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Earth System Models (ESMs) highly simplify their represen-
tation of biological processes, leading to major uncertainty in
climate change impacts. Despite a growing understanding of
molecular networks from genomic data, describing how chang-
ing phytoplankton physiology affects the production of key
metabolites remains elusive. Here we embed a genome-scale
model within a state-of-the-art ESM to deliver an integrated un-
derstanding of how gradients of nutritional constraints modu-
late metabolic reactions and molecular physiology. Applied to
the prevalent marine cyanobacteria Prochlorococcus, we find
that glycogen and lipid storage can be understood as a conse-
quence of acclimation to environmental gradients. Given the
pressing need to assess how biological diversity influences bio-
geochemical functions, genome-enabled ESMs allow the quan-
tification of the contribution of modeled organisms to the pro-
duction of dissolved organic carbon and its molecular composi-
tion.
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Earth System Models (ESMs) are a powerful tool to study the
future impact of climate change on the ocean (1). However,
due to computational limitations (2), they need to simplify
biology and biological processes, which limits our ability to
understand and constrain biological feedbacks on climate and
biogeochemistry. For example, the net growth of an organism
is described by a set of ordinary differential equations (3, 4)
involving nutrient uptake based on a scheme introduced by
Monod (5) and later extended by Droop through the use of
cellular quotas (6). Following these approaches, more recent
Plankton Functional Type (PFT) models (2, 7, 8) rely on ex-
tensive efforts to estimate a broad set of parameters that af-
fect plankton functional diversity and describe traits critical
to biogeochemical processes. However, this leads to a funda-
mental disconnect between the biological underpinnings of
today’s ESMs around nutrient limitation or other phenotyp-
ical traits and the ever-growing gene- and genome-centered
datasets that have emerged over recent years (8–10). Us-
ing distinct approaches, two notable modeling studies have
addressed the discrepancy between molecular functions and
oceanic provinces. In 2017, Coles et al. (9) developed a

trait-based model that harnessed omics data. This approach
characterized omics-derived traits, and simulated their inter-
actions, providing a computationally feasible representation
of the community’s molecular functions in an oceanic en-
vironment. More recently, Casey et al. (11) focused on
modeling organisms, with a specific focus on the Prochloro-
coccus genus along an Atlantic transect. They achieved this
by extensively parameterizing and optimizing Genome-Scale
Models (GSMs) using omics data. However, this approach
demands extensive data and computational power to be ap-
plied effectively at global scale. GSMs, developed primar-
ily for bioengineering (12), offer an effective way to engage
with growing biological datasets as they use gene-protein-
reaction associations to represent more comprehensively the
metabolic potential of an organism as defined by its genetic
material (13). GSMs consider a set of reactions organized
into metabolic networks in which products of some reactions
become substrates for others. Its genome-scale nature re-
quires the description of many reactions, ranging from sev-
eral hundred in prokaryotes to thousands for eukaryotes. If
environmental conditions are also incorporated, GSMs can
predict an organism’s growth rate, the production of auxil-
iary metabolites, or the metabolic pathways it utilizes (14).
In particular, GSMs can be employed to assess the diversity
and magnitude of metabolite production that contributes to
the oceanic Dissolved Organic Carbon (DOC) pool. Even
though understanding individual organisms in such detail can
provide crucial mechanistic insights into the structure and
function of marine ecosystems (15), GSMs have never been
coupled to ESMs. As a result, their potential for providing
insights into global scale processes remains unknown.
To bridge these gaps, we propose a modeling compromise
that balances the trade-offs around mechanistic detail and
computational efficiency. Our approach aims to avoid labo-
rious parameterization while still capturing the intricate bio-
logical complexity of organisms. In doing so, we can effec-
tively model molecular functions in various oceanic regions
without overwhelming computational demands. This com-
promise holds great promise for advancing our understanding
of microbial processes in the vast ocean ecosystems.
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Fig. 1. Illustration of the modeling combination between a Genome-Scale Model (GSM), i.e., Prochlorococcus MED4 GSM, and an Earth Systems
Model (ESM), i.e., NEMO-PISCES, and comparison between growth rates estimated from ESM and GSM. a |From a metabolic network, we defined
a solution space embedding all possible fluxes that go through each network reaction. These fluxes satisfy the quasi-steady states assumption and other
thermodynamic constraints defined in the GSM. This set of constraints (C1) is defined as biotic constraints, and they affect inner reactions, as well as
exchange reactions responsible for the uptake or secretion of nutrients, and a biomass reaction simulating the growth of the organism (color scale similar
to panel d., see Appendix 1 for details). b |Earth Systems Models predict global ocean biogeochemistry across space and time. Here the ESM provides
uptake fluxes of nutrients for each grid point for each modeled organism. In our framework, these uptake values are used as a set of constraints (C2) on the
exchange reactions of the GSM. These are defined as the set of abiotic constraints that are applied in the model. c |C1 and C2 are combined to constrain
further exchanged metabolite fluxes at each grid point of the global ocean. As a result, we can estimate the organismal growth rate and all feasible inner
fluxes corresponding to a given environment as proposed by the ESM. d |Description of growth rates (h−1) at 5 m depth estimated from NEMO-PISCES
picophytoplankton (top) and Prochlorococcus MED4 GSM (bottom). The dashed line shows the transect described in the following panel. e |Distribution
of respective growth rates across latitudes and depths at longitude -24o. Grey areas indicate latitudes that do not allow Prochlorococcus MED4 growth
because of thermal limits; the GSM does not consider them. The relationship between growth rates across space (above 500 m) and time (i.e., without gray
areas) shows R2:0.80 and slope: 0.787 (see Extended Fig. 11).

