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Abstract

1. Biodiversity monitoring is undergoing a revolution, with fauna observations data being increasingly

gathered continuously over extended periods, through sensors like camera traps and acoustic recorders, or via

opportunistic observations. These data are often analysed with discrete-time ecological models, requiring the

transformation of continuously collected data into arbitrarily chosen non-independent discrete time intervals.

To overcome this issue, ecologists are increasingly turning to the existing continuous-time models in the

literature. Closer to the real detection process, they are lesser known than discrete-time models, not always

easily accessible, and can be more complex. Focusing on occupancy models, a type of species distribution

models, we asked ourselves: Should we dedicate time and effort to learning and using these continuous-time

models, or can we go on using discrete-time models?

2. We conducted a comparative simulation study using data generated within a continuous-time framework.

We assessed the performance of five static occupancy models with varying detection processes: discrete

detection/non-detection process, discrete count process, continuous-time Poisson process, and two types of

modulated Poisson processes. Our goal was to assess their abilities to estimate occupancy probability with

continuously collected data. We applied all models to empirical lynx data as an illustrative example.

3. In scenarios with easily detectable animals, we found that all models accurately estimated occupancy. All

models reached their limits with highly elusive animals. Variation in discretisation intervals had minimal

impact on the discrete models’ capacity to estimate occupancy accurately.

4. Our study underscores that opting for continuous-time models with an increased number of parameters,

aiming to get closer to the sensor detection process, may not offer substantial advantages over simpler models

when the sole aim is to accurately estimate occupancy. Model choice can thus be driven by practical

considerations such as data availability or implementation time. However, occupancy models can encompass

goals beyond estimating occupancy probability. Continuous-time models, particularly those considering

temporal variations in detection, can offer valuable insights into specific species behaviour and broader

ecological inquiries. We hope that our findings offer valuable guidance for researchers and practitioners

working with continuously collected data in wildlife monitoring and modelling.

Keywords Camera trap, Continuous-time model, Discrete-time model, Markov Modulated Poisson Process,

Occupancy modelling, Poisson Process, Sensors, Wildlife monitoring
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1 Introduction1

The alarming decline of biodiversity has led to a scientific, ethical, and legal need to better understand its2

drivers in order to protect nature more effectively (IPBES, 2019). With the reinforcement of regulations and3

recommendations for achieving the objectives of no net loss of biodiversity, the need for wildlife monitoring is4

growing rapidly (UNECE, 2023). Concurrently, the development of increasingly sophisticated and accessible5

technologies is leading to a digital revolution. Sensors, such as camera traps or autonomous recording units,6

are now available to address current ecological challenges (Burton et al., 2015; Potamitis et al., 2014).7

Sensors offer many advantages compared to traditional field observations by naturalists. They are8

non-invasive, often cost-effective, particularly adapted to observe some elusive or shy species, potentially in9

challenging terrain, and they can improve reproducibility and protocol standardisation (Steenweg et al., 2017;10

Zwerts et al., 2021). Sensors are therefore good candidates for setting up large-scale monitoring (Oliver et al.,11

2023) and collaborations such as Biodiversity Observation Networks (Gonzalez et al., 2023). Policies now12

emphasise the use of sensors, big data and artificial intelligence to improve knowledge and understanding of13

species and ecosystems, such as the International Union for Conservation of Nature (IUCN) Nature 203014

programme (IUCN, 2021) or the Biodiversa+ European Biodiversity Partnership (Høye et al., 2022; Vihervaara15

et al., 2023).16

We often use ecological models to analyse observation data for monitoring purposes. These models typically17

assess the presence (Guillera-Arroita, 2017) or abundance (Gilbert et al., 2021) of a species, often while18

considering the relation with environmental factors. They can be used for a particular species or within a19

multi-species framework (Pollock et al., 2014). These models produce actionable knowledge about species,20

influencing our actions and our approach to biodiversity conservation. For example, the area of occupancy,21

i.e. the spatial distribution where a species is present, is one of the criterion used by the IUCN to establish the22

Red list of Ecosystems (Rodríguez et al., 2015).23

In this paper, we focus on occupancy models, a category of ecological models aiming to estimate species24

presence. Occupancy models, as introduced by MacKenzie et al. (2002), are hierarchical models that include25

two sub-models. The first sub-model describes the ecological process, occupancy, typically of interest to26

ecologists. The second sub-model accounts for measurement errors arising from imperfect detection. A site is27

said occupied when at least one individual went through it (Emmet et al., 2021). At a broader scale, occupancy28

corresponds to the proportion of sites within a study area that are occupied by the species (MacKenzie et al.,29

2002). The occupancy model proposed by MacKenzie et al. (2002) uses binary data (0 if the species was not30

detected, 1 if it was) at each site during each sampling occasion. This model has underpinned numerous31

occupancy studies in the last two decades, and was refined or adapted by many modelers (Bailey et al., 2014).32

These adaptations have given rise to new occupancy models, most of them aiming to mirror more closely the33

expected ecological or detection conditions, impacting the input data required by each model. We here focus34

on static occupancy models, in which the occupancy state of a site is assumed constant, without35
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extinction-colonisation processes, as opposed to dynamic occupancy models.36

Ecological models, including occupancy models, have historically been developed to analyse observation data37

collected by field operators during one or several short sampling occasions (Bailey et al., 2014). However, the38

deployment of sensors involves continuous data collection, often over long time periods (e.g. Cove et al., 2021;39

Cusack et al., 2015; Moore et al., 2020). For instance, Kays et al. (2020) recommend deploying sensors for three40

to five weeks at multiple locations to estimate relative abundance, occupancy, or species richness. Short-term41

deployments can equate traditional discrete sampling occasions. However, when sensors are stationed at the42

same location for extended periods, data is often discretised in order to use traditional models in discrete time.43

We suggest using the term session for these discretised time intervals, because they differ from traditional44

sampling occasions in two respects: (1) sampling occasions are determined before the data collection,45

whereas the discretisation is done after the data has been collected; and (2) sessions occur consecutively46

without any gaps between them, while the traditional sampling occasions are separated by periods of time47

when the site is not monitored.48

Occupancy discrete-time models have been around for 20 years and are commonly used because they are49

relatively simple to implement. However, continuous-time ecological modelling is not new. The fist mention50

of a continuous-time model in the capture-recapture literature dates back to Becker (1984). It was not until the51

advent of sensors, which highlighted the limitations of discrete-time models, that modelers began to turn52

towards continuous-time models (Kellner et al., 2022; Rushing, 2023; Schofield et al., 2018). Nonetheless,53

continuous-time models are not a universal cure-all. Each family of models have their pros and cons.54

