy.

To assess µFormer’s ability in fitness landscape modeling and mutational effect
prediction, we benchmarked it against nine other modeling approaches, including
MSA-based methods [1, 10–12], language model-based zero-shot methods [5, 18]
and learning-based approaches [21–23]. We first evaluated all models on the Prote-
inGym [5], a collection of DMS-derived protein mutational effect datasets spanning a
diverse set of protein types, sequence lengths, biological functions, and fitness assays.
Among all models, µFormer demonstrated the strongest ability in predicting muta-
tional effects across different datasets (Fig. 2a-b). With a median Spearman’s rank
correlation coefficient (ρ) of 0.724, µFormer achieved the best results on 59 out of
78 test datasets and improved the performance by more than 10% on 24 datasets.
Not surprisingly, supervised approaches outperformed both MSA-based and zero-shot
models (Fig. 2a), as latter approaches are completely unaware of the biological func-
tion alterations associated with mutations. Further analysis indicates that µFormer
is not sensitive to variations in training data size and homologous sequence numbers
(Fig. 2b), suggesting that our method is a universal tool for protein mutational effect
prediction.

Next, we evaluated µFormer’s performance on insertion and deletion (indel) pre-
diction. Indels are common mutation types that can lead to drastic changes in protein
functions, and designing proteins of different lengths may be expected in specific sce-
narios. For example, short peptides with varying lengths are typical in therapeutic
peptide design. However, indels further complicate the mutational space of proteins,
rendering fitness prediction a more challenging task. While MSA-based methods are
incapable of scoring indels, approaches of other types may not be able to extend to the
scenario of indel prediction due to their designs. For example, the dependency of MSA-
derived axial features restricted the application of ECNet on indel prediction. Here,
we benchmarked µFormer on indel tasks against four alternative approaches. µFormer
consistently outperforms other methods on two benchmark datasets with indel muta-
tions (Fig. 2c): ProteinGym Indel, which collected indel-included DMS results from
seven assays [5], and FLIP AAV, which split fitness assay data on capsid protein VP1
with varying strategies to probe model generalization [29, 30]. To be noted, the Mut-
Des split assigns naturally occurring mutants (Mut) as training dataset and designed
sequences (Des) as test dataset. Hence, performances on Mut-Des and the reverse
split Des-Mut indicate models’ out-of-distribution prediction ability. µFormer achieves
a Spearman ρ above 0.8 for both settings, signifying its effectiveness as a surrogate
model for guiding and optimizing protein sequence design.
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2.2 µFormer captures epistatic mutational effect of high-order
variants.

Due to time and cost constraints, most experimental assays for mutational effect
quantification, including the DMS and MAVEs assays, focus on quantification of single-
point mutations. Predicting the effect of combinations of mutations, i.e., high-order
variants whose space grows exponentially with the increasing number of mutations
involved, is therefore an ultimate goal of fitness landscape modeling. Towards this end,
we observed that µFormer is capable of predicting the mutational effect of high-order
variants from single mutants (single-to-multi).

We first collected nine sets of DMS assays that include both single-site mutants and
high-order mutants and then trained prediction models with single-point data for each
target protein. The nine proteins span a wide range of functions, including enzymes
(beta-lactamase TEM-1 [31]) and reporter proteins (GFP [32]) of high interest in
synthetic biology, disease-related proteins (Amyloid beta precursor protein APP [33]),
signaling proteins (PSD-95 [34], GRB2 [34] and YAP1 [35]), RNA binding proteins
(Pab1 [36]), and protein binding proteins (GB1 [37]). Also, we included the point
mutation data from the aforementioned VP1 assay in our analysis. While the size of
training data (single-site mutants) varies from 362 to 5468, the number of high-order
mutants (geq2 mutations) can be much greater(for example, there 535,917 high-order
mutants for GB1 protein, which has 1,045 single-site mutants used for training; Fig.
3a). Therefore, the analysis offers a comprehensive and rigorous assessment on high-
order mutations prediction.

In comparison to other supervised approaches, representative zero-shot and
alignment-based methods, µFormer shows the most robust performance across all
tested proteins, with a Spearman ρ ranging from 0.653 to 0.946 (Fig. 3a). To be noted,
the GFP dataset is composed of 12,777 double mutants and 37,852 variants with a
mutation number spanning from 3 to 15. The accurate prediction of GFP high-order
mutants (Spearman ρ = 0.795) demonstrates µFormer’s effectiveness in generalizing
to protein variants with multi-site mutations.

The interdependency between amino acids in protein gives rise to the phenomenon
of epistasis, in which the combined mutational effects of the mutations at various sites
are not simply the sum of the individual effects [8, 38, 39]. Epistasis poses a signif-
icant challenge for predicting high-order mutational effects. Therefore, we designed
a series of tests specifically aimed at analyzing the epistasis modeling capability of
µFormer. We calculated epistatic scores for high-order mutants as the discrepancy
between observed mutational effect values and the sum of constituent single mutant
mutational effect values, i.e. Sepi = Effectpos1,pos2...posn −Σn

i=1Effectposi . Compared to
Ridge and ECNet, two approaches that demonstrated favorable performances in pre-
vious analysis, µFormer more accurately captures the direction of epistasis (Fig. 3b).
In addition, the epistatic scores obtained from µFormer predictions exhibit a stronger
correlation with observed Sepi in various proteins (Fig. 3b). Next, we designed a base-
line method that assumes no epistasis in high-order mutants (additive model). In this
model, the mutational effects of high-order mutants are estimated as the sum of the
effects of single mutants. Using µFormer, we observed a significant improvement over
the additive model (Fig. 3c). Moreover, for high-order mutants displaying the top 20%
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absolute epistatic scores in each target protein, µFormer reduced predictive errors rel-
ative to observed values in 8 out of 9 proteins tested compared to the additive model.
While the distribution of mutations and the strength of epistasis vary for each pro-
tein, our results collectively confirm that µFormer effectively captures epistatic effects,
rather than trivially estimating the sum of single mutants present in the training data
(Fig. 3d).