Incorporating genome-scale knowledge into biogeo-
chemical models

Because integrating a GSM within an ESM requires the solv-
ing of several hundred equations at each grid point of the
Earth, it is currently computationally unrealistic. A feasi-
ble integration needs a numerical abstraction of the depen-
dencies between growth rate and environmental conditions.
Furthermore, this abstraction must include the cellular mech-
anisms described by the genome (Fig. 1a.). We achieve this
through a metabolic niche approach (16) that projects the
entire metabolism of a species into a reduced mathematical
space driven by the availability of metabolites or nutrients
(Fig. 1b.,c. for illustration and see Materials and Methods for
complete details). When integrated within the environmen-
tal context of ESMs, this new modeling approach benefits
from recent computational advances and exploits the rapidly
growing amount of omics data and associated process under-
standing (8–10).
In this work, we combine a GSM with the quota ver-
sion of the NEMO-PISCES global ocean biogeochemi-
cal model (17), which is a classic example of a cou-
pled ocean physicochemical-biological model embedded
within an ESM used for climate change studies. NEMO-
PISCES predicts the spatiotemporal distribution of three

coarse-grained cosmopolitan phytoplankton groups (pico-
phytoplankton, nanophytoplankton, and diatoms) consider-
ing various environmental conditions such as temperature,
light, and a range of major and macro nutrients (Fig. 1b).
NEMO-PISCES estimates the environmental conditions and
resulting growth rate for each of the three phytoplankton
groups. In this novel approach, we employ the same set of
conditions to calculate offline the growth rate using a se-
lected GSM over the annual cycle (Fig. 1c; see Materials
and Methods for more details). To appraise our approach,
we compared the growth rate of the picophytoplankton group
simulated by NEMO-PISCES with the growth rate calcu-
lated using the specific GSM of Prochlorococcus MED4 (18)
(Fig.1d,e). Encouragingly, although Prochlorococcus MED4
represents only one specific strain of picophytoplankton, sim-
ulations using its GSM were able to qualitatively reproduce
the patterns of average monthly NEMO-PISCES picophyto-
plankton growth rates both at the surface (Fig. 1d) and at
different depths (Fig. 1e) over the global ocean (r > 0.9;
Extended Fig. 11). Similar prediction abilities were found
for two groups of diatoms (Extended Fig. 12), implying the
potential ability to assess the result of competition between
the two diatom species that have GSMs available - Tha-
lassiosira pseudonana (19) and Phaeodactylum tricornutum
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(20) - in conditions computed by NEMO-PISCES for di-
atoms (Extended Fig. 13). While qualitatively similar to
NEMO-PISCES, the predictions show an expected quantita-
tive mismatch. A key difference is that NEMO-PISCES mod-
els the entire community of different phytoplankton func-
tional groups (picophytoplankton, nanophytoplankton, and
diatoms), whereas a GSM represents only one strain within
these communities. To better quantitatively align the two
models, it is necessary to incorporate GSMs that embed di-
verse ecotypes (21, 22), as observed with in situ data. For
instance, the abundance of the MED4 strain represents only
about one-third of the total Prochlorococcus abundance (21).
Furthermore, despite being driven by flux estimates, GSM
predictions exhibit qualitative alignment with in situ abun-
dance and concentration patterns (see Appendix 4.D), allow-
ing us to explore the physiological implications further.

GSM-based predictions of Prochlorococcus MED4 in
the global ocean
Unlike ESMs, which require new parameterizations and a set
of parameter values for each newly introduced trait, GSMs
can reveal any flux occurring through a metabolic process
within an organism at the intracellular level - as long as it
is defined within the metabolic network. Our simulations
are thus not limited to growth rate estimates, but can be
exploited to quantify production of any metabolite repre-
sented in the GSM, including primary and secondary com-
pounds, and to investigate the activity of the correspond-

ing pathways in response to environmental gradients. Based
on more than 106 environmental conditions provided by
NEMO-PISCES across space and time over a year, we esti-
mated for each condition the growth and potential metabolic
content of Prochlorococcus MED4.
Among the different types of carbon storage available in
Prochlorococcus MED4 GSM, we observed that pyruvate
and glycogen productions were fully correlated (r = 1). In
contrast, glycogen and lipid productions show a lower corre-
lation (r = 0.7). While the production of lipids and glycogen
by Prochlorococcus MED4 shows similar qualitative patterns
across the surface ocean, except in tropical Atlantic regions
and the Bay of Bengal (Extended Fig. 10), they differ across
depths and latitudes (Fig. 3a). This insight is only possible
because the information about such traits is accessible from
GSMs. Our model explains these two strategies by the par-
allel variation in a so-called ’resource constraint’. Unlike
previous work that focuses on statistical description (24) or
proteomic measurements (25) of resource limitation, the re-
source constraint we use here results from the GSM and rep-
resents how the nutrient uptake variability affects the organ-
ism’s growth. For a given nutrient, a low resource constraint
indicates that a high quantity of this nutrient can be used
for processes not related to growth, like secondary metabo-
lite production. Thus, a low resource constraint implies rel-
ative growth stability under variations in nutrient bioavail-
ability. In contrast, a high resource constraint implies that
only a small amount of the nutrient can be allocated out-

