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Abstract

Motivation: Genomics-based diagnostic methods that are quick, precise, and economical are essential for the

advancement of precision medicine, with applications spanning the diagnosis of infectious diseases, cancer,

and rare diseases. One technology that holds potential in this field is optical genome mapping (OGM), which

is capable of detecting structural variations, epigenomic profiling, and microbial species identification. It is

based on imaging of linearized DNA molecules that are stained with fluorescent labels, that are then aligned

to a reference genome. However, the computational methods currently available for OGM fall short in terms

of accuracy and computational speed.

Results: This work introduces OM2Seq, a new approach for the rapid and accurate mapping of DNA

fragment images to a reference genome. Based on a Transformer-encoder architecture, OM2Seq is trained

on acquired OGM data to efficiently encode DNA fragment images and reference genome segments to a

common embedding space, which can be indexed and efficiently queried using a vector database. We show

that OM2Seq significantly outperforms the baseline methods in both computational speed (by two orders of

magnitude) and accuracy.

Availability and implementation: https://github.com/yevgenin/om2seq

Contact: yoavsh@bm.technion.ac.il

1. Introduction

Optical genome mapping (OGM) is a method for mapping

optical images of linearly extended and labeled DNA fragments

to reference genome sequences [Neely et al., 2010, Michaeli and

Ebenstein, 2012, Jeffet et al., 2021]. It has shown potential in a

range of applications, including the detection of structural and

copy-number variations [Ebert et al., 2021], identification of DNA

damage [Torchinsky et al., 2019], epigenomic profiling [Gabrieli

et al., 2018, Sharim et al., 2019, Gabrieli et al., 2022, Nifker et al.,

2023], and microbial species identification [Grunwald et al., 2015,

Wand et al., 2019, Bouwens et al., 2020, Müller et al., 2020].

OGM’s strengths lie in its ability to image genome fragments up

to megabase size and detect both large-scale structural and copy

number variations, as well as working with low quantities of target

DNA, which is particularly useful in cultivation-free pathogen

identification [Müller et al., 2020, Nyblom et al., 2023]. Typically,

OGM involves labeling DNA with fluorescent markers that bind

to specific short genome sequence motifs, linearly extending the

labeled DNA fragments, and optically imaging the labeled DNA

fragments, followed by image analysis [Neely et al., 2010, Deen

et al., 2015, Wu et al., 2018, Jeffet et al., 2021]. The mapping

process to reference genome sequences uses alignment algorithms

[Valouev et al., 2006, Mendelowitz and Pop, 2014, Bouwens et al.,

2020, Dehkordi et al., 2021].

When it comes to mapping a labeled DNA molecule image

to a reference genome, computational approaches vary based on

the density of labeling. If labels are sparse enough for individual

fluorescent tags to be distinguished, standard localization

techniques such as emitter centroid fitting are applied to identify

the labels’ positions, followed by the use of Dynamic Programming
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(DP) algorithms to align these positions with the expected

locations of the labeled motif in the reference genome sequence

[Valouev et al., 2006, Lelek et al., 2021]. Conversely, densely

labeled motifs necessitate aligning the intensity profile of the

imaged molecule with the theoretical intensity profile derived from

the reference genome by using cross-correlation [Grunwald et al.,

2015, Wand et al., 2019, Müller et al., 2020, Bouwens et al.,

2020]. The DeepOM work [Nogin et al., 2023b] introduced a

deep learning method for OGM, combining Convolutional Neural

Network (CNN) based label localization in DNA fragment images

with DP for aligning localized label positions to the reference

genome.

OGM accuracy is crucial, especially for applications where

the sample’s target DNA is scarce or where comprehensive

genome coverage per mapping experiment is essential, such

as in cultivation-free pathogen identification or detection of

rare variants and epigenomic mapping [Gabrieli et al., 2018,

Müller et al., 2020, Margalit et al., 2022, Gabrieli et al., 2022].

Mapping computation speed, or the mapping speed, carries equal

importance, particularly when dealing with extensive DNA image

datasets or when mapping to a diverse array of organism genomes

for pathogen identification. Current methods are relatively slow,

since for each query image, they scan the whole genome for the

best match.

With those challenges in mind, we develop a novel

computational method for OGM named OM2Seq, which is inspired

by deep learning retrieval approaches, like Dense Passage Retrieval

(DPR) [Karpukhin et al., 2020], which were initially proposed for

retrieving text passages from extensive text datasets. OM2Seq is

based on Transformer-based encoders [Vaswani et al., 2017] that

encode both DNA molecule images and reference genome sequence

segments into a unified embedding space. This enables efficient

and accurate retrieval of the nearest candidate matches from a

pre-computed database of genome sequence embeddings using the

image embeddings.