To gain insight into why and how µFormer achieves superior performance under the
single-to-multi setting, we visualized the embeddings of both single mutants (training
data) and high-order mutants (test data) extracted from µFormer using t-distributed
Stochastic Neighbor Embedding (t-SNE) (Extended Data Fig. 1). Interestingly, we
observed that the embeddings from both pre-trained and fine-tuned models aggregate
according to fitness scores, rather than the number of mutations, in the corresponding
variants. This observation provides an explanation for how µFormer can generalize to
high-order mutants when trained exclusively with single mutants. The model’s abil-
ity to capture the relationship between fitness scores and the corresponding variants
enables it to effectively predict the outcomes for high-order mutants, despite not being
explicitly trained on them. This highlights the robustness and adaptability of the
µFormer model in handling complex mutation scenarios.

2.3 µFormer effectively identifies high-functioning variants
with high-order mutations

The primary goal of protein engineering is to enhance the desired functionality of
proteins of interest. While µFormer is able to distinguish gain-of-function mutations
from loss-of-function mutations accurately (Extended Fig. 2), we further investigated
if the model could predict top-performing mutants effectively. We calculated the Top-K
recall scores of µFormer on the curated high-order mutant datasets with the single-
to-multi setting. The assay aims to estimate the recovered percentage of the top K
high-functioning high-order mutants from top K predictions (hits). In most cases,
with K=100, µFormer provides more than 10 valid hits (Top-100 recall > 0.1), and
the average Top-100 recall reaches 0.165 (Fig. 4a). When K scales up to 500, the
recall score further improves and reaches an average value of 0.341 (Fig. 4a). This is a
remarkable result, as 100 mutants only represent a small percentage (0.02% to 2%) of
tested mutants for each protein. For YAP1, GB1, GRB2 and VP1, a subset of high-
order mutants (ultra-high value mutants) exhibits fitness values higher than all single-
site mutants of the corresponding protein used for training, which poses an additional
challenge to modeling. Encouragingly, µFormer makes reasonable predictions for these
out-of-distribution variants (Fig. 4a) and detects ultra-high valued mutants (Fig.4b).
These results together show that µFormer can provide efficient guidance for protein
optimization.

To demonstrate the performance of µFormer in practice, we focused on the acquired
hydrolysis activity of TEM-1, a beta-lactamase that degrades beta-lactam antibi-
otics, such as ampicillin. Cefotaxime, discovered nearly 50 years ago, is a beta-lactam
antibiotic resistant to TEM-1, making it effective against bacterial pathogens carry-
ing TEM-1. However, TEM-1 variants active against cefotaxime rapidly evolved after
the drug’s introduction to the market. Among the 222 sequenced clinical variants of
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TEM-1, 98 are marked as extended-spectrum beta-lactamases (ESBLs) [40], indicat-
ing their activity against extended-spectrum cephalosporins with an oxyimino side
chain, including cefotaxime. Compared to non-ESBL clinical variant types that did
not exhibit cefotaxime activities, most ESBLs (91 out of 98) are high-order mutants
of TEM-1 (Extended Data Fig. 3). Therefore, we examined whether µFormer could
identify high-order mutants with enhanced activities using ESBLs.

We fine-tuned µFormer with mutational effect quantifications of TEM-1 single
mutants on cefotaxime collected by Stiffler et al. [41]. Next, we evaluated µFormer
using a curated dataset comprising 105 ESBLs and 52 confirmed non-ESBLs [40, 42].
µFormer prioritizes ESBLs with high scores (Fig. 4c) and demonstrates a significant
correlation (Spearman ρ = 0.94) with a quantification study on 16 TEM-1 mutants
(including 11 high-order mutants) using MIC assay (Fig. 4d) [42].

To understand how µFormer achieves accurate predictions on hyperactive mutants,
we extracted mutant embeddings of TEM-1 from µFormer and visualized the latent
space with t-SNE. On the visualization, an increasing activity of TEM-1 against cefo-
taxime is clearly observed along the first dimension, with high-functioning variants
aggregating on the right (Fig. 4e). Also, the width of bands stratified by mutational
effect scores is consistent with the knowledge that the number of mutant sequences
decreases with increasing level of functions [43, 44]. Moreover, when ranked by fit-
ness values, the top 1% (50) TEM-1 mutants from a saturated single mutant DMS
study [41] are enriched into 2 isolated clusters on the rightmost, along with 92 out of
105 ESBLs (Fig. 4e). Since the embeddings were extracted from the protein represen-
tation layer prior to scoring modules, these results indicate that µFormer learns the
function of interest of target proteins from sequences, beyond the number of mutations
in a mutant sequence.

2.4 Design high-functioning sequences with µFormer and
reinforcement learning

Next, we employed the TEM-1-cefotaxime system to investigate if µFormer can effec-
tively guide protein optimization. We designed a reinforcement learning (RL) method
to search for TEM-1 variants with 1-5 point mutations that possess enhanced activity
against cefotaxime, utilizing µFormer as the reward function to navigate the search
(Extended Data Fig. 4a). The RL method enables efficient exploration of the vast
mutant space comprising 6 × 1018 sequences, and incorporates Dirichlet noise into
the PPO algorithm [45], which is recently used to align language models with human
preferences [46, 47], to ensure the candidate diversity (Methods).