Fig. 2. Simulation of Prochlorococcus MED4 genome-scale model across the global ocean. a |Principal component analysis of over 106 predictions in the
global ocean, across depths and over a year. Physiological factors emphasized by GSM modeling are blue for organismal composition and red for resource
constraints, whereas environmental factors are in green and those associated with biogeography in grey. b |Distribution of the phosphorus to nitrogen ratio
estimated by NEMO-PISCES for picophytoplankton. c |Distribution of phosphorus constraints based on orthophosphate uptake fluxes at the surface ocean
in January. Lighter colors indicate no resource constraints on uptake. In contrast, higher resource constraints are depicted with darker colors until their
maximum (100% described in black) when the nutrient is limiting per se. d |Distribution of nitrogen constraints based on ammonium uptake fluxes (the only
source of nitrogen available to Prochlorococcus MED4 (23)) following the same color nomenclature as in panel c .
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side growth, making growth more sensitive to its variation
and reducing its availability for other processes, such as sec-
ondary metabolite production. At its maximum (100%), the
resource constraint indicates that the given nutrient limits the
organism’s growth. Using this definition, our model pre-
dicts that the ocean surface is not limited by light as expected
(i.e., low light constraint). Moreover, nitrogen and phospho-
rus emerge at higher resource constraints in distinct zones
(Fig. 2a). Specifically, growth ofProchlorococcus MED4 is
limited by phosphorus in the central Atlantic and the Indian
Oceans (Fig. 2c). This aligns with the quota estimation of
NEMO-PISCES, which predicts a lower P:N ratio in these ar-
eas (Fig. 2b). Nitrogen-limited provinces are in the Southern
and North Atlantic Ocean, which show an antagonistic pat-
tern between nitrogen and phosphorus resource constraints.
We summarised the above results in a Principal Component
Analysis (Fig. 2a), which highlights a positive correlation be-
tween growth rate, glycogen, lipid content, and Photosynthet-
ically Active Radiation (PAR), suggesting acclimation strate-
gies that require further investigations.

GSM-based acclimation strategies of Prochlorococ-
cus MED4 in the global ocean
Linear relationships between specific growth rate and growth
requirements are too restrictive to capture the underlying
acclimation strategies deployed by organisms. For in-
stance, along ocean transects, simulated data representing
Prochlorococcus MED4 growth rates, light, and temperature
are not linearly related (Fig. 3a). Patterns in resource con-
straints better explain Prochlorococcus MED4 growth. Ac-
climation to these constraints and environmental parameters,
such as temperature, produce distinct carbon storage strate-
gies. Either carbon is stored in the form of lipids or as glyco-
gen. Their respective production rates can thus reveal the
prevalent acclimation strategy of MED4.
Overall, provinces with high nitrogen constrained growth ex-
hibit similar lipid and glycogen production patterns. When
limited by phosphorus, Prochlorococcus MED4 shows more
carbon storage in the form of glycogen than lipids (Fig. 3a).
This can be explained by the fact that the lipids used here are
a mix of different types, including phospholipids. Lipids are
generally produced in extreme conditions, such as at depth
and at high latitudes, far from the organism’s optimal growth
conditions. By studying the distribution of Prochlorococcus

Fig. 3. Investigation of Prochlorococcus MED4 genome-scale model fitness and acclimation strategies across the global ocean (more than 106 estimations).
a |Description of Prochlorococcus MED4 genome-scale behavior across the Atlantic Ocean transect (longitude -24o). It describes growth rate according
to light and temperature, associated nutrient constraints (light, nitrogen, and phosphorus), and acclimation consequences (glycogen and lipid productions
per biomass) resumed by the glycogen storage index (see Material and Methods for details), with blue colors indicating consumption of potential glycogen
stock and green colors showing increased storage. b |Distribution of lipid contribution to Prochlorococcus MED4 biomass over five distinct temperature
ranges (see Materials and Methods for details). c |Distribution of glycogen production satisfying predicted Prochlorococcus MED4 growth rates under four
categories of gradual light exposures. d |Distribution of glycogen storage indices computed with estimated Prochlorococcus MED4 growth rates under four
similar categories of gradual light exposures. Indices between 0 and 0.46 index indicate a gradual decrease of glycogen stocks to support growth. Above
0.46, indices are associated with full phototrophic growth with increased glycogen storage.
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MED4 lipid to biomass ratios among all possible environ-
mental conditions, we found that it can increase three-fold in
cold waters (relative to < 25◦C conditions; Fig. 3b), consis-
tent with molecular evidence from other cyanobacteria (26).
When less constrained by light, Prochlorococcus MED4
growth is associated with the production of carbon com-
pounds that are metabolically faster to access, such as glyco-
gen. High glycogen production is observed when carbon is
minimally stored as lipids. Moreover, when both types of
stocks can be used, the observed difference in their produc-
tion rates is due to the higher energy needed to produce lipids
compared to glycogen. When grouped into four categories of
increasing light exposure, the mean value of glycogen pro-
duction per category increases (Fig. 3c), linking this process
to a photosynthetic behavior. In this respect, by investigat-
ing the inner machinery of Prochlorococcus MED4, we can
quantify the amount of carbon used for biomass or glycogen
production. We defined the glycogen storage index as the
normalized ratio of carbon allocated to glycogen production
over the total amount of carbon fixed. This index represents
the ability of the organism to store glycogen. A high in-
dex (i.e., 1) indicates high use of carbon for glycogen storage
while growing at maximal capacity. In contrast, a lower in-
dex (i.e., 0) reveals a lack of glycogen production and the
channeling of carbon toward growth.
In the GSM, lack of production and consumption are in-
terrelated. Below the mean glycogen storage index value
(i.e., 0.46), Prochlorococcus MED4 combines photosynthe-
sis and glycogen consumption (or lack of production) to
ensure a higher growth rate, whereas, above this value, it
shows a growth regime with glycogen storage or secre-
tion. Our indices show a natural tendency for the organ-
ism to undergo glycogen consumption in low-light conditions
(Fig. 3d). Conversely, MED4 displays growth and glyco-
gen over-production in regions where phosphorus constrains
growth rate, which emphasizes the importance of estimat-
ing the nitrogen and phosphorus constraints to assess growth
regime and to uncover long-term vs. short-term carbon stor-
age strategies (i.e., lipids vs. glycogen). These results high-
light the importance of examining the behavior of GSMs in
sub-optimal conditions to assess different acclimation strate-
gies more deeply. Furthermore, it reveals how the high level
of metabolic flexibility impacts biomass composition in the
global ocean and indicates which traits should be incorpo-
rated into ESMs.