2. Materials and Methods

We introduce OM2Seq, a new method for mapping DNA molecules

from OGM images to the reference genome. The primary

objectives of OM2Seq are to enhance the mapping accuracy,

particularly for short molecules where accuracy can be challenging,

and to increase the mapping speed, which refers to the speed

of the computational process needed for mapping a set of DNA

molecules.

The training methodology, described in detail in Section 2.5,

consists of the training of encoders (Section 2.4) that encode

images of DNA molecules and segments of reference genome

sequences into a shared embedding space, where distances in

this space represent the degree to which a DNA image matches

a genome segment. Unlike DeepOM, which relied on simulated

images for training [Nogin et al., 2023b], our training data set

consists of actual microscopy images of human DNA fragments.

Following the encoder training phase, the pre-calculated

embeddings of reference genome sequence segments are indexed

in a vector database. During the inference phase, described in

detail in Section 2.6, given an image of a DNA molecule, the

Image Encoder produces an embedding for that image. This

image embedding is then utilized to conduct a search within the

vector database for the nearest K candidate reference sequence

segments, with respect to some distance metric. The image query

can optionally be further aligned to these retrieved candidates

using a specialized OGM alignment method, such as DeepOM.

2.1. Data acquisition

For the purpose of training, validation, and testing in this work, we

utilized a dataset composed of images featuring linearly extended

human DNA fragments. These images were captured with the use

of the Bionano Genomics Saphyr instrument and Saphyr chips

(G1.2). A total of 100,000 DNA molecule images were used,

all of which have been made publicly available as detailed in

Section 4. An illustrative example can be found in Figure 1.

The comprehensive protocol for the DNA extraction and labeling

process is described in previous work [Nogin et al., 2023b].

In brief, DNA was extracted from approximately one million

cells from the U2OS human cell line, following the Bionano

Prep Cell Culture DNA Isolation Protocol developed by Bionano

Genomics. For the labeling step, one microgram of DNA was

processed using the Bionano Genomics DLS labeling kit in

conjunction with the DLE-1 enzyme, which labels the genome

sequence CTTAAG. The reaction mixture, with a total volume

of 30 microliters, contained 6 microliters of 5x DLE-buffer, 2

microliters of 20x DL-Green, and 2 microliters of the DLE-1

enzyme, all supplied by Bionano Genomics. This mixture was

subjected to an incubation period of 2 hours at a temperature

of 37 degrees Celsius.

2.2. Genome sequence data

Human genome GRCh38.p14 from https://www.ncbi.nlm.nih.

gov/datasets/ was used.

2.3. Training dataset

The training dataset for OM2Seq was compiled from the collection

of acquired images of DNA molecules on the Bionano Genomics

Saphyr platform (Section 2.1), and a selection of the top 100,000

molecules out of roughly 25.4 million was made based on the

alignment confidence scores provided by the Bionano software in

the XMAP output files. Typically, the acquired images are 5 pixels

wide and extend to roughly 1000 pixels in length. The lengths of

the selected molecules ranged from a minimum of 181 kilobases

(kb) to a maximum of 768 kb, with a median size of 343 kb.

Selecting such long molecules ensures a strong ground-truth for the

training data, as the probability of alignment error for these long

molecules is negligble, as was shown empirically and theoretically

in terms of OGM Information Theory [Nogin et al., 2023a].

Fig. 1: Training data. The training data, as detailed in Section 2.3, includes (a) an example of a long DNA molecule image and (b) an

example cropped fragment zero padded to a specific length, with it’s crop limits shown, alongside the corresponding reference genome

segment with the labeled pattern (CTTAAG, see Section 2.1) positions shown.

(a)
(b)

limits
reference
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Each DNA molecule image was aligned with the human genome

(GRCh38.p14 release) by employing the DeepOM method [Nogin

et al., 2023b]. Given that DeepOM achieves nearly 100% mapping

accuracy for the long molecules selected for this dataset, these

alignments serve as a reliable ground-truth. Additionally, these

DeepOM alignments were compared and validated to be the same

as results from Bionano’s aligner.

The dataset was divided into subsets designated for training,

validation, and testing, with both the validation and test sets

comprising 1,000 molecules each.