With the designed search framework, we recover 82,831 TEM-1 variants with
enhanced activities from 1 million mutant candidates (Fig. 5a and Extended Data
Fig. 4b-c). Compared to random mutagenesis, the mutation sites discovered by RL
searching with µFormer prediction scores are located closer to cefotaxime binding
site, and these sites are more closely packed in 3D structure of the beta lactamase
(Fig. 5b). The sequences of RL discovered drug-resistant variants, along with exper-
imentally observed TEM-1 variants, are mapped into a reduced 2D space (Fig. 5c).
The highly dispersed clusters, with high-order mutants representing local optima or
“peaks”, are consistent with the rugged nature of fitness landscapes. While ESBLs
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spread among diverse “peaks”, implying diverse paths towards high-functioning vari-
ants in nature, confirmed non-ESBLs and the majority of single mutants aggregate in
one cluster, indicating the presence of a local “valley”. Based on the ESBL mutants,
we characterized the dominant sites within each cluster and mapped these sites onto
3D structures (Fig. 5d). The dominant residues (in their wild type amino acids) are
shown in ball-stick representations with sizes proportional to the observed frequen-
cies, while the modelled cefotaxime (see Method) is shown in bond representations.
We observed distinct features in the dominant mutation sites for five clusters shown in
Figure 5d. Interestingly, although the mutation sites are spread over TEM-1 protein,
we observed at least one mutation occurs in the close vicinity of the substrate bind-
ing site, implying that both local chemistry environments near the binding site and
the global conformation changes are playing roles in cefotaxime binding and catalysis.
We also observed that the most frequently observed mutation sites are either in loop
region (such as E102, G236 and E237) or in the structured region but close to loops
(such as M180 and T261). With an effective fitness prediction model and an efficient
reinforcement learning framework, we successfully explored an enormous mutant space
of TEM-1 and identified high-order variants with potentially significantly enhanced
activity against cefotaxime spread across a rugged fitness landscape, for the first time.
Through this example, we demonstrate that µFormer can serve as a powerful tool for
predicting drug-resistant variants for given drug targets.

2.5 µFormer enables generalization to unseen residues in
target proteins

Considering that saturated single-point mutagenesis assays can be impractical to probe
protein fitness landscapes at large scales, we next investigated whether µFormer could
generalize to residues unseen by the model. We used a saturated mutational effect assay
of GB1 single and double mutants [37] and followed the single-to-multi setting afore-
mentioned. We randomly selected 20%, 40%, 60%, and 80% of GB1 protein residues
and trained the models with single mutant data exclusively covering these residues.
For µFormer, we decreased the size of the supervised scoring modules to avoid over-
fitting (denoted as µFormer-SS). Subsequently, all prediction models were evaluated
with saturated double mutants. We compared µFormer to Ridge, the model demon-
strating favorable performance in general evaluation. With five random repeats for
each selection ratio, we found that µFormer exhibited higher data efficiency and less
sensitivity to the size of training data, achieving an average Spearman ρ of 0.46 when
only 20% of residues were used for training (Fig. 6a). Furthermore, for each ratio and
each repeat, we stratified the test dataset based on whether the two mutation sites
were present in the training data (Fig. 6b). Under the 20% setting, µFormer reached
an average Spearman ρ of 0.36 when neither of the residues were seen (2/2 unseen)
and 0.64 when one of the residues was seen (1/2 unseen) (Fig. 6c). These results col-
lectively indicate the data efficiency and generalization ability of µFormer, leading to
the conclusion that µFormer can predict protein fitness and guide protein sequence
design even with very limited data on the target protein.
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2.6 Ablation studies reveal the contribution of each
component in µFormer

Lastly, to assess the contribution of each component in µFormer, we conducted a
series of ablation studies following the single-to-multi setting. As shown in Fig. 6d,
omitting the language model results in the most significant drop in the performance
of high-order mutational effect prediction, indicating the crucial role of pre-training
in supervised tasks with limited labeled data. Meanwhile, scoring modules at differ-
ent levels exhibit diverse roles for different target proteins, and combing the three
modules results in the most robust performance (Fig. 6d). Moreover, to demonstrate
that the multi-level scoring module design, rather than the model size or other fac-
tors, determines µFormer’s superior performance, we benchmarked µFormer against
three baselines on an additional dataset, FLIP GB1 [30], a landscape focusing on four
epistatic sites in GB1 protein with high mutational space coverage. µFormer greatly
outperforms ECNet, the learning-based method that also utilizes a language model, in
all three settings provided by the benchmark dataset (Fig. 6e). Additionally, replacing
the language model in ECNet with µFormer’s language model (ECNet w/ µFormer
encoder) does not substantially improve performance, and a µFormer variation with
a model size similar to ECNet (µFormer-S) exhibits a more similar performance to
µFormer (Fig. 6e). Thus, we conclude that the design of µFormer is essential for the
state-of-the-art performance in accurate fitness modeling.

3 Discussion

Previous studies have demonstrated that sequence-based protein language models can
lead to promising results in protein research, such as enzyme function prediction [48],
antibody design [49], and enzyme optimization [50]. In this study, we developed a
sequence-based protein language model framework, µFormer, which can generalize to
the property predictions for diverse types of proteins. We further demonstrated its per-
formance in enzyme optimizations through efficient fitness prediction. Our model, with
the protein language model and the three scoring modules targeting protein features
at residue/motif/sequence levels, is adaptable to various fitness prediction scenar-
ios. It achieves state-of-the-art performance on nearly all tasks, including high-order
mutants, epistatic effects, high-functioning sequences, indel mutations, and more. We
also highlight the data efficiency and generalization ability of µFormer, as well as the
significance of µFormer’s model design in achieving its performance.

We propose a prediction task to assess µFormer’s performance in practice. While
the mutational effect of TEM-1 against ampicillin has been widely studied, no
approaches have focused on TEM-1’s gain-of-activity against cefotaxime. A major
challenge for the latter task arises from the fact that high-order TEM-1 mutants can
lead to a drastic increase in cefotaxime hydrolysis activity, while the experimental data
(such as DMS) covers only single mutants. This necessitates a strong generalization
ability of the prediction method for both high-order mutants and out-of-distribution
prediction. We show that µFormer effectively recover high-order, high-functional
mutants against cefotaxime in the clinical TEM-1 isolates dataset we curated. Addi-
tionally, we have identified variants with an activity up to 10,000 times higher than
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that of the wildtype TEM-1. Both findings serve as robust evidence of µFormer’s capa-
bilities. Furthermore, we reveal how µFormer can guide efficient mutant search. By
coupling µFormer with a reinforcement learning framework, we have explored a protein
mutant space consisting of 6×1018 sequences and identified rich TEM-1 variants with
up to 5-point mutations that are expected to possess enhanced activity against cefo-
taxime. The results highlight the effectiveness of our pipeline in discovering promising
protein variants that can be further investigated and validated experimentally, thus
paving the way for designing new proteins tailored for specific applications.