Predicting hot spots of biotic production and metabo-
lite diversity

By assessing genome-scale knowledge, GSMs are emerging
as valuable tools for investigating cellular composition (for
detailed information and its application in designing new trait
models, refer to Supplementary Material 5.A) and diverse
metabolite contents. As a case in point, specific metabo-
lites play crucial roles in the labile Dissolved Organic Car-
bon (DOC) pool, a fundamental component of the ocean car-
bon cycle (27), and are significant in bacterial and plank-
ton growth (28). Surprisingly, with few exceptions(29), cur-

Fig. 4. Contribution of Genome-Scale Model to Dissolved Organic Carbon (DOC).
a |Prochloroccocus MED4 produces 33 metabolites that contribute to DOC pool.
The compilation of all compounds allows for an estimation of the intensity of DOC
production in red, in January (top layer) and July (bottom layer). It also allows es-
timation of the diversity of metabolites involved in the DOC production in blue in
January and July. b |Thalassiosira pseudonana produces 19 metabolites associ-
ated with the DOC pool. A similar analysis as in panel a. identifies hot spots for
DOC production intensity and associated metabolic diversity in January and July.

rent ESMs overlook this diverse range of metabolites when
modeling DOC and instead represent a generic DOC pool.
To address this shortcoming, we compiled a comprehensive
summary of the DOC metabolite compounds listed in (27),
specifically focusing on those produced by Thalassiosira
pseudonana and Prochloroccocus MED4 GSMs. Our analy-
sis revealed that T. pseudonana and Prochloroccocus MED4
GSMs produced 33 and 19 metabolites, respectively (see Ap-
pendix Table.1.D for detailed information). To estimate the
contribution of each GSM to DOC production, we aggre-
gated all the metabolite flux estimates (Fig.4; see Materials &
Methods for details). We furthermore investigated the diver-
sity and abundances of metabolites supporting DOC flux pro-
duction in terms of seasonal variation across each GSM. As
anticipated, upwellings and fronts demonstrated higher DOC
production and a wider array of secreted metabolites. Inter-
estingly, the analysis using GSMs shows opposite patterns in
DOC production and metabolite diversity. Despite producing
more diverse metabolites, Prochloroccocus MED4 shows re-
stricted areas of high metabolite diversity amidst wider arrays
of high DOC production. On the contrary, T. pseudonana
displays higher DOC production amidst wider areas of high
diversity. By comparing both GSMs, T. pseudonana played
a predominant role in the magnitude of DOC production and
the diversity of associated metabolites. The more expansive
areas of DOC diversity are consistent with the importance
of diatoms in determining the biogeography of bacterial het-
erotrophs (30). Through a broader analysis of provinces, we
distinguished regions driven predominantly by diatom influ-
ences from those more strongly affected by Prochloroccocus,
reaffirming earlier findings (31). Notably, provinces exhibit-
ing high metabolite diversity did not necessarily align with
high DOC production, highlighting the importance of further
investigation to understand the support for trophic interac-
tions via metabolic cross-feeding between organisms (32) or
to improve predictions concerning the relationship between
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functional diversity and ecosystem productivity (28, 33).
Discussion
Our findings underscore the remarkable potential of integrat-
ing genomic knowledge into ESMs. This conceptual conver-
gence was expected (27), but achieving it has been hindered
by the challenges of extensive data integration and costly
measurements (9, 11). By incorporating GSMs into a biogeo-
chemical model, we can estimate growth rates and assess cel-
lular composition, which partially aligns with observations.
While our modeling paradigm represents a significant step
forward, there is room for refinement, particularly in improv-
ing GSMs to accurately capture in situ and diurnal growth
rates. Nevertheless, this approach allows for predicting com-
plex and diverse molecules, such as cryptic metabolites (e.g.,
DMSP production in Extended Fig. 13). The combined
understanding of these metabolites contributes to our com-
prehension of dissolved organic carbon (DOC) production.
GSMs enable estimates of DOC production for each mod-
eled organism and describe each molecular compound asso-
ciated with it together with their relative proportions. How-
ever, these new estimates, driven by omics-derived informa-
tion, must be further validated against the next generation of
quantitative molecular data (34, 35), necessitating mesoscale
studies to refine our modeling efforts.
In perspective, our modeling framework is ready for incor-
porating recent genome-scale resources, such as the recon-
struction of metagenome-assembled genomes (MAGs) (36),
for a more accurate representation of biodiversity (37) and its
implications for complex molecule production. Furthermore,
incorporating metabolic frameworks into ESMs opens oppor-
tunities to explore advanced evolutionary theories involving
gene transfer or modulation at global scales (38).
Given the pressing need to understand how biological diver-
sity influences global biogeochemical functions, our math-
ematical framework serves as an important bridge to bet-
ter connect the concluion of intergovernmental panels ad-
dressing climate change and biodiversity loss (IPCC and
IPBES respectively). The integration of these cutting-edge
approaches promises to advance our understanding of Earth’s
intricate microbial ecosystems and their impact on global
biogeochemical processes in a changing ocean.

