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Figure 4: Root causes of nanomotion in bacterial cells.
(a) Various processes in the bacterial cell can be re-
sponsible for the mechanical nanomotion observed, such
as ATP synthesis, RNA transcription, protein synthe-
sis, DNA supercoiling, cell wall synthesis and activity
of flagella and pili. Flagellar activity has been shown
to be a major contributor to the observed nanomotion.
(b) Eukaryotes contain intracellular organelles that can
generate nanomotion, such as mitochondria, which are
responsible for energy generation. (c¢) Active ion chan-
nels can also generate nanomotion due to their confor-
mational changes. Figures adapted from (5, 39).

shown to generate nanomotion (41). Furthermore, in eu-
karyotes intracellular organelles, such as mitochondria,
which are responsible for energy generation, also show
nanomotion (42). Detecting nanomotion using fluores-
cent labelled products or organelles (43) is an interesting
way to further explore nanomotion causes which might
lead to new insights into the root cause.

4 Applications beyond bacterial
sensing

Over the course of the past decade the nanomotion tech-
nique has been applied to various different species, and
it is applied with success for bacteria, yeast, neurons,
and other mammalian cells. Most of the research men-
tioned was performed on AFM cantilevers, rather than
graphene drums, as the latter so far was only used for
detection of single bacterial cells.

4.1 Yeasts and bio-industrial applica-
tions

Yeasts are used in many biotechnological applications,
ranging from food production chains to constituents of
bioreactor flora (44). They play a significant role in
the industrial production of biofuels and enzymes. For
all these applications, it is of major interest to verify
the activity and thus productivity of yeast strains before
a bioreactor is populated. Early and massively paral-
lel screening is a good strategy to alter and verify the
quality of yeasts with a faster turnover, thus finding su-
perior industrial traits earlier. The nanomotion that can
be measured from yeasts, alike bacteria, is most likely
directly linked with their metabolic activity (45). In
most cases, a higher metabolic activity will translate into
a higher production of the yeast’s industrially relevant
compound. We envisage therefore, that by probing the
nanomotion of the yeast’s, the productivity of strains can
be directly measured and potentially improved.

4.2 Molecular force monitoring

The high force sensitivity of graphene might enable sens-
ing beyond the limit of single cells. Some molecules are
active as a result of light (46) or solute concentration
(47), and can perform mechanical work. It will be in-
teresting to see if graphene membranes can be used as a
detector for probing the forces exerted by these molecules
during mechanical events, such as DNA supercoiling or
protein folding. Here, a significant challenge will lie in
the preparation of such samples, and the controlled at-
tachment of the biomolecules onto the graphene surface.

5 Final remarks

In recent decades rapid advancements in microfabrica-
tion technology are generating new areas of application
in biology. The wide availability of microelectromechan-
ical systems (MEMS) since the 1990’s has provided re-
searchers new platforms to experimentally study cell me-
chanics and their mechano-microbiology. With the de-
velopment of the graphene drums as sensors for single
cells, it is now possible to measure and analyze cellu-
lar dynamics even at the level of single bacteria. This
raises thrilling prospects for usage of nanomotion de-
tection for both identification as well as antibiotic sus-
ceptibility analysis. In our opinion, the development
of massively parallel graphene nanomotion sensors can
be a gamechanger in this field. The ability to robustly
run even thousands of nanomotion spectroscopy mea-
surements in parallel will open the way towards develop-
ment of robust RAST sensors combined with nanomotion
based identification.
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Methods

Sample preparation. All experiments were per-
formed on anonymous clinical isolates of F.coli,
K.pneumoniae, MRSA, S. agalactiae and P. aeruginosa
cells obtained from the medical microbiology depart-
ment of the Reinier Haga Medical Centre in Delft. We
grew cells in Muller-Hinton Broth overnight at 30 de-
grees Celsius to reach the late exponential phase. On
the day of the experiment, the overnight culture was re-
freshed (1:100 volume) for 2.5 h in fresh broth at 37
degrees Celsius to reach an optical density (OD600) of
0.2-0.3. Then 10 ml of the refreshed culture was mixed
with (3-Aminopropyl)triethoxysilane (APTES, Sigma-
Aldrich) to reach a final concentration of 0.1% (volu-
metric). This acts as a binder between the bacteria and
the chips. A chamber with a graphene-covered chip in-
side was then filled with the solution, which was left for
15 minutes in a horizontal position to deposit the bacte-
ria on the surface. Afterwards, the chamber was flushed
with broth to prevent additional bacteria from deposit-
ing and maintain an average coverage of a single bac-
terium per drum. The setup was equipped with nano
positioners (Attocube ECSx5050) that allow for auto-
mated scanning over an array of drums. The motion of
the bacterium was transduced on the drum and recorded
using a digital oscilloscope.

Graphene chip fabrication Experiments are per-
formed on circular suspended graphene membranes. A
silicon wafer with a silicon dioxide layer is patterned by
etching holes in the silicon dioxide, where the silicon
acted as stop layer, resulting in 285 nm deep circular cav-
ities with diameters ranging from 2 to 10 ym. Graphene
resonators are fabricated by suspending single and few-
layer graphene over circular cavities using a dry transfer
technique. Both exfoliated graphene flakes and chemi-
cal vapor deposited layers are used as resonator. The
samples are annealed in an Argon furnace at 400K to re-
move all polymer residuals. The setup consists of a red
laser aimed and focused at a Fabry-Pérot cavity formed
by the bottom silicon layer and the suspended graphene
layer. The deflection of the graphene layer along the op-
tical field of the red laser modulates the reflected light
intensity that can be read out by a photodiode. The
setup allows detection of the absolute deflection of the
membrane.

Data processing All data are collected and plotted
using MATLAB code. For analysis, the same routines
are used as described earlier in (5). For the short term
fourier transform a custom code was written in MAT-
LAB, with the following settings: blackman type window
with a length of 2048 and an FFT length of 8192.

Data availability

The data that support the findings of this study are avail-
able from the corresponding authors upon request.
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