In µFormer, supervised scorer modules demand experimental data for the protein
of interest to make predictions, which may limit its application due to the scarcity or
inaccessibility of experimental data in practice. While µFormer can be easily applied
in its zero-shot mode, we believe that the “fine-tune” mode offers improved accuracy
in fitness landscape prediction. As Biswas et al. [4] mentioned, zero-shot modeling
based purely on protein language models can guide us away from unfavored sequences
but cannot help us identify high-functioning sequences efficiently. Meanwhile, Stiffler
et al. [41] showed that TEM-1’s mutational effects on ampicillin and cefotaxime, both
of which are beta-lactams, are poorly correlated (Spearman ρ = 0.03, Extended Fig.
4a). Notably, residues crucial for hydrolysis of ampicillin can be detrimental for cefo-
taxime degradation (Extended Fig. 4b). These evidences jointly support the necessity
of phenotype-aware fine-tuning for target proteins.

Both structure and sequence-based methods have been proposed for protein fitness
landscape modeling. We focus on sequence features and protein language models, aside
from their success in other studies, for the following reasons: 1) Accessible sequence
data is much larger than high quality structural data, which can greatly benefit model
training and, therefore, its performance. 2) Most 3D structures, derived from either
experimental or computational approaches (e.g., Alphafold2 [51]), are not sensitive to
point mutations [52], making it challenging to link mutations to functional alterations.
3) Many protein design tasks, such as antibody designs, flexible regions of proteins that
may not have a stable 3D structure. However, it is well noted that structural infor-
mation may better inform the epistatic effects between residues, especially for those
within spatial neighborhood but sequentially apart. As such, integrating structural
features into the pipeline is expected in the future.

Despite the outstanding performance of µFormer, we anticipate improvements in
accuracy and generalizability of our method through several aspects. First, although
our method has demonstrated higher accuracy in capturing high-order mutational
epistatic effects compared to other approaches, there remains a gap between pre-
dictions and observations. In addition to the 3D structural information mentioned
above, incorporating a module explicitly predicting the strength of epistatic effects will
enhance performance. Second, to further reduce the need for training data, on way is
to develop a unified model for different kinds of phenotypes across multiple proteins by
encoding phenotypes and incorporating phenotype representations into the pipeline.
For instance, a single model may be capable of predicting TEM-1’s fitness on various
substrates, provided that ampicillin, cefotaxime, and other molecules are encoded and
exposed to the machine learning model. Lastly, the reliance on pre-trained language
models with a context constraint on sequence length may limit presented model’s
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performance for longer sequences (>1024 aa). This makes it necessary to develop a
pre-trained model capable of handling longer sequence contexts.

Protein fitness landscape modeling is becoming more and more important in recent
years, thanks to the advancement in both experimental measurements and computa-
tional quantification. Deep learning models start to demonstrate their potentials in
accurately predicting the fitness of proteins in the vast sequence space. Many models
depend on large training data, µFormer utilizes a pre-trained large model on protein
sequences, and achieves outstanding performances in multiple diverse prediction tasks.
It is foreseeable that deep learning models will further accelerate the research on pro-
tein fitness, and contribute to various fields including biologic drug design, protein
vaccine optimization, and protein engineering.

4 Methods

4.1 Fitness Landscape Model

Our proposed µFormer is a deep learning solution for mutation effect prediction, i.e.,
predicting the fitness score of a mutated protein sequence. Accurate predictions are
achieved in two steps: first, we pre-train a masked protein language model (LM) using
a large database of unlabeled protein sequences; second, we introduce three scoring
modules (each with a small set of new parameters) into the pre-trained protein LM
for the final fitness score prediction and train all parameters using a set of mutant
protein sequences with measured fitness scores. Figure 1 provides an overview of the
prediction model.

In this section, we briefly introduce the masked protein LM and the three scoring
modules.

4.1.1 Protein Language Model

The masked language model (MLM) [13, 26] is a self-supervised learning technique that
utilizes the Transformer encoder [53] to learn representations for unlabeled sequences.
During training, a random subset of tokens (typically 15%) in the input sequence are
masked, and the model is trained to recover the masked tokens, i.e., to minimize the
negative log likelihood of masked tokens:

Lmlm = Ex∈D

(
EM

∑
i∈M

(
− logPθ(xi |x/M )

))
, (1)

However, protein sequences differ significantly from natural language sentences.
Instead of conveying meaning through syntactic and semantic relationships between
words, a protein sequence consists of a linear arrangement of amino acids, each
with unique physicochemical properties. Together, the amino acids linked sequen-
tially determine a protein’s three-dimensional structure and function. The collective
effect of these residues as a whole reflects the sequence’s function, making it essen-
tial to learn protein sequence representations, in order to capture the inter-residue
co-variation within the sequences. Conventional masked language models for proteins
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model masked tokens (i.e., amino acid residues) by conditioning on unmasked tokens
only, while processing each token independently. In contrast, the pairwise masked lan-
guage model (PMLM) considers the dependency among masked tokens, taking into
account the joint probability of a token pair [54]. One crucial distinction between nat-
ural language sentences and protein sequences is that the joint probability cannot be
determined by the independent probability of each token. In other words,

P (xi, xj | x/M ) ̸= P (xi | x/M )× P (xj | x/M )

for the i-th and j-th positions, which represent masked tokens or residues in M . This
aspect is essential for capturing the co-evolutionary information between elements
within a protein sequence. This model is applied to generate a more accurate pre-
trained encoder for protein sequence representation.