Material and methods

Genome-Scale Model

A Genome-Scale Model (GSM) is stated as a set of linear
constraints, representing the quasi-steady state assumption,
and the thermodynamic constraints:

{
Sv = 0
lb ≤ v≤ ub ,

(1)

The matrix S ∈ Rn,m abstracts the metabolic network of n
metabolites and m reactions, the vector v ∈ Rm represents
the fluxes that go through each network reaction, lb,ub ∈
Rm are the lower and upper bounds of v. To represent the
organism’s growth rate, metabolic models include a biomass
reaction that describes the metabolic requirement for an or-
ganism to grow. It is included in S and cannot have a negative
flux. Given the stated problem, one can calculate with a ded-
icated solver and extract the flux for each network reaction,
including the biomass reaction. The solution is one of the fea-
sible physiological states of the system. In this state, one can
estimate the organism’s growth rate as the flux through the
biomass reaction. For more detail on the metabolic frame-
work and GSM, the reader is referred to Appendix 1.

Metabolic niche projection

We call solution space F the convex hypervolume composed
of v satisfying Eq. 1. F is defined in a space where each di-
mension represents the flux through a reaction. Investigation
of this space is subject to numerous techniques in the con-
text of metabolic engineering (see Price et al. 2004 (39) for
review). However, usingF is not well suited in biogeochemi-
cal models because of its size and complexity. In most cases,
one cannot describe the entire shape of F as its complex-
ity grows exponentially with the number of reactions in the
GSM. In addition, biogeochemical models describe the distri-
bution of a few nutrients compared to the number of metabo-
lites in a GSM. It means that most of the reactions and under-
lying mechanisms of the metabolic network can be abstracted
in favor of a numerical tool linking the exchange reactions
relative to nutrients available in biogeochemical models with
the biomass reaction to estimate a growth rate. In mathe-
matical terms, it implies projecting F onto a smaller space
composed of the sole reactions of interest (i.e., reactions
representing a parameter in the biogeochemical model and
the biomass reaction). This projection, called the metabolic
niche, is computed through Multi-Objective Linear Program-

ming (40). Decomposing the flux vector v =
(

x
y

)
where

x is a flux vector composed of the reactions of interest (i.e.,
the exchange reactions concerning the nutrient and light ab-
sorption) and y is a flux vector composed of all the other
reactions. The projection of F is equivalent to solving the
following problem :
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
min

(
Ip

−1Tp

)
x

subject to

(
x
y

)
∈ F ,

(2)

where Ip is the identity matrix in Rp×p, 1p is the column
vector composed of ones in Rp, and 1Tp its transposition.
The solution of 2 without its last component gives a set of
vertices describing the new convex hypervolumeN . Applied
to several organisms, the investigation of the metabolic niche
hypervolume has shown ecological properties (16).

Description of the biogeochemical model
Our framework is interoperable with the marine biogeochem-
ical model PISCES (Pelagic Interactions Scheme for Car-
bon and Ecosystem Studies). PISCES is the biogeochemical
component of the NEMO (Nucleus for European Modelling
of the Ocean) modeling platform. This study uses the quota
version of PISCES (17). Three phytoplankton groups are ex-
plicitly modeled (picophytoplankton, nanophytoplankton and
diatoms) whose growth rates are limited by iron, phosphate,
nitrate, ammonium and silicate availability. Two zooplank-
ton groups (micro- and mesozooplankton) are represented.
PISCES also models dissolved oxygen, particulate and dis-
solved organic matter, and calcite. The uptake of nutrients
and phytoplankton growth rates are modeled using quota for-
malism. Metabolic rates increase with temperature according
to the commonly used Eppley parameterization (41). Based
on the environmental conditions and the biotic interactions
between the different plankton groups, NEMO-PISCES esti-
mates the growth rate for each plankton group using partial
differential equations.

The metabolic niche in NEMO-PISCES
Thanks to the metabolic niche projection, we can compute
the growth rate of an organism based on the environmental
conditions dictated by NEMO-PISCES. Thus, biology will
be handled by omic-derived knowledge of metabolic models,
while NEMO-PISCES will compute the nutrient availability.
NEMO-PISCES’s simulations provide nutrient inputs for the
algae consisting of iron, nitrate, ammonium, phosphate, sili-
cate (used only by diatoms), and the quantity of carbon fixed
by photosynthesis. These fluxes are also used in distinct
metabolic niches of GSMs representative of these generic
phytoplanktons. Prochlorococcus MED4 cannot assimilate
nitrate but does assimilate ammonium, iron, and phosphate.
NEMO-PISCES inputs constrain the exchange reactions of
the previous metabolite and the 3-phospho-D-glycerate car-
boxylase reaction for the quantity of carbon fixed. However,
our calculations did not incorporate iron (see Appendix 5.B).
In the context of generic diatom modeling (Thalassiosira
pseudonana and Phaeodactylum tricornutum), their GSMs
(18, 19) did not consider iron. The equivalent reaction for
the carbon-fixed quantity is the carboxylation of ribulose-1,5-
bisphosphate, called RUBISC_h in both models. Adding to
those reactions, the biomass reaction estimates a growth rate,

and we have the reactions of interest that will compose the
metabolic niche of each organism.
Worth noting, Prochlorococcus MED4’s GSM predicts
growth rates outside of its thermal range (Fig.1e gray areas),
as the modeling paradigm does not incorporate the thermal
tolerance of Prochloroccocus MED4 (i.e., 10°C), indicating
that the sole metabolism does not include processes involved
in the thermal tolerance. This absence of thermal effect in the
GSM does not change the overall results, as the temperature
is modeled in NEMO-PISCES (41), and impacts the uptake
fluxes of nutrients.

