Abstract
Efficient gene delivery vectors are essential for developing gene therapies for respiratory diseases. Here, we report that AAV.CPP.16, a novel AAV9-derived adeno-associated virus vector, can efficiently transduce airway epithelium systems and lung parenchyma cells in both mice and non-human primates after intranasal administration. AAV.CPP.16 outperforms AAV6 and AAV9, two wild-type AAVs with demonstrated tropism to respiratory tract tissues, and can target major cell types in the respiratory tract and the lung. We also report an “all-in-one”, CRISPR-Cas13d-based AAV gene therapy vector that targets the highly conserved RNA-dependent RNA polymerase (Rdrp) gene in SARS-CoV-2, and show the potential of such gene therapy against a broad range of circulating and emergent SARS-CoV-2 variants. Thus, AAV.CPP.16 could be a useful gene delivery vector for treating genetic respiratory diseases and airborne infections including for developing a potential prophilaxis to SARS-CoV-2.
Competing Interest Statement
FB is a co-founder of and scientific advisor to Brave Bio Inc., a gene therapy startup.
Footnotes
↵10 Lead contact