To prepare OM2Seq for effective mapping accuracy, even on

molecules as short as 30kb, the data was manipulated by cropping

shorter fragments from the longer original DNA molecule images

(see Figure 1). For training, a batch of n cropped fragments is

generated at each step, accompanied by their respective reference

genome segments (see Figure 4).

A training batch is assembled in the following manner: n

aligned molecules are randomly chosen from the training set.

For each of these molecules, a random cropping length, sampled

with log-uniform distribution in the range 30kb to 200kb, and

a random starting position are selected. This process yields

a cropped fragment image and the corresponding ground-truth

reference position within the original molecule (whose alignment

to the reference genome is known), as well as the matching genome

sequence reference segment. The validation batch creation follows

this process using molecules from the validation set.

2.4. Model Architecture
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Fig. 2: Model architecture. The model of OM2Seq, as detailed

in Section 2.4, is built upon a Transformer encoder architecture,

which processes images of DNA molecules and reference genome

sequence segments into a unified embedding space. This design is

based on the architecture of WavLM [Chen et al., 2022], featuring

a convolutional feature encoder (with outputs fi) followed by a

transformer encoder (with outputs zi). The number m (mG for

the Genome Encoder, mI for the Image Encoder), of extracted

feature vectors fi, is dependent on the input length, and the CNN

stride parameters. The first transformer output, z1, in the output

sequence is taken as the output embedding vector, and the others

are ignored.

Our model architecture takes cue from the Transformer encoder

utilized in the WavLM work [Chen et al., 2022], which was initially

developed for learning speech representations from extensive

unlabeled speech data and achieved state-of-the-art results on

various speech-related downstream tasks. The decision to leverage

this approach is anchored in the analogy between speech,

represented as an analog, noisy, time-series audio signal encoding

textual information, and OGM images of DNA molecules, which

can be seen as one-dimensional intensity signals encoding genome

sequences.

Incorporated within our architecture is a convolutional feature

encoder followed by a transformer encoder, as depicted in Figure 2.

The first transformer output (CLS token as in BERT [Devlin

et al., 2019] and in DPR [Karpukhin et al., 2020]) in the output

sequence is taken as the output embedding vector. The OM2Seq

model is composed of two Transformer-encoders: one dubbed

the Image Encoder, tasked with encoding DNA molecule images

into embedding vectors, and another called the Genome Encoder,

devoted to transforming genome sequence segments into their

embedding vector counterparts. Starting from the base WavLM

architecture, for the Image Encoder, in the first convolutional layer

the number of input channels was set to the image width in pixels

(5), the kernel size to 4, and the stride to 1. For the Genome

Encoder, the input genome reference label positions vector is

binned into 320bp bins, and the number of positions in each bin is

counted. This counts vector is the input to the first convolutional

layer, which has only one channel, and the same kernel and

stride as the Image Encoder. For the transformer, 3 hidden

layers and 6 attention heads were used for both encoders. The

transformer hidden size, intermediate size and the convolutional

hidden dimension were all scaled down by a factor of 0.072 with

the other parameters used as WavLM’s defaults. The chosen model

down-scaling factor was the one giving best validation accuracy,

after multiple training runs. In result, each embedding vector

produced by the encoders has an embedding dimension of 96 and

the model has 651,461 parameters.

Fig. 3: Training loss. As detailed in Section 2.5, the training

process involved minimizing the contrastive loss function, as shown

in this figure. The validation loss is calculated using a validation

batch at intervals during the training process.
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Fig. 4: Training the model. As detailed in Section 2.5, the model training process involves encoding images of DNA molecules and

reference genome sequence segments into a unified embedding space and trained using a contrastive loss function, similar to CLIP [Radford

et al., 2021]. Both the Image Encoder and the Genome Encoder architectures are detailed in Figure 2. All images are zero-padded to the

same constant size during training and inference. The reference genome segments are always taken with a constant length.

Genome Embedding
Vectors

Genome Encoder

Genome Embedding 
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30kb

200kb

Reference Genome Sequence

30kb

Fig. 5: Pre-computed Genome Vector Database. As detailed

in Section 2.6, the genome vector database, later queried in the

inference phase, is pre-calculated by applying the trained Genome

Encoder on 200kb genome segments (si) extracted from a long

genome reference with 30kb offsets. The embedding vectors (xi)

are then indexed into a FAISS vector database for fast retrieval

[Johnson et al., 2019].

2.5. Model Training

For the training of the embeddings, we implemented the

contrastive loss function used in CLIP [Radford et al., 2021].