Growth rate extraction from the metabolic niche
The metabolic niche describes the ability of an organism to
survive and grow considering its genome-scale metabolic de-
scription under particular environmental conditions, here a
set of nutrient concentrations, including light which is treated
as a nutrient through the quantity carbon fixed by the organ-
ism. We will use this metabolic niche to obtain the maxi-
mal growth allowed by the model in the environmental con-
ditions computed by NEMO-PISCES. Formally, considering
a vector of uptake fluxes given by the biogeochemical model

xenvb, we construct x =
(

xenvb
xbio

)
, where xbio ∈ R+ is the

flux through the biomass reaction. Then, we need to look for
the maximal xbio that satisfy x ∈N for a particular xenvb :

max xbio

x =
(

xenvb
xbio

)
∈N ,

(3)

where N is the metabolic niche described above. There are
two cases of this problem. Either a solution exists, and we
can solve the problem and output the solution, or there is no
solution, meaning that the environmental condition does not
belong to the niche. In this case, the organism cannot grow,
and the growth rate should be fixed to 0. However, instead
of regarding xenvb as a fixed nutrient uptake, we can view
it as the bioavailability of nutrients. In this context, nutri-
ent bioavailability does not represent the actual uptake of the
organism; rather, it represents the upper limit of nutrient up-
take. In other words, the organism is unable to take up more
nutrients than what is available.

Nutrient bioavailability from the NEMO-PISCES bio-
geochemical model
Indeed, the organism is not necessarily using all the resources
of its environment. The metabolic network should handle
the quantity of nutrients it consumes. If we denote xenvb as
the quantity of bioavailable nutrients, and xenv as the ac-
tual nutrient fluxes used by the model, we need to assure
that xenv ≤ xenvb. We depict this as an additional con-
straint on the uptake fluxes, which changes the formulation
of Eq.3. Thus, we seek for the maximum of xbio that satis-

fies xenv ≤ xenvb and
(

xenv
xbio

)
∈ N . The new formulation

is, therefore:
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
max xbio

xenv ≤ xenvb

x =
(

xenv
xbio

)
∈N ,

(4)

where xenv is the actual uptake fluxes used by the GSM and
constraint by xenvb the uptake fluxes computed by NEMO-
PISCES. This new formulation assures a solution to the prob-
lem.

Auxiliary flux computation
Not only can the metabolic niche produce growth rate esti-
mates, but it can also estimate fluxes through any reaction
of the GSM. Indeed, one can compute the metabolic niche
with one additional dimension and analyze the flux variabil-
ity on this dimension. Taking the former formalism for x we

can write x =

xenv
xbio
xaux

, where xaux ∈ R is the flux through

another reaction of the network, say the flux through the ex-
change reaction of DMSP, or the modeling reaction produc-
ing the organism pigment. With the previous method, we can
determine the maximal xbio with respect to xenv , which give

us xknown =
(

xenv
xbio

)
. Applying the same computation on

x =
(

xknown
xaux

)
gives us a range of flux under the environ-

mental condition defined by PISCES and the assumption that
the organism is maximizing its growth rate. Rewriting Eq. 4,
with xaux and computing not only the maximum value but
also its minimum, we have the following problem:

min/max xaux

w.r.t max xbio

w.r.t x =

xenv
xbio

xaux

 ∈N ,
(5)

Once solved, it gives us the flux range of the new reaction of
interest. This method can be applied to internal or exchange
reactions.

Component of the cellular composition
While the biomass reaction of Prochloroccocus MED4’s
GSM has a fixed stoichiometry, we can add an exchange re-
action for the components of interest to allow secretion of
those components. In other words, adding a new exchange
reaction allows the organism to over-produce the component.
This overproduction can be estimated through the auxiliary
flux computation, with an additional constraint: the model
cannot uptake the component, only produce it (See Appendix
1.B for details).

Carbon cycle hot spots
Carbon hot spots were identified using the auxiliary fluxes
computation as described above. Metabolites used for the

computation are the same as those described in (27) and
found in the GSM of Thalassiosira or Prochloroccocus with
an exchange reaction. Each flux was scaled with the carbon
content of the corresponding metabolites (see Appendix ??
for detail), its unit is thus mmolC.gDW−1.h−1. To gener-
ate the intensity of DOC production at each grid point, we
multiply the highest flux value by the abundance of the or-
ganism, giving us a flux in mmolC.h−1. Worth noticing, the
abundance used was the one computed by NEMO-PISCES,
that is, the entire diatom abundance for Thalassiosira, and the
entire picophytoplankton abundance for Prochloroccocus.
We included a metabolite in the diversity score if its produc-
tion was above 5% of the maximum flux computed among all
other metabolites.

