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Summary 35 
The intestinal microbiome changes with age, but the causes and consequences of microbiome aging 36 
remain unclear. Furthermore, the gut microbiome has been proposed to mediate the benefit of lifespan-37 
extending interventions such as dietary restriction, but this hypothesis warrants further exploration. 38 
Here, by analyzing 2997 metagenomes collected longitudinally from 913 deeply phenotyped, genetically 39 
diverse mice, we provide new insights into the interplay between the microbiome, aging, dietary 40 
restriction, host genetics, and a wide range of health parameters. First, we find that microbiome 41 
uniqueness increases with age across datasets and species. Moreover, age-associated changes are 42 
better explained by cumulative exposure to stochastic events (neutral theory) than by the influence of 43 
an aging host (selection theory). Second, we unexpectedly find that the majority of microbiome features 44 
are significantly heritable and that the amount of variation explained by host genetics is as large as that 45 
of aging and dietary restriction. Third, we find that the intensity of dietary restriction parallels the extent 46 
of microbiome changes and that dietary restriction does not rejuvenate the microbiome. Lastly, we find 47 
that the microbiome is significantly associated with multiple health parameters — including body 48 
composition, immune parameters, and frailty — but not with lifespan. In summary, this large and 49 
multifaceted study sheds light on the factors influencing the microbiome and aspects of host physiology 50 
modulated by the microbiome. 51 
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Introduction 52 
Dietary restriction (DR) improves health and extends lifespan in diverse organisms1,2. However, its efficacy is 53 
highly variable and known to be influenced by numerous factors, including the type of dietary restriction and the 54 
organism’s genetic background3–7. To determine whether different types of dietary restriction extend lifespan in 55 
a genetically heterogeneous population such as humans, we randomized 960 Diversity Outbred mice to fasting 56 
and caloric restriction regimes and tracked their health and lifespan with extensive phenotyping. The design of 57 
this Dietary Restriction in Diversity Outbred mice (DRiDO) study is described in the parallel manuscript by Di 58 
Francesco et al. 59 
 60 
A major goal of the DRiDO study was to identify predictors of longevity. One candidate for such a predictor is 61 
the gastrointestinal microbiome, which has recently been suggested to modulate aging8–10 as well as responses 62 
to dietary restriction11–14. To investigate the relationship between the gut microbiome and lifespan, we performed 63 
shotgun metagenomic sequencing on longitudinally collected stool samples. We generated 2997 metagenomic 64 
profiles from 913 Diversity Outbred mice, resulting in the largest-to-date mouse microbiome dataset. Using this 65 
dataset, we were able to address several fundamental questions. 66 
 67 
First, how does the microbiome age? Numerous studies in mice15–17 and humans18–21 have reported age-68 
associated microbiome changes, but these changes are inconsistent across cohorts22. Two community features 69 
frequently reported to increase with age are ɑ-diversity18,22–24 and uniqueness25,26. Whether these are universal 70 
properties of an aging microbiome remains unknown. Furthermore, it remains unclear to what degree age-71 
associated microbiome changes are caused by the aging host. 72 
 73 
Second, to what extent does host genetics influence the microbiome? The prevailing notion is that the 74 
environment, especially diet, has a much greater contribution to the gut microbiome than host genetics27,28. At 75 
the same time, multiple human studies have identified significant microbiome heritability and quantitative trait 76 
loci (QTLs) for microbiome features29–33. Moreover, a recent study in baboons found that nearly all microbiome 77 
features were significantly heritable but that identifying this heritability required large sample sizes and the use 78 
of longitudinal data34. Therefore, it remains unclear whether the influence of genetics on the microbiome is 79 
perhaps larger than previously appreciated. 80 
 81 
Third, what aspects of host aging are modulated by the microbiome? Mice in the DRiDO study were deeply 82 
phenotyped, allowing us to ask whether the microbiome influences aspects of host physiology over the lifespan. 83 
The relationship between the microbiome and body composition is well-established35–37, but the DRiDO study 84 
was uniquely suited to discovering other host phenotypes influenced by the microbiome. 85 
 86 
In addition to generating the metagenomic dataset in DO mice, we generated a second longitudinal microbiome 87 
dataset in genetically homogenous mice, performed a validation experiment to investigate the mechanism by 88 
which host age influences the microbiome, integrated our dataset with thousands of human metagenomic 89 
samples, and analyzed hundreds of longitudinal host phenotypes collected as part of the DRiDO study. We begin 90 
by describing the generation of the DRiDO microbiome dataset. 91 
 92 
Longitudinal metagenomic sequencing of Diversity Outbred mice 93 
The design of the DRiDO study is described in depth in Di Francesco et al. Briefly, 937 female DO mice began 94 
one of five dietary interventions at six months of age (Fig. 1a, see Methods): ad libitum food consumption (AL, 95 
control group), fasting one day per week (1D), fasting two consecutive days per week (2D), consuming 20% 96 
fewer calories every day (20), or consuming 40% fewer calories every day (40). Mice were extensively 97 
phenotyped over their lifespans (Extended Data Table 1). All dietary restriction interventions significantly 98 
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extended lifespan (log-rank test, p < 2.2e-16), but there was substantial inter-individual variability (Fig. 1b). The 99 
largest extension in lifespan was achieved by the 40% caloric restriction group (36% increase in median lifespan 100 
versus AL). 101 
 102 

 