The loss functions we adopted for protein language model pre-training include the
following:

Lpmlm = Ex∈D

EM

∑
i, j ∈M

(
− logPθ(xi, xj |x/M )

) , (2)

where D represents the set of input sequences, X is a sequence in D, x/M represents
the masked version of x where the indices of the masked tokens are M , xi is the i-th
token in the sequence x, and θ denotes the parameters to be learnt.

Each Transformer encoder layer consists of two modules: multi-head self-attention
(MHA) and position-wise feed-forward (FFN), which are connected through residual
connections and layer normalization, as shown below:

x = LayerNorm(x+MHA(x)), (3)

x = LayerNorm(x+ FFN(x)). (4)

The MLM head and the pairwise MLM head, which predict the masked tokens (i.e.,
residues in our problem) and the masked token pairs, are both two-layer MLPs that
maps the hidden vector at each position to a probability distribution over all possible
residues and residue pairs respectively.

In µFormer, we pre-train the protein LM with the UR50 dataset with about 30
million proteins.

4.1.2 Scoring Modules

Motivated by biological insights, we introduce three scoring modules on top of the
pre-trained protein LM to predict the fitness score for a protein sequence, which focus
on different levels of granularity of the protein sequence, as illustrated in Figure 1:

- The residual-level score Sresi(x), which characterizes the grammatical validity of
residues at each position conditioned on the entire sequence;

- The motif-level score SMotif(x), which aims to capture the local sequence infor-
mation around a residue beyond the residue granularity, considering that motif is
widely used in biological sequence modeling for different tasks [9];
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- The sequence-level score Sseq(x), is motivated by the observation that the semantics
of protein sequences are relevant to their properties/functions on the whole sequence
granularity [16, 28].

The final fitness score S(x) is calculated by

S(x) = Sresi(x) + Smotif(x) + Sseq(x). (5)

Residual-level Scoring Module

This module calculates the fitness score for a mutant-type sequence by averaging the
log-likelihood of the residual at each position, as follows:

Sresi(x; θ) =
1

L

L∑
i=1

log pθ(xi|x), (6)

where L is the length of the sequence x and pθ(xi|x) is the estimated likeli-
hood/probability of the i-th residue in the mutant-type sequence x by the protein LM
pθ.

As can be seen, this score only depends on the mutant-type sequence and does
not explicitly rely on its wild-type sequence. Notably, previous models [15, 18] often

use the term
∑

i∈M log
p(xi

mt)

p(xi
wt)

for mutational effect prediction, where M is the set of

mutated positions, and p(xi
mt) and p(xi

wt) are the estimated probabilities for the i-th
residues of the mutant-type and wild-type sequences, respectively. An obvious limita-
tion of this kind of models is that they assume the same length of the mutant-type
and wild-type sequences and thus cannot handle mutants resulted from indel (inser-
tion/deletion) operations. In contrast, our formulation does make the same-length
assumption, making it suitable for mutations with insertions or deletions.

Motif-level Scoring Module

Motifs, which are consequential sequence patterns, play a crucial role in protein
sequence modeling, widely used in bioinformatics research [26, 27]. In this work, we
leverage convolutional neural networks (CNNs) to capture the local features of pro-
tein sequences. Specifically, we employ a convolutional module with max pooling and
skipped connection to quantify the fitness from the local feature perspective. The score
is computed as

Smotif(x;α) = Linear(MaxPool(Conv(x) + x)), (7)

where x denotes the input sequence (of vectors) to the convolutional module, Conv
and MaxPool denote the convolution operation and max pooling operation, respec-
tively, and α is the parameters to be learnt in this module. The skipped connection
is used to combine the output of the convolutional module with the input sequence,
which helps to preserve the information from the original sequence. The score, Smotif,
is calculated by applying a linear transformation to the output of the convolutional
module.
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Sequence-level Scoring Module

It has been verified [15, 24] that the embedding of the [CLS] token in a natural language
sentence is a good representation of the whole sentence. Therefore, in this work, the
sequence-level scoring module in µFormer takes the embedding of the [CLS] token of a
protein sequence as its representation. A Multi-Layer Perceptron (MLP) is employed
to map the sequence representation to a fitness score, which is defined as

Sseq(x;β) = MLP(xcls), (8)

where xcls denotes the embedding of the [CLS] token generated by the pre-trained
protein LM and β is the parameters to be learnt for this scoring module.

4.1.3 Training

While the parameters θ of the protein LM is pre-trained using proteins without anno-
tations, we need a set of proteins with measured fitness scores to train the newly
introduced parameters (i.e., α and β) and to refine θ.

Let D denote a dataset consisting of pairs (x, y), where x represents a sequence
of the wild type or mutant protein, and y is the fitness score of the sequence. All the
parameters are trained to minimize Mean Absolute Error (MAE):

L =
∑

(x, y)∈D

|S(x; θ, α, β)− y|, (9)

where S(x; θ, α, β) is the final fitness score obtained by summing three scoring modules.
To prevent overfitting the training data, which is likely derived from limited obser-

vations in biological experiments, the scoring modules are designed with significantly
fewer parameters than the large, pre-trained encoder. Meanwhile, protein sequences
typically consist of hundreds of amino acids, each with 20 possible alternatives. This
necessitates a comparable number of parameters to effectively capture the information
they contain.