Resource constraint estimate
Our results show that when an organism is under the limita-
tion of one nutrient, the others are in excess. In short, the re-
source constraint represents the quantity of nutrient that can
be allocated to other metabolic pathways than those linked
to biomass production. Our resource constraint definition
is proportional to the amount of nutrient that is in excess.
We can write the resource constraint on the nutrient n as
RCn ∼ −δn where δn is the quantity of the nutrient n that
the organism can use for something other than its growth.
Hence a high resource constraint means that the nutrient al-
most limits the production of biomass (δn∼ 0 ). In contrast,
a low resource constraint means more nutrient n can be used
for other products such as energy storage or other organic
compounds secretion.
Formally we first consider the distance d between x =(

xenv
xbio

)
and xb =

(
xenvb
xbio

)
where xbio is solution of Eq. 4.

xenv is the quantity of nutrients used by the model to produce
xbio of growth. Whereas xenvb is the bioavailability of nutri-
ents. Each component of the computed distance is a quantity
of nutrient not used by the model. As this distance is defined
for each environement (env ∈ E where E is the ensemble of
environmental conditions and env is one environmental con-
dition), we then normalize the distribution of each component
n corresponding to one nutrient, to get a value between 0 and
100%.

RCn(env) =
dn− min

env∈E
(dn)

max
env∈E

(dn)− min
env∈E

(dn) (6)

Glycogen Storage Index
Our Glycogen Storage Index is based on the production of
glycogen and the quantity of carbon fixed by the organ-
ism. Formally we write rmix = Glycogen Produced

Carbon Fixed as the
Glycogen Storage ratio that we normalize to give our index.
’Glycogen Produced’ is the flux of glycogen for a given
condition and a growth rate. ’Carbon Fixed’ is the quan-
tity of carbon fixed, provided by NEMO-PISCES. This ratio
represents the quantity of carbon fixed used to produce glyco-
gen. In other words, it looks at the resource allocation of the
organism. The storage or secretion of glycogen can be used
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by Prochlorococcus MED4 to adapt to different environmen-
tal conditions. From the mean value of the index, we distin-
guish two types of growth. Suppose the ratio is higher than
its mean value. In that case, the organism is already growing
at its full potential considering its environment and can store
the excess carbon into glycogen. On the other hand, an index
below the mean indicates that more carbon fixed is used for
the biomass, and the lack of glycogen produced can be seen
as consumption: the difference between the mean index and
the current index is proportional to the quantity of glycogen
needed by the organism to grow in a particular environment.

Limitations of the model
Our framework, like any modeling approach, has certain lim-
itations (see Appendix 4.D for more details). In our model,
light is represented by the quantity of carbon fixed, which or-
ganisms can utilize for growth or other metabolic processes.
However, organisms do not have the ability to choose not
to utilize light; instead, they adapt their composition to ab-
sorb varying amounts of photons through photoadaptation
and photoinhibition mechanisms. Unfortunately, these mech-
anisms are not accounted for in the GSM, which explains the
results pertaining to pigment production (see Appendix 5).
Furthermore, the quantity of carbon fixed relies on a param-
eter α (photosynthetic efficiency), which assumes uniformity
across all organisms, despite experimental evidence indicat-
ing variations in these parameters (42).
The biomass reaction in our model approximates the growth
rate of the GSM. However, this reaction is constructed based
on laboratory experiments that may not fully capture in situ
environmental conditions. For example, while iron is present
in the Prochlorococcus MED4 GSM, its utilization is not pos-
sible due to stoichiometric differences compared to NEMO-
PISCES (see Appendix 5.B).
Lastly, it is important to note that all simulations are con-
ducted offline. Initially, NEMO-PISCES is executed, and
subsequently, growth is diagnosed using the GSMs. Further
work is necessary to fully integrate the GSMs into NEMO-
PISCES.

Data availability
All data and codes are available on a private cloud (link in
Appendix 3). The data and codes will be available behind a
specific DOI upon acceptance.
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1.A Genome scale model

Supplementary Note 1: Genome-scale model formalism and its manipulation

1.A. Genome scale model
From the genome or the proteome of an organism, one can associate reactions representing the metabolic abilities of an or-
ganism1. Some of those reactions make reactants for others, with this set of reactions denoted as a metabolic network. From
this network, one can build a Genome-Scale Model (GSM) that focuses on the flux carried by each reaction under some
constraints. We differentiate two types of reaction in a GSM: the internal reactions involving metabolites that represent the or-
ganism machinery and the exchange reactions involving external and internal metabolites that describe the exchanges between
the organism and its environment. For a reaction Ri, we define the stoichiometric coefficient for each internal metabolite j by:

sij =



−α if Rj consumes α molecules of Mi

in its forward direction,
α if Rj produces α molecules of Mi

in its forward direction,
0 if Rj neither produces nor consumes Mi.

By convention, exchange reactions are written as:

Mi←→Miex ,

where Miex is the external metabolite Mi. Hence, the forward reaction means that the system adds Mi into the environment,
whereas a reverse reaction means that the system consumes Mi from the environment. Consider a metabolic network of n
reactions and m internal metabolites. According to kinetic theory, the change over time of the concentration of the metabolite
i is given by the mass balance equation:

d[Mi]
dt

= si1v1 +si2v2 + ...+sinvn =
∑

j=1...n
sijvj , (7)

where vj ∈ R is the reaction rate or flux associated with reaction Rj and sij are the stoichiometric coefficient described
above. Fluxes here are expressed as a mole of product formed (or mole of reactant consumed) per gram of dry weight of the
considered organism per hour, i.e., mol.gDW−1.h−1. We can write the above equation for all internal metabolites expressed in
vector notation as:

dM
dt

= Sv , (8)

where S∈R(n,m) is called the stoichiometric matrix of the network, v∈Rn the flux vector representing the flux carried by each
reaction, and M ∈R+n the vector composed of each metabolite concentration [Mi]. Based on the principle that environmental
changes are very slow compared to metabolic adjustments 2, one can assume the system at quasi-steady-states, linearising the
above equations to:

Sv = 0 . (9)

Kinetic parametrization of reactions is not well suited to our framework as it is computationally very demanding and needs
extensive kinetic data to estimate enzymatic activities 3. Instead, GSM uses bounds, representing the thermodynamic feasibility
of the reaction. A reaction cannot have an infinite flux. Thus each vi are constraint as follow:

lbi ≤ vi ≤ ubi , (10)

where ubi represents the upper bound of the flux, meaning the highest rate of the direct reaction, and lbi represents the lower
bound of the flux, i.e., the highest rate of the reverse reaction. Moreover, the irreversibility of the reaction can be translated into
thermodynamic constraint. For instance, a reaction known to be direct and irreversible will have a positive flux:

0≤ vi ≤ ubi . (11)

1Thiele, I. & Palsson, B. Ø. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5, 93–121 (2010).
2Varma, A. & Palsson, B. O. Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use. Nat Biotechnol 12, 994–998 (1994).
3Srinivasan, S., Cluett, W. R. & Mahadevan, R. Constructing kinetic models of metabolism at genome-scales: A review. Biotechnology Journal 10,

1345–1359 (2015).
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Hence the GSM is stated as a set of linear constraints:{
Sv = 0
lb ≤ v≤ ub ,

(12)

To represent the growth rate of the organism, metabolic models include a biomass reaction that describes the metabolic require-
ment for an organism to grow. It is included in the matrix S and cannot have a negative flux. Given the stated problem, one can
calculate with a dedicated solver and extract the flux for each network reaction, including the biomass reaction. The solution
is one of the feasible physiological states of the system. In this state, one can estimate the organism’s growth rate as the flux
through the biomass reaction.

1.B. Growth rate and biomass components
Most models are provided with a biomass objective function in the form of a synthetic reaction. This reaction encloses the
metabolic need for the organism to grow. In the case of Prochloroccocus MED4, the biomass reaction requires several metabo-
lites (see Fig 5) 4. All those compounds have a fixed stoichiometry in the model and allow biomass production, i.e., the
organism’s growth. Most of the fictive metabolites have the only purpose of meeting the metabolite requirement for biomass
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Extended Fig. 5. Biomass reaction of Prochloroccocus MED4 in the model iSO595 (produced with Escher)

production. Hence, they are not consumed elsewhere.

4Ofaim, S., Sulheim, S., Almaas, E., Sher, D. & Segrè, D. Dynamic Allocation of Carbon Storage and Nutrient-Dependent Exudation in a Revised Genome-
Scale Model of Prochlorococcus. Front. Genet. 12, (2021).
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1.C Resource constraint interpretations

To compute an overproduction of those components, we created exchanges reactions allowing the organism to produce them
without necessarily using them for biomass production. Those exchange reactions were restricted to production only (lower
bound of 0). Hence, these changes in the metabolic network do not change the growth computed through our formalism but
enables us to compute the overproduction of these metabolites, allowing us to investigate the organism’s physiology and step
away from the fixed stoichiometry imposed by the metabolic framework. Further investigation is needed to fully allow the
GSM to control its biomass composition.

1.C. Resource constraint interpretations
The resource constraint can be linked to a metabolic stress measure. For instance, in a strongly constrained environment
(resource constraint near 100%), the growth is assumably limited by the considered nutrient.
Moreover, the resource constraint can be used with a growth allocation metric to further study the modeled organism. The
growth allocation for nutrient i would be defined as the ratio of the actual uptake flux of nutrient over the bioavailability of

the nutrient gai = xenv,i

xenvb,i
, where xenvb =

(
xenv
xbio

)
and xenv =

(
xenvb
xbio

)
as defined in Material & Methods. Hence, a growth

allocation of 1 is equivalent to a constraint of 100%, meaning that all the available nutrients are used to produce growth. Lower
values of growth allocation can be compared to the associated resource constraint to see the percentage of used nutrients for
growth (growth allocation) and the available nutrient for auxiliary metabolism (resource constraint).

1.D. DOC metabolites

Prochloroccocus MED4 Thalassiosira pseudonana

L-Arginine (6), L-Asparagine (4), L-Aspartate (4), L-
Glutamate (5), L-Glutamine (5), Glycine (2), L-Histidine
(6), L-Isoleucine (6), L-Leucine (6), L-Lysine (6), L-
Methionine (5), L-Phenylalanine (9), L-Proline (5), L-
Serine (3), L-Threonine (4), L-Tryptophan (1), L-Tyrosine
(9), L-Valine (5), D-Glucose (6), Acetate (2), Cit-
rate (6), Glutathione (10), Pantothenate (9), Succinate
(4), Thymidine (10), Xanthosine (10), 4-Aminobenzoate
(7), 5-Methylthioadenosine (11), Adenine (5), Guanine
(5), Guanosine (10), Putrescine (4), Spermidine (7), 4-
Hydroxybenzoate (7), S-Malate (4)

Folate (19), N-acetyltaurine (4), Acetate (2), Choline (5),
Uracil (4), Xanthine (5), L-Glutamate (5), L-Aspartate
(4), L-Isoleucine (6), L-Leucine (6), L-Valine (5), L-
Asparagine (4), L-Alanine (3), L-Glutamine (5), L-
Histidine (6), L-Serine (3), L-Threonine (4), Glycine
(2), L-Proline (5), Adenosine monophosphate (10), 3-
(dimethylsulfonio)propanoate (5)

Table 1. Lists of metabolites that contribute to Dissolved Organic Carbon for each GSM, with their stoichiometric coefficient for carbon.
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