Discretisation simplifies the information. Discretisation is, in other words, an aggregation of data into55

sessions. This aggregation simplifies the data and blurs the residual variability, which can help in interpreting56

broad observed trends. But simplification involves information loss. Because accurately estimating occupancy57

relies on precisely assessing imperfect detection (Kellner & Swihart, 2014; Kéry & Schmidt, 2008), having more58

information about detection patterns could provide valuable insights, helping to disentangle the observation59

process from the ecological process of interest. This may lead to more accurate estimations of static60

occupancy. Dynamic occupancy models could represent the occupancy state in continuous time to go even61

further, potentially revealing fine patterns with ecological significance.62

Discretisation is arbitrary. Researchers usually choose the aggregation period so that the detection63

probability is not too low, and the occupancy probability is not estimated at its boundaries (close to 0 or 1).64

Schofield et al. (2018) highlighted that the chosen session length can impact abundance estimates with65

discrete-time capture-recapture models. Hence, it most likely impacts occupancy models outputs, as66

capture-recapture and occupancy models are very similar (the individual capture history equates the site67

"detection history", MacKenzie et al., 2002). Eliminating arbitrary discretisation in occupancy modelling can68

enhance the method objectivity and reproducibility, and is expected to improve result reliability, at least69

compared to a non-optimal discretisation.70
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Model complexity and data availability. Models with a continuous-time detection process are likely to71

overcome the limitations mentioned above. Furthermore, harnessing the richness of continuous-time data,72

researchers can customise models to replicate species-specific observation processes, providing valuable73

insights into animal behaviour and activity patterns (e.g. Distiller et al., 2020, with continuous-time spatial74

capture-recapture models). However, the potential drawback is the complexity of such models, that may75

render them less adapted to derive ecological insights such as occupancy from small data sets. Additionally, if76

the system is not assumed to be constant over time, continuous-time covariates are necessary for a77

continuous-time model, and these covariates are often not readily available.78

Importance of discretisation versus distribution law. In response to Schofield et al. (2018),79

Zhang and Bonner (2020) demonstrated that differences in inference with capture-recapture discrete-time80

models were not attributed to varying data discretisation scales but rather to the choice of the distribution law81

for modelling the detection process. When dealing with mathematically equivalent models, both continuous-82

and discrete-time models would yield equivalent outcomes. Consequently, the decision between discrete- and83

continuous-time models is less significant and impactful than choosing a model with a different distribution.84

We also note that the choice of distribution law to model detection influences the model parameters. For85

instance, we find detection rates more practical than detection probabilities, improving the comparability of86

studies as probabilities are only meaningful at the scale of the discretised period.87

Users select an occupancy model depending on a trade-off between model performance and implementation88

cost. This cost encompasses factors such as model familiarity, programming if necessary, and accessibility to89

data, all of which can be influenced by the complexity of the model. Existing comparisons between discrete-90

and continuous-time models are presented in papers introducing new continuous models, focusing on91

evaluating the new model formulation, and often limited to just two models92

(Emmet et al., 2021; Guillera-Arroita et al., 2011). Other studies compare models that use93

time-to-first-detection data with those using repeated measures to improve field survey methods conducted94

by human observers (Halstead et al., 2021; Henry et al., 2020; Priyadarshani et al., 2022).95

In this paper, we investigate whether continuous-time modelling is beneficial for occupancy estimation using96

sensor-based observation data and under which circumstances. We conduct a comprehensive comparison of97

five occupancy models, varying in the complexity of their detection processes. These five models cover a large98

scope of single-species static occupancy models with no false positives (MacKenzie et al., 2004). We omitted99

time-to-first-detection models. Although often appropriate to analyse data from time-optimised100

human-based surveys101

(Halstead et al., 2021; Henry et al., 2020; Priyadarshani et al., 2022; Priyadarshani et al., 2024), using only the102

first detection from sensor-based data amounts to discarding lots of informative data. Therefore, we103

considered only time-to-each-detection for continuous-time models. We also omitted models that consider104

abundance-induced detection heterogeneity, like the Royle-Nichols model (Royle & Nichols, 2003).105
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We compare the ability of occupancy models to retrieve the simulated occupancy probability using106

complementary comparison metrics, measuring accuracy, bias, and precision (Liemohn et al., 2021). To fully107

control the environment, we simulate continuous detection data. This allows us to explore how the rarity and108

elusiveness of the target species influences the model’s ability to retrieve the occupancy. We also simulate109

extreme cases to refine the models’ application limits. As an illustrative example, we used the five compared110

models to analyse continuously collected empirical lynx (Lynx lynx) data observed through camera traps. We111

aim to offer recommendations for choosing discrete- or continuous-time models and to discuss various112

considerations that researchers should address when analysing fauna observation data collected through113

sensors.114

2 Material and methods115

2.1 Occupancy models116

In this section, we describe the five hierarchical occupancy models compared, with an ecological process117

modelling presence or occupancy, and an observation process addressing imperfect detection. The occupancy118

sub-model is consistent across all five models, while the detection sub-model differs. Fig. 1 provides an119

overview of the formulation and input data of the considered models, which are described in detail in the120

following paragraphs. The mathematical notation is listed in Table 1.121

2.1.1 Occupancy sub-model122

Across all five models, the occupancy sub-model is identical, assuming that the occupancy state of site i , Zi ,123

follows a Bernoulli distribution with parameter ψ, the occupancy probability. The sites are assumed124

independent, regarding both occupancy and detection.125

Zi
i .i .d .∼ Bernoulli(ψ), i = 1, . . . , I . (1)

If the species is detected at least once in a site, that site is considered occupied, assuming no false positives.126

Temporal changes in occupancy are not considered; for simplicity, we focus on single-season occupancy127

models with no covariates.128

2.1.2 Detection sub-model129

Two models rely on the time discretisation of the sensor-based observation data (Bernoulli Process (BP) and130