4.1.4 Implementation

The protein language models used in this study were pre-trained on the UR50 (release
2018 03) dataset. The base model was configured with a hidden size of 768, feed for-
ward dimension of 3072, 12 encoder layers, and 12 attention heads. Additionally, a
larger model was pre-trained with a hidden size of 1280 and 34 encoder layers. The
base model was trained with a maximum length of 512, while the larger model was
trained with a maximum length of 1024. Both models utilized non-learnable positional
encoding. During pre-training, the base model used the Adam optimizer with param-
eters (0.9, 0.98), a peak learning rate of 0.0003, and a clip norm of 1.0. The learning
rate was scheduled with a polynomial decay function, gradually decreasing after a
warm-up period of 20, 000 steps. The larger model followed a similar hyperparame-
ter configuration, with the peak learning rate set to 0.0001. Two models, µFormer-S
and µFormer-L, are built on these two pre-trained models to assess the performance,
with parameter sizes of 89 million and 670 million, respectively. Since µFormer can
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be utilized for zero-shot prediction without training, we denote the zero-shot version
of the model as µFormer-Zero. µFormer-S and µFormer-L are trained using the same
set of hyper-parameters across all datasets for a maximum of 300 epochs, with a hid-
den size of 256 and a motif scoring layer of 1. This indicates the potential for further
performance improvement by tuning hyper-parameters for specific datasets.

4.1.5 Datasets

FLIP [30]. The data is downloaded from Github: https://github.com/J-
SNACKKB/FLIP/tree/main/splits/. We apply the original train/valid/test splits for
evaluation, including the zero-shot models.

ProteinGym [5]. The data is downloaded from https://github.com/OATML-
Markslab/ProteinGym. The substitution dataset is composed of approximately 1.5
million variants from 87 assays. Considering modeling efficiency, assays with target
proteins longer than 1024 amino acids are removed, leaving 78 assays in the final anal-
ysis. The indel dataset is composed of approximately 300,000 mutants from 7 assays.
For evaluation, we randomly select 10% of records from each assay as a test set, for
all trained models including zero-shot models. The performances are reported on the
fixed hold-out test set for a fair comparison.

4.1.6 Evaluation Protocol

For the supervised learning setting, we apply the original data split scheme for the
FLIP benchmark, and evaluate the metrics fairly on the same hold-out test set. For the
datasets from ProteinGym, we randomly select 10% of records from each dataset as a
hold-out test set to evaluate all models rigorously, including the zero-shot models. The
performance numbers are reported on the fixed hold-out test set for a fair comparison.
Spearman’s rank correlation scores are recorded for each dataset.

4.1.7 Baselines

The multiple sequence alignments (MSAs) of the target wild-type sequences are
prepared in advance using HHblits, by searching against the Uniclust30 database.
For the ProteinGym datasets, the author provided MSAs are utilized. During our
experiments, all models requiring evolutionary information features, including site-
independent, EVE, EVmutation, DeepSequence, and ECNet, are trained on the same
MSAs.

For the Tranception [5] model, we downloaded weights of the largest model (denoted
as Tranception-L) from official website for zero-shot prediction. To generate zero-shot
predictions using ESM-1v [18], we evaluated the ensemble results of 5 checkpoints
downloaded from the official website. For the supervised setting of ESM-1v, we com-
pared the results for the mean over subset, which was referred to as ‘mut mean’ in the
FLIP benchmark [30]. This setting resulted in better overall performance than other
settings evaluated on the benchmark. In this setting, fitness scores were calculated
by regressions on sequence representations that were mean-pooled over the residues
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in the mutated region.

For the supervised models, we adopt the public implementations and retrained the
models on the same data splits for each dataset. Especially, for the Ridge [23] and the
CNN [30] models, we used the model architecture and hyperparameters implemented
by the FLIP codebase [30]. While for ECNet [22], we reproduced the ECNet model
using the open-sourced code provided by Luo et al [22]. Since ECNet both leverages
MSAs and labeled data, we retrained the models under the same settings while with
the prepared MSAs.

4.2 Reinforcement Learning

To explore the vast space of mutations and identify high-functioning mutants in the
protein landscape, we developed a reinforcement learning (RL) method that utilizes
the µFormer model as a reward function. In each episode, the RL agent sequentially
mutates a single-site residue until reaching a fixed horizon, such as 5. The goal of the
agent is to learn how to select mutation sites and types to optimize protein sequences.
The algorithm alternates between two phases: exploration and learning. During the
exploration phase, we employ a mutation site policy network and a mutation type
policy network to generate potentially high-functioning mutants, aided by Dirichlet
noise. During the learning phase, we use the µFormer model to label the generated
mutants, and update the policy networks to provide mutants with higher fitness scores.

4.2.1 Policy Networks for Mutation Site and Mutation Type
Selection

The RL agent mutates a single-site residue at each step of an episode. This involves
selecting a mutation site in the sequence and choosing a mutation type to apply. To
facilitate this, we develop two policy networks. The first one, called the mutation site
policy network, takes in both the wild-type sequence and the current mutant sequence,
which is represented by a binary matrix of size 20 × 2L1. The network determines
where changes should be made in the current mutant sequence. The second one, called
the mutation type policy network, takes in the wild-type sequence, current mutant
sequence, and the selected mutation site, which is represented by a binary matrix of
size 20 × 2L + L. The network determines the specific changes to be made at the
selected mutation site. To optimize both policy networks, we used the Proximal Policy
Optimization (PPO) algorithm [45], which is recently used to align language models
with human preference [46]. To stabilize the training of the policy networks, we train
two value networks that estimate the expected return of a given state. During training,
the policy network is updated based on the difference between the observed µFormer
reward and the predicted average value from the value networks, which is also referred
to as the advantage function. This helps the policy network to learn which actions
are more likely to lead to higher rewards and adjust its behavior accordingly. The loss

120 represents the number of types of amino acid and L is the length of the protein sequence.
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functions for updating both the policy network and value network are as follows:

Lpolicy(θ) = Et[min(rt(θ) ·At, clip(rt(θ), 1− ϵ, 1 + ϵ) ·At)],

where At =

∑N
i=1 Si(x)

N
− vϕ,

Lvalue(ϕ) = (

∑N
i=1 Si(x)

N
− vϕ)

2.