CLIP’s training regime utilizes a vast dataset of image-text pairs,

to encode images and their captions to a common embedding

space. For each training batch of size n, a cosine similarity

matrix s is constructed from the dot products of image and text

embeddings. Consequently, this produces a n × n matrix for the

batch, which forms the basis for calculating the contrastive loss.

Cosine similarity is calculated as the dot product of two vectors,

normalized by the product of their magnitudes. In an ideal scenario

where embeddings are perfect, the similarity matrix would be the

identity matrix. Therefore, the identity matrix serves as the target

for optimizing the similarity matrix. This is achieved by applying a

symmetric cross-entropy loss function to both rows and columns of

the similarity matrix with the identity matrix as target, as shown

in Figure 4. The similarity matrix is also scaled by a learnt factor

τ initialized to 0.07 as in the CLIP work, and the loss function is

expressed as:

L =
CE(τs, t) + CE(τsT , t)

2
. (1)

where s represents the similarity matrix (and sT its transpose,

to enforce the identity target both on rows and columns), t is

the target identity matrix, and CE denotes the cross-entropy loss

function, defined as:

CE(s, t) = −
n∑

i=1

n∑
j=1

tij log
exp(sij)∑n

k=1 exp(sik)
. (2)

Since t is the identity matrix, the cross-entropy function can be

simplified to:

CE(s, t) = −
n∑

i=1

log
exp(sii)∑n

k=1 exp(sik)
(3)
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In the context of our OGM data, each batch comprises n pairs

of cropped DNA molecule images and their respective genome

reference segments, as outlined in Section 2.3. By denoting the

normalized genome embedding vectors as xi and the normalized

image embedding vectors as yj , we calculate the element of the

cosine similarity matrix as sij = xi · yj .

The minimization of the loss function was done via stochastic

gradient descent using the AdamW optimizer [Loshchilov and

Hutter, 2019], across 131,600 steps, with learning rate 2 × 10−4,

batch size 256, weight decay 1 × 10−2, and betas (0.9, 0.999).

Additionally, validation loss was assessed using a validation batch

at intervals during the training process (see Figure 3). The training

was conducted on a single NVIDIA A100 GPU, and took around

40 hours.

2.6. Inference and retrieval

For the retrieval of genome sequences based on OGM image

queries, we adopted techniques from the Dense Passage Retrieval

(DPR) work [Karpukhin et al., 2020], which originally trained

models to encode text passages and questions into embeddings

used for efficient retrieval of passages for open question answering.

In DPR, a contrastive loss function similar to CLIP [Radford et al.,

2021] was used to train embedding encoders. These encoders were

trained on a dataset of passages from Wikipedia articles, and the

embeddings were stored in a FAISS vector database [Johnson et al.,

2019].

In our application for OGM, the same approach was used,

with reference genome sequence segments as reference passages

and DNA molecule image embeddings serving as queries. For

efficient retrieval, we pre-computed the reference genome sequence

embeddings and stored them in a FAISS vector database, as in

DPR (Figure 5). The reference embedding database was created

by taking sequential segments of the human genome with a length

of 200 kb and offsets starting in increments of 30kb, resulting in

approximately 105 segments. The trained Genome Encoder model

(Section 2.5) then generated embeddings for each segment, which

were stored in the FAISS vector database.

At inference time (Figure 6), an image of a DNA molecule

is processed by the Image Encoder model to produce an image

embedding. This embedding is queried against the vector database

to retrieve the nearest (by cosine-similarity) K candidate genome

reference segments. The database returns these K candidates,

complete with their embeddings and reference genome offsets.

Candidates are ranked according to similarity to the query, with

the highest similarity indicating the predicted match to the

reference sequence. This retrieval process is much faster than

alignment based methods since the indexing structure of the vector

database allows for reduced computational complexity, which can

be logarithmic as a function of the reference genome length (and

the number of embedded segments) [Johnson et al., 2019], as

opposed to linear in the case of alignment based methods.