Counting Occurrences Process (COP)), while three others consider the detection as the realisation of a131

continuous-time stochastic process (Poisson Process (PP), Two-state Markov Modulated Poisson Process132

(2-MMPP) and Interrupted Poisson Process (IPP)). Their growing complexity, associated with an expected133

closer alignment with reality, influences the input data required for each model. Our primary focus is to134
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(a) Bernoulli Process occupancy model
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1
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0
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(b) Counting Occurrences Process occupancy model
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1

0

Exp(λ) Exp(λ) . . .Detection Detection

Poisson process Ni detections

No detection

ti 1, . . . , ti Ni

Data Time of detections

(c) Poisson Process occupancy model

Bern(ψ)

Present
in site i

Absent
in site i

1

0

Exp(λ1) Exp(λ1) . . .Detection Detection

Poisson process in state 1

Exp(λ2) Exp(λ2) . . .Detection Detection

Poisson process in state 2

Exp(µ12) Exp(µ21)

Ni detections

No detection

ti 1, . . . , ti Ni

Data Time of detections

(d) Two-state Markov Modulated Poisson Process occupancy model

Bern(ψ)

Present
in site i

Absent
in site i

1

0

In no-detection state

Exp(λ2) Exp(λ2) . . .Detection Detection

Poisson process in detection state

Exp(µ12) Exp(µ21)
Ni detections

No detection

ti 1, . . . , ti Ni

Data Time of detections

(e) Interrupted Poisson Process occupancy model

Figure 1: Five occupancy models compared. With: ψ the occupancy probability; (a) BP p the detection probability;
Yi s the detection/non detection observed in site i during session s; (b) COP λ the detection rate; Ts the duration of a
session; Ni s the number of detections in site i during session s; (c) PP λ the detection rate; Ni the number of detections
in site i ; ti k the time of the kth detection in site i ; (d) 2-MMPP and (e) IPP λ1 the detection rate in state 1; λ2 the detection
rate in state 2; µ12 the switching rate from state 1 to state 2; µ21 the switching rate from state 2 to state 1; Ni the number of
detections in site i ; ti k the time of the kth detection in site i .
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Table 1: Notation.

I Number of sites

ψ Occupancy probability

Zi Occupancy state of site i (present = 1, absent = 0)

Ti Deployment’s duration in site i

Ni t Number of detections of the species in site i during t

pt Probability of detecting at least one individual during t

nsi m Number of simulations per scenario

Discrete-time occupancy models

Ts Duration of a discretised session

S Number of sessions during Ti

Bernoulli Process

Yi s Species detected in site i during session s (detection = 1, non-detection = 0)

p Probability of detecting at least one individual during Ts

Counting Occurrences Process

Ni s Number of detections of the species in site i during session s

λ Detection rate

Continuous-time occupancy models

Ni Total number of detections of the species in site i

ti k Time of the kth detection in site i

Poisson Process

λ Detection rate

Two-state Markov Modulated Poisson Process ; Interrupted Poisson Process

λ1 Detection rate in state 1, with λ1 = 0 for the IPP model

λ2 Detection rate in state 2

µ12 Switching rate from state 1 to state 2

µ21 Switching rate from state 2 to state 1

π1 Time-ratio spent in state 1 when the system is stationary

π2 Time-ratio spent in state 2 when the system is stationary
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determine if more complex representations of the detection process lead to improved estimates of occupancy135

probability, with minimised error and bias.136

Bernoulli Process (BP) In the classical occupancy model proposed by MacKenzie et al. (2002), the raw data137

are aggregated and simplified. The continuous data are aggregated into S sessions of duration Ts , and simplified138

into the observation Yi s , which is 1 if at least one detection occurs during session s at site i , and 0 otherwise.139

Conditionally on the occupancy state Zi of site i , the model assumes that the distribution of the variable of140

interest Y depends on p the probability of detecting at least one individual during a session:141

Yi s |Zi = 1 i .i .d∼ Bernoulli(p), i = 1, . . . , I , s = 1, . . .S,

Yi s |Zi = 0 i .i .d∼ 0
(2)

Counting Occurrences Process (COP) In the BP model, detecting few or many individuals during a session142

leads to the same observation Yi s = 1, although it corresponds to very different situations. We simplified the143

approach proposed by Emmet et al. (2021) to avoid references to secondary sessions and to use probability. As144

a result, its likelihood has been adjusted and is provided in supplementary information.145

Although the data is aggregated by session like in the BP model, more information is retained since this146

approach models Ni s , the number of individuals seen at site i during session s. Conditionally on the147

occupancy state Zi of site i , as it is typical for count data, the COP model assumes that the number of148

detections Ni s follows a Poisson distribution of parameter λ the detection rate multiplied by Ts the session149

duration:150

Ni s |Zi = 1 i .i .d∼ Poisson(λTs), i = 1, . . . , I , s = 1, . . .S,

Ni s |Zi = 0 i .i .d∼ 0
(3)

In practical terms, if the time-unit is a day, then when the detection rate λ = 3, there are on average three151

individuals detected by day. If each session lasts a week, Ts = 7, then there are on average λTs = 3× 7 = 21152

individuals detected per session. The probability of detecting k individuals during a session is (λTs )k e−λTs/k !.153

With this example, in an occupied site during a session, there is a 8.67% chance of detecting 21 individuals, a154

0.35% chance for 10 individuals, and a 7.58e−8% chance of detecting nothing.155

Poisson Process (PP) Unlike the two previous models which required data discretisation, the PP occupancy156

model proposed by Guillera-Arroita et al. (2011) uses the time of detections as data, with ti j the time of the j th
157

detection in site i . These raw, unaggregated data retain all of its information. The time of detections are158

transformed into interdetection times to calculate the likelihood of these data given the model and its159

parameters. The first interdetection time is usually defined as the time between the deployment beginning160

and the first detection, the second as the time between the first detection and the second, and so forth. The161

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2024. ; https://doi.org/10.1101/2023.11.17.567350doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.17.567350
http://creativecommons.org/licenses/by/4.0/


last value in this vector can be defined as the time between the last detection and the end of deployment. If the162

time at which the deployment ended is not known, e.g. because the battery died, the likelihood can be adapted163

so that this last value can be the time between the second-to-last detection and the last detection164

(Guillera-Arroita et al., 2011).165

When the site i is occupied, the detection process is modeled as a homogeneous Poisson point process of166

parameter λ, the detection rate. This means that the interdetection times are exponential variables with rate λ.167