(10)

rt(θ) = πθ(a|s)
πθold

(a|s) denotes the probability ratio of the current policy πθ and the old

policy πθold , where θ denotes the parameters of either the mutation site policy network
or the mutation type policy network. To improve the robustness of the reward function,
we utilize a collection of µFormer models and calculate their average value as the
reward, denoted as Si(x) for the mutant sequence x from the i-th µFormer model. The
advantage function At is obtained by subtracting the observed µFormer reward from
the estimated value vϕ. The policy loss Lpolicy(θ) is designed to increase the probability
of actions with positive advantage functions, while avoiding significant deviations from
the old policy to prevent performance collapse. The hyperparameter ϵ controls the size
of the trust region for each policy update. On the other hand, the value loss Lvalue(ϕ)
is a mean-squared error loss that ensures the value network accurately predicts the
expected final reward.

4.2.2 Adding Dirichlet Noise into Exploration

To explore the vast mutation space and discover diverse high-profile mutants, we
incorporate a Dirichlet exploration noise into the generation of mutants during the
exploration phase, which helps prevent getting trapped in local optima. Specifically,
the Dirichlet noise is added to the probabilities from the policy networks, such that
P (s, a) = (1 − ϵ) · πθ(a|s) + ϵ · η, where η ∼ dirichlet(0.03) and ϵ = 0.25. This
noise ensures that all moves could be attempted, while still favoring mutations with
higher fitness scores. During the learning phase, the Dirichlet noise introduced may
result in an action with low probability from the policy network πθ, which can cause
the importance ratio rt(θ) to explode. To address this issue, we define a new ratio

rt(θ) =
P (s,a)

Pold(s,a)
to smooth the training process.

4.3 Result analysis

The complex structure of TEM1 and cefotaxime was constructed based on the
PDB structures TEM-1 (PDB ID: 1TEM) and cefotaxime in complex with CTX-
M-9 S70G (PDB ID: 3HLW). The protein structures were aligned to obtained the
translation-rotation matrix, which is applied to the cefotaxime coordinates to get a
structural model of the TEM1-cefotaxime complex for downstream analysis. The dis-
tances between the center of cefotaxime and each residue were calculated using UCSF
Chimera 1.16.
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Data Availability.
To be updated soon.

