Abstract
Post-mating responses play a vital role in successful reproduction across diverse species. In fruit flies, sex peptide (SP) binds to the sex peptide receptor (SPR), triggering a series of post-mating responses. However, the origin of SPR predates the emergence of SP. The evolutionary origins of the interactions between SP and SPR and the mechanisms by which they interact remain enigmatic. In this study, we used ancestral sequence reconstruction, AlphaFold2 predictions, and molecular dynamics simulations to study SP-SPR interactions and their origination. Using AlphaFold2 and long-time molecular dynamics (MD) simulations, we predicted the structure and dynamics of SP-SPR interactions. We show that SP potentially binds to the ancestral states of Diptera SPR. Notably, we found that only a few amino acid changes in SPR are sufficient for the formation of SP-SPR interactions. Ancestral sequence reconstruction and MD simulations further reveal that SPR interacts with SP through residues that are mostly involved in the interaction interface of an ancestral ligand, myoinhibitory peptides (MIPs). We propose a potential mechanism whereby SP-SPR interactions arise from the pre-existing MIP-SPR interface as well as early chance events both inside and outside the pre-existing interface that created novel SP-specific SP-SPR interactions. Our findings provide new insights into the origin and evolution of SP-SPR interactions and their relationship with MIP-SPR interactions.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
Added new analyses; updated figures and the main text.