To enhance mapping accuracy, the nearest K candidate

reference sequence segments can be aligned to the query image

K-Nearest Matches

Image Encoder Query
Database

Image Embedding Vector

OGM Aligner

Genome Embedding 
Vector Database (FAISS)

Query Results

OGM Alignments

score: 95

score: 50

score: 3

score: 95

score: 50

score: 3

Fig. 6: Inference and retrieval. As detailed in Section 2.6, the inference and retrieval process, inspired by DPR [Karpukhin et al.,

2020], involves encoding an image of a DNA molecule to an embedding vector (y) and retrieving the nearest K candidate reference

sequence segments from a pre-computed vector database of their embeddings (xi, see Figure 5). In a final optional step, an OGM aligner

can be used to precisely align the nearest K matched reference segments (of size 200kb) with the molecule image (which could be as

short as 30kb), and choose the highest scoring alignment. This way both high accuracy and high computation speed can be achieved

(Section 3).
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using an OGM alignment algorithm, such as DeepOM [Nogin

et al., 2023b]. The best performing candidate in terms of alignment

score is then selected as the predicted mapping. This process leads

to both a speed increase in the mapping speed and an improvement

in mapping accuracy (Figure 6).

2.7. Baseline and Evaluation

We use DeepOM, which also contributed to the training data

generation as described in Section 2.3, as a baseline for comparison.

DeepOM is a two-step method, first localizing labels on the DNA

fragment image with a CNN, and then aligning the fragment to

the genome with a DP algorithm.

Our evaluation comprises assessing the accuracy of OM2Seq in

comparison with DeepOM, as well as measuring the mapping speed

(computational speed) of both methods. Additionally, we examine

an integrated approach where OM2Seq retrieves the nearest K =

16 candidate reference sequence segments, and DeepOM aligns the

query image to these candidates, utilizing its alignment score to

select the best match.

For each tested DNA fragment image, with length ranging from

30kb to 200kb (their lengths in basepairs are approximated from

the alignment to the genome reference of the molecule from which

they are cropped), we generate N = 1000 queries from cropped

DNA molecule fragments, each derived from a distinct molecule

in the test set, as aforementioned in Section 2.3. Each query

has a known ground-truth reference position. The selected OGM

mapping method maps each query, and the resulting mapping is

compared to the ground-truth reference coordinates.

An overlap between predicted and ground-truth reference

segments deems a prediction correct. Since we have a ground-

truth alignment for each query image, we know the genome

reference start and stop positions for this query. A segment overlap

(intersection) is computed between the query genome segment

and the predicted genome segment, and a non-zero overlap is

considered correct. Accuracy is then defined as the ratio of correct

predictions to the total number of queries. It is important to note

that given a short image query of say 30 kb, the method provides

its position up to a resolution of the predicted 200 kb genome

reference segment. To obtain a more exact position, an additional

alignment method should be applied, as described earlier.

In addition to the accuracy, we recorded the time taken to map

the entire set of N queries by each OGM method and calculated

the mapping speed as the sum of the lengths of the queries in base

pairs divided by the runtime. The evaluation was performed on a

Google Cloud instance with 12 vCPU cores and an NVIDIA A100

GPU.

3. Results

Our experimental process included generating a dataset of aligned

DNA molecules as delineated in Section 2.3, training the OM2Seq

model per the methods outlined in Section 2.5, with the training

progress exhibited in Figure 3, and evaluating the accuracy

and mapping speed of OM2Seq, DeepOM, and their combined

applications on the test-set (molecules not used for training)

as specified in Section 2.7. The findings regarding accuracy

and mapping speed are visually presented in Figures 7 and 8,

respectively. It can be seen in Figure 7 that OM2Seq in itself has

comparable accuracy to DeepOM, while there is a slight accuracy

drop for OM2Seq at 30kb and 200kb, which is due to the fact

Fig. 7: Accuracy. The accuracy of OM2Seq, DeepOM, and their

combination is evaluated as detailed in Section 2.7, for various

DNA fragment lengths. Accuracy results for the commercial

software from the benchmark done in the DeepOM work are also

shown for comparison (adapted from Figure 4b, Bionano localizer

+ Bionano aligner, in [Nogin et al., 2023b]). Accuracy is measured

as the proportion of queries where the predicted mapping overlaps

with the correct genome reference positions. Error bars indicate

95% confidence intervals, calculated utilizing the Clopper-Pearson

Beta Distribution method [Clopper and Pearson, 1934].
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Fig. 8: Mapping speed. The mapping speed (computation speed,

as described in Section 2.7) of OM2Seq, DeepOM, and their

combination for various DNA fragment lengths. It is computed as

the cumulative length of the DNA fragment queries in base pairs

divided by the runtime. The mapping speed of the commercial

software reported in supplementary information of DeepOM

[Nogin et al., 2023b] is also shown.
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the training was done with crop lengths sampled from 30kb to

200kb in length, which reduced the amount of training data

for these edge lengths (since the sampling distribution was log-

uniform, see Section 2.3). Both methods significantly outperform

the benchmarked commercial OGM alignment software provided

by Bionano Genomics Inc. (which was evaluated on the same OGM
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dataset as here). When combining OM2Seq and DeepOM (as

described in Section 2.6), the accuracy is significantly improved,

for example for 50kb fragments, from 63% for DeepOM to 78% for

the OM2Seq+DeepOM combination (while less than 30% for the

commercial OGM aligner).