Code Availability.
To be updated soon.
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Fig. 1 An Overview of µFormer. µFormer is a two-step solution for mutational effect prediction,
i.e., predicting the fitness score of a mutated protein sequence: first, we pre-train a masked protein
language model (LM) using a large database of unlabeled proteins; second, we introduce three scoring
modules (with a small set of new parameters) into the pre-trained protein LM for fitness score
prediction and train all parameters using a set of mutated protein sequences with measured fitness
scores. Left) Conventional masked language models for proteins model masked tokens (i.e., amino
acid residues) by conditioning on unmasked tokens only, while processing each token independently.
In contrast, µFormer exploits the pairwise masked language model (PMLM) which considers the
dependency among masked tokens, taking into account the joint probability of a token pair. Right)
Motivated by biological insights, we introduce three scoring modules on top of the pre-trained protein
LM to predict the fitness score for a protein sequence, which focus on different granularities of
the protein sequence: 1) The residual-level score which characterizes the grammatical validity of
residues at each position conditioned on the entire sequence; 2) The motif-level score which aims to
capture the local sequence information around a residue beyond the residue granularity, considering
that motif is widely used in biological sequence modeling for different tasks; 3) The sequence-level
score is motivated by the observation that the semantics of protein sequences are relevant to their
properties/functions on the whole sequence granularity.
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Fig. 2 Quantitative comparison of µFormer with the state-of-the-art mutational effect predic-
tion approaches. a-b) µFormer outperforms alternative approaches on ProteinGym benchmark. a)
Spearman ρ statistics on 78 ProteinGym datasets of µFormer and 9 alternative approaches. Blue:
learning-based approaches, including µFormer, Ridge, ECNet, and CNN. Green: zero-shot approaches,
including Tranception-L and ESM-1v. Blue: MSA-based approaches, including EVE, EVmutation,
DeepSequence, and Site independent. Center line, median; box limits, upper and lower quartiles;
whiskers, 1.5x interquartile range; diamond points, outliers. b) Pairwise comparison between µFormer
and other approaches. Each data point represents 1 ProteinGym dataset. The dot size is proportional
to the size of training data logarithmically. The darkness is proportional to the number of homologous
sequences of the target protein, with darker color representing less homologous sequences. Spearman
ρ is used to quantify the performance of corresponding approaches. P values are computed with the
one-sided rank-sum test. c) µFormer outperforms alternative approaches on indel-included bench-
mark datasets. ProteinGym Indel: cross-protein indel-included mutational effect dataset collected by
Notin et al. [5]. FILP AAV: VP1 indel and substitution mutational effect dataset measured and pro-
cessed by Bryant et al. [29] and Dallago et al. [30] respectively. Mut: naturally occurring mutants.
Des: designed sequences. Mut-Des: All natural sequences are assigned to train; all designed sequences
are assigned to test. Des-Mut: All designed sequences are assigned to train; all designed sequences
are assigned to test. n-vs-rest: Mutants with mutation sites less than or equal to n are assigned to
train, the rest of the data with high-order mutations are assigned to test.
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data and test data for each protein are listed at the bottom. b) Spearman ρ between predicted and
experimentally measured epistatic scores for high-order mutants of 9 proteins with diverse functions.
Red: µFormer. Blue: Ridge. Green: ECNet. c) Predicted fitness values from µFormer, Ridge and
ECNet in comparison to epistasis-free estimation (additive model) and experimentally measured
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of perfect prediction is normalized to 1. d) Mean squared error (MSE) of µFormer, Ridge and ECNet
in comparison to the additive model for predictions of high-order mutants displaying the top20%
absolute epistatic scores in each protein.
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Fig. 4 µFormer effectively identifies high-functioning variants with multi-point mutations. a) Recall
score of µFormer (red), Ridge (blue) and ECNet (green) for the Top K high-order mutants of 9
different proteins ranked by fitness values. K is equal to 100, 500, or customized values marked with
asterisks. The customized values are determined by the number of high-order mutants with fitness
values higher than all values in the training data (ultra-high value mutants). b) The area under
precision-recall curve (auPRC) score for µFormer in classifying ultra-high value mutants in GB1
(n=681), GRB2 (n=426), YAP1 (n=488), and VP1 (n=131) (top). The relative improvements of
µFormer compared to Ridge (middle) and ECNet (bottom) are also shown. c) The predicted fitness
scores of extended-spectrum beta-lactamases (ESBLs) are significantly higher than those of non-ESBL
clinical variants. The scores are normalized to wildtype (which equals 1). P values were computed
with the one-sided rank-sum test. Center line, median; box limits, upper and lower quartiles; whiskers,
1.5x interquartile range; diamond points, outliers. d) Predicted fitness values from µFormer are highly
correlated (Spearman ρ = 0.92) with the minimum inhibitory concentration (MIC) measured by
Weinreich et al [42]. e) t-SNE visualization of TEM-1 mutant embeddings extracted from µFormer.
Red dots represent ESBLs. Other dots, colored by quantile ranks of experimentally measured fitness
values, represent TEM-1 single mutants generated by Stiffler et al [41]. The bottom panel shows the
average fitness score along PC1.
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Fig. 5 Design high-functioning sequences with µFormer and reinforcement learning. a) Predicted
fitness scores of single mutants (training dataset), ESBLs, and RL-searched mutants. The score of
wild-type TEM-1 was normalized to 1. Center line, median; box limits, upper and lower quartiles;
whiskers, 1.5x interquartile range; points, outliers. b) Quantitative mutation properties in ESBLs,
RL-searched mutants, and multi-point mutants generated by random mutagenesis. From left to right:
the distribution of distances of individual mutated residues to the docked small molecule, the distri-
bution of pairwise distances between mutated resides, and the distribution of average distances of all
mutations in each variant to the docked small molecule. Center line, median; box limits, upper and
lower quartiles; whiskers, 1.5x interquartile range; points, outliers. c). t-SNE visualization of TEM-1
mutant embeddings extracted from µFormer. The overlaid labels, from left to right, indicate mutant
types, predicted fitness scores, clusters, and the number of mutations in each variant, respectively.
Clustering was performed using the K-Means clustering approach.
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indicate an improvement in performance. The last row displays the average performance change over
9 proteins. The plus/minus signs at the bottom indicate the presence/removal of the corresponding
component. b) Spearman ρ statistics on 3 FLIP GB1 datasets of µFormer, ECNet, and their variants.
ECNet w/ µFormer encoder replaces the language model in ECNet with µFormer’s language model.
µFormer-S is a µFormer variation with a model size similar to ECNet. c) Performance of µFormer (red)
and Ridge (blue) on GB1 double mutants with varying training data size. Here, µFormer is a µFormer
variation with a smaller supervised scorer module size (µFormer-SS). Training data ratio indicates
the number of residues used for training versus the total number of amino acids in GB1. The training
data size equals 209, 418, 627, 836, and 1045 for 20%, 40%, 60%, 80%, and 100%, respectively. All
scores were evaluated on GB1 saturated double mutants (n=535, 917). Shades: standard deviation.
d) Illustration of test data split, using a protein of 10 residues and the 40% setting as an example.
2/2 unseen: neither of the mutated residues in double mutants are seen by the model. 1/2 unseen:
one and only one of the mutated residues in double mutants are seen by the model. e) Performance
of µFormer (red) and Ridge (blue) on different splits of GB1 double mutants. Training data split
criteria are the same as in c). Center line, median; box limits, upper and lower quartiles; whiskers,
1.5x interquartile range; points, outliers.
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Extended Data Figure 1. Visualization of embeddings on single mutants and high-order 
mutants (muti mutants) using t-SNE. First row: Illustration of embeddings on APP, GFP, and 
Pab1 extracted from pre-trained μFormer model. Second row: Illustration of embeddings on 
APP, GFP, and Pab1 extracted from fine-tuned μFormer model. Third row: Illustration of 
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embeddings on PSD-95, VP1, and YAP1 extracted from pre-trained μFormer model. Second 
row: Illustration of embeddings on PSD-95, VP1, and YAP1 extracted from fine-tuned 
μFormer model. The color scheme illustrates the fitness scores, with lighter shades 
indicating higher scores. Blurred background markers represent high-order mutants, while 
clear foreground markers denote single mutants.  
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Extended Data Figure 2. μFormer accurately distinguish gain-of-function mutations 
from loss-of-function mutations. Upper: the area under the receiver operating 
characteristic (auROC) score for different models on various proteins. Bottom: the area 
under precision-recall curve (auPRC) score for different models on various proteins. 
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Extended Data Figure 3. Percentage of single-point mutants and high-order mutants in 
each clinical type of TEM-1. The count number for each group is marked on the plot.  
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Extended Data Figure 4. Reinforcement learning supports efficient and comprehensive 
exploration of the vast protein mutant space. a) Diagram of reinforcement learning-based 
search pipeline. b). Predicted fitness scores of n-point mutants. The score of wildtype TEM-1 is 
normalized to 1. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5x 
interquartile range; points, outliers. c) Composition mutants recovered by reinforcement 
research. The number n indicates the number of mutations in each mutant.  
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Extended Data Figure 5. Correlation between TEM-1's mutational effects on ampicillin 
and cefotaxime is weak. a) Spearman ρ and Pearson r representing the correlation between 

TEM-1’s mutational effects on cefotaxime and ampicillin. The data on ampicillin was 
collected from 2 different studies. b) For residues R162 and G236, the same set of mutations 
exhibits contrasting effects on protein’s activity against cefotaxime and ampicillin.  
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