In practical terms, if the time-unit is a day, then a detection rate λ= 3 means that on average, three individuals168

are seen per day. The average time between two detections is 1/3 of a day.169

One property of a Poisson process of parameter λ is that the number of detections over a period of time T170

follows a Poisson distribution with parameter λT . This model is therefore mathematically equivalent to the171

COP model presented above (Zhang & Bonner, 2020). Nonetheless, using the raw data could enable ecologists172

to delve deeper and consider the detection rate heterogeneity with the model residuals.173

Two-state Markov Modulated Poisson Process (2-MMPP) The 2-MMPP occupancy model was also proposed174

by Guillera-Arroita et al. (2011) and uses the time of detection events as data, transformed into interdetection175

times. Unlike the PP occupancy model, which assumes that detection events happen at an homogeneous rate,176

this model incorporates some hetereogeneity. This approach is likely more representative for many species,177

considering various ecological processes that can lead to temporal clustering in detection events. Examples178

include seasonal activity patterns, or, at finer temporal scales, daily activity patterns, and interactions with179

other species, among others. In the 2-MMPP occupancy model, when the site i is occupied, the detection180

process is modeled as a system of Poisson processes with two different rates. When the system is in state 1, the181

detection events are modeled by a Poisson process of parameter λ1. In state 2, the rate is λ2. This is a two-state182

continuous-time Markov chain, where the system switches from one hidden state to the other, with parameters183

µ12 (switching rate from state 1 to state 2) and µ21 (switching rate from state 2 to state 1).184

With day as the time-unit and a set of parameters of λ1 = 1, λ2 = 5, µ12 = 1/15, µ21 = 1, this means that:185

• State 1 is a low-detection state with 1 detection per day on average (λ1), State 2 is a high-detection state186

with 5 detections per day on average (λ2)187

• When the system is in state 1, there is 1/15 switch to state 2 per day on average (µ12), corresponding to 15188

days spent on average in state 1 before switching to state 2 (1/µ12). When the system is in state 2, there is189

1 switch to state 1 per day on average (µ21), corresponding to 1 days spent on average in state 2 before190

switching to state 1 (1/µ21)191

• The system is in state 1 for 93.75% of the deployment time on average (π1 in Equation 4), and in state 2192

for 6.25% of the time (π2 in Equation 4)193

• In an occupied site, there are on average 1.25 detections per day (Equation 5) and the variance of the194

number of daily detections is 4.11 (Equation 6)195
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The proportion of time spent in each state when the system is stationary is the steady-state vector Π of the196

Markov chain for a 2-MMPP, is presented in Equation 4 (Fischer & Meier-Hellstern, 1993).197

Π=
(
π1 π2

)
=

(
µ21

µ12+µ21

µ12

µ12+µ21

)
(4)

The number of events (here Ni t the number of detections at site i taking place during an observation time t ) of198

a 2-MMPP is described by its expected value E[Ni t ] in Equation 5 and by its variance V[Ni t ] in Equation 6 (see199

Supplementary Informations and Bhat, 1992).200

E[Ni t ] = (λ1π1 +λ2π2)T (5)

V[Ni t ] =

λ1π1 +λ2π2 + 2(λ1
2 +λ2

2)

µ12
2µ21

2
(

1
µ12

+ 1
µ21

)3

T (6)

The probability of having at least one detection during an observation period of duration T , written pt , is given201

in Equation 7, with exp the matrix exponential function (from Guillera-Arroita et al., 2011, section 4.2).202

pt = 1−Π×exp

−µ12 µ12

µ21 −µ21

−
λ1 0

0 λ2

×T

×
1

1

 (7)

MMPPs are a type of Cox processes (Cox, 1955). 2-MMPPs can also be referred to as switched Poisson processes203

(SPP, Arvidsson and Harris, 1991) or as a doubly stochastic Poisson processes (Bhat, 1992, 1994). For simplicity,204

we focused on two-state models in this comparison. However, in specific ecological contexts, considering more205

states may be relevant. For more informations on MMPPs in general, with possibly more than 2 states, see206

Fischer and Meier-Hellstern (1993), Guillera-Arroita (2012), and Rydén (1994).207

Interrupted Poisson Process (IPP) The IPP occupancy model is a special case of a 2-MMPP where there are208

no detections in one of the two states. This modelling approach is intuitive for ecological settings where we209

expect periods without detection, such as diurnal species (active and observed during the day, inactive thus210

unobserved at night) or gregarious species (extended periods with no detections, and at the passage of a herd,211

shorter periods with numerous detection events). In such contexts, the IPP model, more parcimonious with212

one less parameter, could be more adapted than the 2-MMPP model, which might still estimate a near-zero213

detection rate and produce equivalent results. Since usually, λ1 < λ2 (Skaug, 2006), an IPP is a 2-MMPP with214

λ1 = 0 constrained.215
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2.2 Simulation study216

2.2.1 Continuous detection data simulation217

We simulated detection data in I = 100 sites, with one deployment per site of Ti = 100 time-units. For the sake218

of simplicity, one time-unit corresponds to one day throughout this article. We simulated data with various219

occupancy probability and detection parameters. All simulation parameters are described in Table 2. In220

detection scenarios (a) and (b), we simulated extreme cases of species elusiveness to identify the models’221

limits and behaviour in extreme situations, even if we expect these to produce insufficient data to perform222

occupancy modelling. We carried out nsi m = 500 simulations per simulation scenario.223

Table 2: Simulation parameters. With p100 the probability of having at least one detection during a deployment of
Ti = 100 days at an occupied site (Equation 7); p1 the probability of having at least one detection during 1 day (Equation 7);
E[N100] the expected number of detections during a deployment of Ti = 100 days at an occupied site (Equation 5);V[N100]
the variance of the number of detections during a deployment of Ti = 100 days at an occupied site (Equation 6)

(a) General parameters

I 100 sites

Ti 100 days

nsi m 500 simulations per scenario

ψ 0.10, 0.25, 0.50, 0.75, 0.90

Ts 30 (month), 7 (week), 1 (day)

(b) Parameters of the seven detection scenarios

λ1 λ2 µ12 µ21 p100 p1 E[N100] V[N100]