Beyond its improved accuracy (when used in combination with

DeepOM), the great power of OM2Seq becomes apparent when

comparing computation speed-up (Figure 8). In comparison to

the baseline DeepOM method, our OM2Seq model demonstrated

significantly faster mapping speeds (by two orders of magnitude

for 200kb fragments for OM2Seq alone), meaning it could process

the same genome coverage in a shorter amount of time. It should

also be noted that the combination of OM2Seq and DeepOM

is faster than DeepOM alone due to the small set of candidate

reference segments retrieved by OM2Seq, significantly reducing

the total reference sequence size to which DeepOM needs to align

the images.

4. Discussion

The results shown here for OM2Seq have highlighted its potential

to significantly advance OGM. As an approach based on training

with real acquired data (as opposed to training on simulated

data in DeepOM), OM2Seq boasts the significant advantage of

bypassing the need for simulation-based image generation, a

process that traditionally requires substantial customization to

ensure the simulator output adequately reflects real images. This

methodological shift allows for direct training on available real

data and affords superior accuracy for mapping shorter molecules

by learning to extract as much information as possible from the

images, utilizing the longest molecules within a given dataset for

training.

Furthermore, OM2Seq has the potential to facilitate OGM

for labeling methods whose labeling mechanisms are not fully

understood and for which there is no available genome alignment

method. This can be implemented when two different labeling

methods are employed, each with its distinct fluorescent color

channel [Jeffet et al., 2021]. Having an OGM alignment method

for just one of the channels, enables ground-truth alignments for

both channels (assuming they are optically aligned). In addition,

those ground-truth alignments enable the generation of a training

dataset for OM2Seq on the second channel, for which there is no

alignment method.

However, OM2Seq has the following limitations. The model

requires substantial quantities of experimental data for training,

which is not always easy to obtain, and while a moderate degree of

accuracy might be attainable with a smaller dataset, the accuracy

presented in this study is contingent on the use of data from

an order of 105 molecules. Furthermore, the training data could

be biased since it is composed solely of long molecules that the

DeepOM or Bionano alignment methods could align, cropped to

shorter fragments. This was necessary since no other ground truth

was available for training. Thus, it is difficult to assess the model’s

performance on independently acquired short molecules without

having some kind of ground truth for them. Such ground-truth

could potentially be obtained, either by using short molecules

from a known short reference sequence (say a virus for example),

or adding another labeling channel on top of them, which could

serve as a ground-truth validation. Another direction that could be

explored is using OM2Seq for fine-tuning itself. This could be done

by first applying OM2Seq inference and alignment to medium-

sized molecules, of say 100kb (which is still very accurate, as seen

in the results Figure 7), then generating a new training dataset

based on cropping those molecules as described in Section 2.3,

and fine-tuning the OM2Seq model on that dataset.

It should also be noted that OM2Seq’s outputs are mappings

to discrete genomic segments (of 200kb size in this study)

that were indexed in the vector database as described in

Section 2.6. For precise pixel-level alignment, supplementary

methods such as DeepOM are still needed as a post-processing

step. For future work, an additional transformer encoder-decoder

architecture could be developed for this purpose and trained on

the same dataset, harnessing the cross-attention mechanism of the

transformer architecture [Vaswani et al., 2017] for direct alignment

of the image pixels to genome reference positions, similar to

transformer-based alignment of nucleotide or protein sequences

[Dotan et al., 2023].

In conclusion, OM2Seq showcases a method for mapping DNA

molecules from OGM images to the reference genome by encoding

images of DNA molecules and reference genome sequence segments

into a common embedding space. The results highlight OM2Seq’s

ability to achieve higher accuracy and faster mapping speeds

compared to the baseline method, DeepOM. Increased accuracy on

shorter molecules also implies higher genome coverage from a given

sample, ultimately leading to higher diagnostic sensitivity. The

increased mapping speed with OM2Seq allows for quicker analysis,

which is valuable when dealing with high coverage OGM mapping

of the human genome, or when mapping against large datasets of

organism genomes, such as in the identification of pathogens.
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