(a) 0.00 1.00 1/15 24 0.23 0.003 0.28 0.30

(b) 0.00 5.00 1/15 24 0.68 0.01 1.39 1.96

(c) 0.00 1.00 1/15 1 0.96 0.04 6.25 17.24

(d) 0.25 0.25 1/15
1/10 1.00 0.22 25.00 61.00

(e) 0.00 5.00 1/15 1 1.00 0.09 31.26 306.03

(f) 0.00 1.00 1/15
1/10 1.00 0.26 40.01 327.98

(g) 0.00 5.00 1/15
1/10 1.00 0.42 200.06 7399.34

The occupancy status of each site was determined as the outcome of a Bernoulli trial with probability ψ. The224

detection process was simulated as a 2-MMPP of parameters λ1,λ2,µ12,µ21, using R version 4.2.3 (R Core Team,225

2023). The state at the beginning of a deployment was drawn according to the stationary distribution, as a226

random sampling with probability π1 (resp. π2) of being in state 1 (resp. 2). Until the end of the deployment,227

the time to next event was a draw from an exponential distribution with parameter µ12 +λ1 in state 1, and with228

parameter µ21 +λ2 in state 2. In state 1, this event was either a detection with probability λ1
µ12+λ1

, or a switch to229

state 2. In state 2, it was either a detection with probability λ2
µ21+λ2

, or a switch to state 1 (Fig. 2).230

Discretisation into sessions For the two models that required discretisation into sessions, we used three levels231

of discretisation: monthly, weekly, and daily. Incomplete sessions are deemed invalid and will be excluded from232

the analysis. Consequently, when the data is discretised into months, there are three sessions consisting of 30233

days each, and the detection data of the last 10 days of each deployment is disregarded. Similarly, when the data234

is discretised into weeks, there are 14 sessions of 7 days each, the last 2 days of each deployment is discarded.235
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Figure 2: Simulated detection data. To help understand the impact of the detection parameters, two examples are
given per detection scenario. With scenarios (a to g) described in Table 2. The detection process is simulated in an
occupied site during 100 days.

2.2.2 Frequentist parameter estimation236

We estimated models parameters by maximum likelihood estimation and implemented it in R version 4.2.3 (R237

Core Team, 2023). For the COP, PP, 2-MMPP and IPP models, we used the optim function from the stats238

package (R Core Team, 2023) to maximise the log-likelihood. For the BP model, we used the function occu239

from the unmarked package version 1.3.2 (Fiske & Chandler, 2011), which calls the same optim function. We240

used the Nelder-Mead algorithm to maximise the likelihood. To reduce the optimisation time, we used the241

simulated parameters as the initial parameters to start the optimisation algorithm. The likelihood242

maximisation methodology was equivalent for the 5 models, making their results comparable. In order to243

perform unconstrained optimisation, we applied a logit transformation to the probabilities (ψ, p) and a log244

transformation to rates (λ, λ1, λ2, µ12 and µ21). In addition, we fitted the models with the BFGS optimisation245

algorithm. The results are not shown here but presented in supplementary information.246

2.2.3 Performance comparison for occupancy probability estimation247

For each simulation scenario, we calculated the Root Mean Square Error (RMSE, Equation 8) as an error metric,248

measuring the absolute difference between the models’ point estimates of occupancy probability (ψ̂) and the249

ground-truth occupancy probability (ψ), used to simulate data sets of this simulation scenario.250
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RMSE =
√√√√ 1

nsi m

nsi m∑
j=1

(
ψ̂ j −ψ

)2 =
√(

ψ̂−ψ)2 (8)

To complete this metric, we calculated absolute bias (AB, Equation 9) to better understand if this error was due251

to under-estimation or over-estimation of ψ.252

AB = 1

nsi m

nsi m∑
j=1

(ψ̂ j −ψ) = (
ψ̂−ψ)

(9)

To compare the distributions of the point estimates ψ̂ of the five different models and the different253

discretisations for BP and COP, we performed a Kruskal-Wallis test for each simulated scenario. We also254

conducted Wilcoxon tests with Bonferroni correction and visualised the distribution of ψ̂.255

We calculated for each inference the 95% confidence interval (CI) of the occupancy probability. To summarise256

this information for all the nsi m simulations by model in each simulation scenario, we used two metrics, the257

coverage (Equation 10) and the average range of the confidence interval (ARCI, Equation 11). We note C Il and258

C Iu the lower and upper bounds of the 95% confidence interval of the estimated occupancy probability.259

Coverage is the proportion of simulations for which the true simulated occupancy probability (ψ) is within the260

95% CI of the estimated occupancy probability. In other words, coverage can be interpreted as the percentage261

of good predictions of the occupancy probability by a model.262

Coverage = 1

nsi m

nsi m∑
j=1

I (C Il ≤ψ≤C Iu) = I (C Il ≤ψ≤C Iu) (10)

The average range of the 95% confidence interval measures the precision of the estimation, with the width of263

the confidence interval. It completes coverage, since even a model with poor performances can have a coverage264

of 100%: If its range is 1, it means that this model predicts that the occupancy probability is between 0 and 1.265

ARCI = 1

nsi m

nsi m∑
j=1

C Iu −C Il =C Iu −C Il (11)

2.3 Empirical comparison with lynx detection data266

We applied the five occupancy models to empirical data from Gimenez et al. (2022). We analyzed data from 11267

camera-trap locations in Ain county, France, monitored from February 2017 to May 2019. Monitoring durations268

per site were heterogeneous, ranging from 148 to 801 days (Fig. S8), totaling 5396 camera-trap days across all 11269

sites. We here focus on lynx (Lynx lynx) occupancy. Lynx were detected in 9 sites out of 11, with 203 detections in270

total, ranging from 1 to 59 detections per site (Fig. S8). For the two discrete models, BP and COP, we discretised271

the data similarly to the simulation study: into monthly, weekly, and daily intervals (Fig. S9). We discarded272
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data from incomplete sessions, during which a site was monitored only partially and not throughout the entire273

session.274

We estimated parameters following the method described in Section 2.2.2, consistent with the simulation study275

approach, with the exception of the optimisation algorithm starting points. We used intuitive starting points,276

such as the ratio of sites with at least one detection for ψ. Starting points for the models’ different detection277

parameters are detailled in our code. We did not include covariates in the analysis. For each parameter of278

each model, we retrieved its point estimate and derived its 95% and 50% confidence intervals from the Hessian279

matrix.280

3 Results281

3.1 Simulation study282

For easily detectable species (detection scenarios d, e, f, and g), all models retrieve well the simulated occupancy283

probability. Bias ranges from −0.0094 to 0.0025 (Fig. 3) and RMSE are less than 0.060 (Fig. S2). With those284

detection parameters, the Kruskal-Wallis tests indicate that there are no statistically significant differences in285

the distribution of ψ̂ between models, except with simulation parameters (e) and ψ = 0.1, (e) and ψ = 0.9 and286

(f) andψ= 0.9 (Table S3). The Wilcoxon tests indicate that there is no difference in medians with (e) andψ= 0.1287

(Fig. S3). With (e) and ψ= 0.9 and (f) and ψ= 0.9, only the BP model with daily sessions differs from the others,288

with a slight underestimation of ψ (Fig. 3).289

For elusive species (detection scenario c), the BP model’s ability to retrieve the simulated occupancy probability290

is slightly inferior to other models, with a RMSE ranging from 0.057 to 0.121 while the RMSE of other models291

are still less than 0.060. (Fig. S2). The Wilcoxon tests (Fig. S3) indicate differences between BP and the other292

models, and this difference depends on the discretised session duration. The distribution of ψ̂ with BP is wider293

than for the other models with the same simulated data (Fig. S1).294

For highly elusive species (detection scenarios a and b), all five models reach their limits. BP, COP and PP tend295

to overestimate ψ, whereas IPP and 2-MMPP tend to underestimate ψ (Fig. 3). BP tend to estimate ψ at 0 or296

most often at 1 (Fig. S1). COP and PP point estimates of ψ have similar distributions, both are widely spread297

(Fig. S1). IPP and 2-MMPP tend to underestimate ψ, with a tighter distribution for its point estimate, which298

often does not include the simulated value of ψ (Fig. S1).299

It was not always possible to calculate the confidence interval (CI) of the occupancy probability estimate, when300

the Hessian matrix was not invertible. This occurred in two main cases in our study: when there were not many301

sessions with detections in the BP model, or when λ1 was estimated to zero in the 2-MMPP model. As a result,302

the 2-MMPP CIs are not interpretable with detection scenarios other than (d), where data were simulated as an303

IPP.304

For easily detectable species (detection scenarios e, f and g), all models have similar coverages (Fig. S4) and305
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Figure 3: Absolute bias of the occupancy probability point estimate. Depending on ψ the simulated occupancy
probability and detection scenarios as described in Table 2. The average value of the occupancy probability point
estimate ¯̂ψ is inside each cell. For two scenarios characterised by low occupancy and detection probabilities, certain
repetitions failed to yield any data. With no detection within any of the sites, it was impossible to infer parameters. With
detection parameters (a) andψ= 0.25, 494 simulations were used to estimate the models’ ability to retrieve the simulation
parameters. With detection parameters (a) and ψ= 0.1, only 423 simulations were used.
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occupancy probability CI ranges (Fig. S5). As detectability decreases, the CIs widens for BP, COP and PP,306

although this is more marked and quicker for BP than for COP and PP (Fig. S5). The IPP CIs do not widen, but307

the coverage drops (Fig. S4).308

3.2 Application to lynx occupancy309
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Figure 4: Occupancy probability estimation with the lynx data set from Gimenez et al. (2022) in the Ain
County, France.

Lynx occupancy estimates are similar across all five model (Fig. 4). The COP model, regardless of the session310

duration, and the three continuous models (PP, IPP, and 2-MMPP), converge to an estimated occupancy311

probability of 0.82, with identical confidence intervals (95% CI: 0.49 to 0.95, 50% CI: 0.73 to 0.88) (Fig. 4, Table312

S4). Although the BP model produced a slightly different point estimate, ranging between 0.75 and 0.80313

depending on the session duration, it remains in close proximity to the estimates of the other four models314

(Fig. 4, Table S4).315

Regarding detectability, the BP model with daily sessions estimates the probability of detecting at least one lynx316

in a day at p1 = 0.008 (95% CI: 0.006 to 0.012, Table S4). Models assuming homogeneous detection rates (COP,317

PP) estimate 0.045 detection events per day (95% CI: 0.039 to 0.052, Table S4), resulting in an expected average318

of E[N100] = 0.045× 100 = 4.5 detection events in 100 days. In comparison to detectability in our simulation319

scenarios, lynx elusiveness likely falls between detection scenario (b) (p1 = 0.01) and scenario (c) (E[N100] =320

6.25) (Table 2).321

The 2-MMPP estimates a low detection rate in state 1, close to 0 (λ̂1 < 0.01, 95% CI: 0.001 to 0.06, Table S4),322

suggesting that lynx detection events can be modeled by the the IPP model. The IPP model estimates that only323

0.31% of the time is spent in the state with detections, state 2, (Equation 4, with µ̂21 = 0.16 and µ̂21 = 50.70, Table324

S4). The detection rate is estimated at λ̂2 = 14.22 detection events per day in this state (95% CI: 9.24 to 21.89,325

Table S4).326

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2024. ; https://doi.org/10.1101/2023.11.17.567350doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.17.567350
http://creativecommons.org/licenses/by/4.0/


4 Discussion327

The focal ecological parameter of interest is the occupancy probability ψ, which is represented similarly in all328

the five models compared. However, the precision of the occupancy estimation is impacted by the quality of the329

estimation for the detection process (Kellner & Swihart, 2014; Kéry & Schmidt, 2008). In this study, we focused330

on cases in which data is collected continuously, for example with sensors or opportunistic data. We aimed331

to evaluate whether modelling the detection process in continuous-time could enhance the precision of the332

estimated probability of occupancy.333

In line with the concept of operating models, commonly used for assessing management strategies334

(Butterworth, 1999; Punt et al., 2016), we simulated data under models that aim to get more in line with our335

expectations regarding the detection process when observing fauna through sensors. Specifically, we336

considered special cases of 2-MMPP, consisting of six scenarios with detections simulated under an IPP337

framework (scenarios a, b, c, e, f, g) and one scenario simulated under a PP framework (scenario d). We338

intentionally simulated occupancy very simply, not incorporating covariates or variations in abundance,339

aiming to focus solely on the detection process for sensor-collected data. Subsequently, we aimed to recover340

the simulation parameters, focusing on occupancy probability, using these complex models, as well as simpler341

models well-known and widely used by ecologists. By simplifying the information and the detection process,342

we asked the question of whether these models are sufficient to estimate the ecological parameter of interest343

in a situation that we expect to be close to reality.344

We expected that continuous models would outperform discrete models in accurately retrieving the simulated345

occupancy probability, since detection data simulation aligned with the framework of the continuous models346

of our comparison. Moreover, data aggregation by discretisation leads to a loss of information. We expected347

this loss to result in less accurate estimates of detection parameters, consequently introducing bias in the348

occupancy estimate, given the relationship between occupancy and detection parameters. However, in the349

majority of cases where detectability was sufficiently high (with a minimum expectation of 25 detections in350

occupied sites throughout the entire deployment), all models produced equivalent results, all were able to351

retrieve the occupancy probability well, with little bias and error.352

For models requiring discrete data, we expected that different discretisations would impact the models353

outputs (Schofield et al., 2018), but in most simulated scenarios, that was not the case. Our results indicate354

that estimation of ψ with BP is more impacted by the session duration’s choice than with COP. Since COP is355

mathematically equivalent to PP (Zhang & Bonner, 2020), minor variations in the occupancy estimates356

between session lengths for COP are likely due to data discarding. Our comparison framework could be reused357

to further test the impact of discretisation, by choosing more diverse session durations that reuse exactly the358

same data - rather than dropping data of incomplete sessions as we did.359

The BP model, as noted by MacKenzie et al. (2002), tends to produce estimates of ψ close to one for rare and360

elusive species. Our findings align with this observation, suggesting however that elusiveness has a more361
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pronounced impact on this limit than rarity.362

The COP model was adapted from the model proposed by Emmet et al. (2021). Their model differs from the363

one presented here mainly because they considered site use. However, they compared their counting model364

with its detection/non-detection equivalent from Bled et al. (2013), much like we compared COP with BP.365

Their model estimated occupancy probability with either equivalent or smaller bias compared to the366

equivalent detection/non-detection model, which aligns with our results.367

In a simulation study, Guillera-Arroita et al. (2011) evaluated BP and PP using data generated within a PP368

framework. They reported that both models provided reasonably unbiased estimates of occupancy, except for369

rare and elusive species. In these cases, BP exhibited greater bias and variance, particularly with larger370

discretisation intervals and fewer sessions, which matches our results. They also compared PP and 2-MMPP371

using clustered detection data generated within an IPP framework. They noted negative bias in the occupancy372

estimates with the PP model, which was not observed in our results. In our study, both models performed373

similarly for easily detectable species. However, for elusive species, the 2-MMPP and IPP models exhibited374

more pronounced negative bias than the PP and COP models.375

All five models consistently estimated lynx occupancy in our empirical example, with COP, PP, IPP, and 2-MMPP376

estimating occupancy probability at 0.82, while BP provided slightly lower but still very close estimates. Lynx377

detectability falls between simulation scenarios (b) and (c), where models began to approach their limits due378

to elusiveness in our simulations. As different models produced significantly varied occupancy estimates when379

they reached their limits in simulations, the consistent occupancy estimates across models suggest that they380

have not yet reached their limits, indicating reliable occupancy estimates.381

To better define the limitations of these models, we could perform additional comparisons using simulation382

scenarios with various detection parameters. Given the impossibility of exhaustively covering all potential383

scenarios, we encourage modelers to compare models when encountering borderline cases of occupancy384

models applicability, such as potentially insufficient monitoring time in view of the species elusiveness. Our385

code is available to use as a base to conduct simulations with parameters adapted to a specific study context386

and compare models to choose the best model. Alternatively, researchers and practitioners can analyse their387

data with multiple models to ensure the consistency of results across different modelling approaches, as we388

did with the lynx data set.389

4.1 Choosing the appropriate model390

4.1.1 Occupancy modelling for easily detectable species391

When the species is easily detectable and thus enough observation data have been obtained, all models392

accurately estimate the occupation probability. Under these conditions, if the sole aim of a study is to393

accurately estimate occupancy, selecting any of these models essentially amounts to choosing the right one.394

Therefore, the choice can be guided by other considerations, to find the right balance between performance395
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and execution costs.396

Learning and implementation costs Continuous-time models may be unfamiliar to ecologists, potentially397

requiring a steep learning curve to become proficient with these seemingly complex models. For models that398

are not readily available, the implementation costs can be substantial for a study. The rise of sensor-based399

monitoring and the growing interest have led to efforts to make time-to-detection occupancy models more400

accessible for ecologists, such as through R packages like unmarked (Kellner et al., 2023). The costs shifts from401

fully implementing a model to using existing functions, a faster alternative. We are currently working on adding402

the COP, PP, IPP and 2-MMPP models to unmarked.403

Study objectives If the primary goal is to estimate the occupancy of the target species, any of the models can404

be employed effectively. Simple models, such as BP, COP or PP, require the estimation of only two parameters:405

one for occupancy and one for detection. Choosing such a model can enhance interpretability and provide a406

greater statistical power than models with more parameters. This is especially advantageous when407

incorporating several spatial and temporal covariates into the analysis. Conversely, if the aim is to conduct a408

detailed analysis of the target species detection timeline to better understand a species behaviour, analysing409

continuous-time data is preferable, as it data holds valuable information that is increasingly lost as data are410

more and more aggregated over time. Models that accommodate the detection process in multiple states411

could be particularly adapted to unravel animal behaviours, such as temporal activity patterns. The hidden412

state could be reconstructed to further enhance the interpretability of these models’ parameters.413

Temporal auto-correlation Unlike sampling occasions, consecutive discretised sessions are not temporally414

independent (Bailey et al., 2014), and there may be significant temporal auto-correlation (Neilson et al., 2018).415

Therefore, discretised session data does not meet the discrete-time model assumption of independence.416

However, the PP model has the exact same drawback when considering a constant detection rate, since the417

number of events on two disjoints time intervals are independent. In this study, we did not thoroughly418

examine the influence of time dependence on occupancy estimates. However, two-state models, introduced419

for clustered observation data (Guillera-Arroita et al., 2011), incorporate some time dependence through two420

homogeneous detection rates that differ conditional on state. Future studies could explore the impact of time421

dependence on occupancy estimates and consider various approaches to account for non-constant detection422

rates. These may include Cox processes, where the detection rate is a random variable (Cox, 1955),423

time-dependent regression splines (Distiller et al., 2020), or Hawkes processes, a form of self-exciting point424

process where the detection rate increases temporarily after a detection event (Hawkes, 1971; Rushing, 2023).425

Calculation time All models were fairly fast to fit, so calculation time should probably not be the main reason426

for choosing a model for most studies. We have not robustly evaluated the optimisation time for each model, as427

we used different computers with varying characteristics. However, the two-state models seemed significantly428

longer to fit than the other models. BP, COP and PP all took less than 6 seconds to fit, even in the simulation429
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scenario with most detections, in which there was 200 detections on average in occupied sites. IPP and 2-MMPP430

often took more than a minute, up to 28 minutes.431

Detection rate A detection probability per discretised session, as in the BP model, is relevant only at the432

discretisation scale. This is not the case with a detection rate, as used in the discrete-time COP model or in433

continuous-time models. We argue that using a detection rate instead of a detection probability would434

enhance the comparability among studies. This could simplify the process of experimental design, especially435

concerning observation duration, by using the insights from existing literature on the target species. Another436

advantage of using a detection rate, as opposed to a probability, is the flexibility to accommodate sessions of437

different durations. For instance, in our lynx example, monthly sessions varied in length (28, 30, or 31 days).438

We specified this in the COP model to estimate the number of detection per day, an explicit time unit. We439

could not do so in the BP model, in which the detection probability is derived per session.440

4.1.2 Occupancy modelling for highly elusive species441

When the species is highly elusive, the five models we considered provided inaccurate estimates of its presence442

probability, exhibiting high bias, error, and a low precision or coverage. The BP model’s limits became apparent443

at lower species elusiveness compared to the other models. This could be because valuable information gets lost444

when simplifying the data into detection and no detection. The 2-MMPP and IPP models showed larger errors445

in estimating ψ compared to the COP and PP models. This might be due to the higher number of parameters446

in the 2-MMPP and IPP models (5 and 4, respectively, versus 2 for COP and PP), which would require more447

data to fit them correctly. COP and PP models appear to strike a good balance between simplification and448

realism. One is discrete, while the other is continuous, but both perform similarly, which is consistent with the449

demonstration of Zhang and Bonner (2020) that a Poisson process in continuous time is equivalent to a classical450

model with discretisation where the detection process is not a Bernoulli trial but a Poisson distribution draw.451

However, if the species’ high elusiveness resulted in the collection of insufficient observation data, the best452

course of action probably is to collect more data by extending the monitoring period (Kays et al., 2020). In453

cases where it is expected that the species will be challenging to detect, conducting simulations and454

comparing different models with expected detection and occupancy parameters could assist in fine-tuning455

the study design and model choice.456

If obtaining more data is not feasible, it might be best to refrain from running an occupancy model, or at least457

approach the results with caution, regardless of the chosen model. In this case, we recommend fitting different458

models, particularly when using the two-state models. For these models, our findings indicate that with highly459

elusive species, the confidence interval of the estimated ψ can be narrow but substantially different from the460

actual ψ. This can potentially lead to a misleading perception of model reliability.461
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4.2 Implications for continuous monitoring frameworks462

The advanced processors available today offer great computing power, enabling the fast development of463

artificial intelligence (AI). Recognising species automatically is becoming more common, on camera-trap464

images (Le Borgne & Bouget, 2023), ARUs recordings (Potamitis et al., 2014), or even with sensors networks465

(Wägele et al., 2022). AI combined with sensors offers the potential to fully automate the analysis workflow466

(Gimenez et al., 2022; Lahoz-Monfort & Magrath, 2021). Overall, sensors and AI have led to a paradigm shift in467

the conditions and capabilities of biodiversity monitoring (Besson et al., 2022; Tuia et al., 2022; Zwerts et al.,468

2021). With our comparison, we found that modelling occupancy with a continuous-time detection469

sub-model is not necessary to estimate occupancy accurately. Therefore, in operational conditions, the470

necessary trade-off between accuracy and ease of implementation may turn in favour of discrete-time models,471

with easily available data for temporal covariates.472

Focusing primarily on the temporal aspect of the detection process modelling, we explored a simple version of473

occupancy models: single-species, static, with no positive and no abundance-induced heterogeneity. There474

are numerous avenues for further investigation. With the emergence of collaborative platforms aggregating475

and providing sensor data across large spatiotemporal scales (e.g. Oliver et al., 2023), developing dynamic476

occupancy models with continuous-time occupancy sub-models has the potential to enhance our477

understanding of extinction-colonisation processes, to get the most out of continuous-time data. Additionally,478

we did not consider abundance as a factor influencing detection heterogeneity, although it is a particularly479

intuitive consideration for species with highly variable abundance across sites (Royle & Nichols, 2003). Further480

research into these models, in conjunction with continuous data, is called for: In N-mixture models,481

time-to-first-detection and time-to-each-detection could offer improved estimates compared to binary482

detection/non-detection and count data, respectively (Haines et al., 2023; Priyadarshani et al., 2024).483

Furthermore, our study did not account for false-positives, and sensor data (e.g., images from camera traps)484

can be prone to incorrect species identification. Potential solution, such as using AI confidence scores485

(Rhinehart et al., 2022), could be explored further with continuous-time data to consider the complete486

workflow, from sensor data to inference.487

Our results do not only concern sensor data, but all continuously collected data. Opportunistic data, collected488

at non-defined and irregular intervals, can be considered as continuously collected and thus pose some of the489

same challenges as sensor data (Altwegg & Nichols, 2019; Hsing, 2019). Some studies analyse opportunistic490

data using with discrete-time models, discretising data into long sessions (e.g., by year, as in van Strien et al.,491

2013), while other are developing new continuous-time frameworks adapted to this particular data (e.g.492

Choquet et al., 2017, using continuous-time capture-recapture for individualised opportunistic data). Our493

comparison suggests that for future studies aiming to estimate occupancy with unmarked opportunistic data,494

both discrete- and continuous-time occupancy models could produce accurate occupancy estimates,495

provided that challenges associated with opportunistic data, such as highly variable observation effort, are496

effectively addressed.497
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