Fig. 1 | Overview of DRiDO study and 
microbiome dataset. a, At six months of 
age, genetically diverse mice started one 
of five dietary interventions. They were 
extensively phenotyped and stool was 
collected for microbiome profiling. b, 
Lifespan per dietary group. Each dot is 
one of 924 mice: 23 mice died before the 
start of dietary restriction and 13 mice 
died from accidental mishandling. p-
values were calculated with pairwise log-
rank tests against the AL group. c, 
Microbiome data generation consisted of 
extracting DNA from stool samples, 
preparing libraries, performing shotgun 
metagenomic sequencing, performing 
quality control, and finally taxonomic and 
functional classification. After all quality 
control, the cohort consisted of 2997 
stool samples. d, Principal Coordinates 
Analysis (PCoA) plot of quality-controlled 
microbiome samples. Ordination based 
on Bray-Curtis distances of genus-level 
relative abundances. Color denotes 
dietary group, and size encodes mouse 
age at the time of stool collection. 
Boxplots along the sides show PCoA1 
(top) and PCoA2 (left) coordinates per 
dietary group. Barplots along the sides 
show the mean age of stool samples 
within each bin of PCoA1 (bottom) and 
PCoA2 (right) coordinates. PCoA1 and 
PCoA2 explain 35% and 8% of overall 
variance, respectively. 

 103 
To characterize the gut microbiome, we collected stool samples approximately every six months and performed 104 
paired-end (2x150 bp) shotgun metagenomic sequencing on extracted DNA (Fig. 1c). We sequenced 3586 stool 105 
samples (mean 14.1M read pairs per sample), 62 positive controls, and 71 negative controls (Extended Data 106 
Fig. 1a-c). Different library preparations of the same DNA and repeat sequencing of the same libraries produced 107 
highly similar microbiome profiles (Extended Data Fig. 1d, e). 108 
 109 
In addition, we leveraged38 the fact that every mouse in our study was genetically unique and that each stool 110 
sample contained some host DNA (~9% of reads) to exclude samples where the genotype of the host and stool 111 
sample did not definitively match (Extended Data Fig. 2a-d, Supplementary Note 1, Supplementary Tables 112 
1-2). Our pipeline for identifying sample mix-ups allowed us to detect and remedy errors that occurred during 113 
data generation (Extended Data Fig. 2e), including an animal swap (Extended Data Fig. 2f, g). 114 
 115 
Samples were also discarded if they had inconsistent metadata, insufficient reads, an unusually high proportion 116 
of host reads, or if they appeared to be outliers (Extended Data Fig. 3a, see Methods). Our final quality-117 
controlled cohort consisted of 2997 metagenomic profiles from 913 mice, with a median of three samples per 118 
mouse, five timepoints with a large number (at least 360) of samples, and at least 550 samples per dietary group. 119 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.568137doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.568137
http://creativecommons.org/licenses/by/4.0/


 

Page 4 

 120 
We performed taxonomic classification using Kraken2 (ref. 39) and the Mouse Gastrointestinal Bacterial 121 
Catalogue40 (MGBC) as reference, and we performed functional classification with HUMAnN3 (ref. 41). We used 122 
Kraken2 and MGBC instead of the taxonomic results available from HUMAnN3 for two reasons: 1) Kraken2 with 123 
MGBC classified more reads (Extended Data Fig. 3b) and 2) the fraction of characterized (i.e., named) taxa 124 
was higher (55% versus 14% for genera, 12% versus 9% for species). The two methods showed good 125 
concordance (Extended Data Fig. 3c). We hereafter present Kraken2 taxonomic results, except in the 126 
comparisons to other datasets. For functional results, we present MetaCyc42 pathways and further distinguish 127 
between “community-wide” and “specialized” pathways, in which specialized pathways are defined as being 128 
highly correlated with just a few genera (Extended Data Fig. 3d). 129 
 130 
Most microbiome features change with age 131 
First, we assessed whether aging has an effect on the microbiome. Two-dimensional ordination plots of both 132 
genera (Fig. 1d) and pathways (Extended Data Fig. 3e) suggested a strong effect of host age influencing overall 133 
microbiota composition and function (PERMANOVA pseudo-F = 67.0, p-value = 0.001, df = 1 for genera; pseudo-134 
F = 44.7, p-value = 0.001, df = 1 for pathways). To assess the impact of aging on individual microbiome features, 135 
we fit a linear mixed model separately for each feature (see Methods). This model accounted for age, dietary 136 
group, host genetics (via a kinship matrix), mouse identity, and technical factors including DO mouse breeding 137 
cohort, the cage in which a mouse was housed, and DNA extraction batch. 138 
 139 

 
Fig. 2 | Age-associated microbiome changes in DO mice. a, Effect of age on genera (left) and pathways (right). Age 
coefficients were calculated with a linear mixed model. The thin black lines show standard error around the mean. Green 
indicates an adjusted p-value < 0.01. b, Bifidobacterium increases with age. Green line represents line of best fit and 95% 
confidence interval. Vertical dashed line at six months represents start of dietary restriction. c, Taxonomic uniqueness 
increases with age. Uniqueness is defined as the minimum distance to any other microbiome sample. d, Glycolysis IV 
(PWY-1042) decreases with age. e, Host age prediction using microbiome profiles. This analysis considered genus-level 
relative abundance profiles from AL mice. Gray dots are out-of-bag predictions on training data (70%). Green dots are 
predictions by the classifier on never-before-seen testing data (30%). Gray and green lines represent lines of best fit and 
95% confidence intervals for training and testing data, respectively. Black dotted line at y=x represents perfect accuracy. 
 140 
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Most genera and pathways were significantly (conditional Wald test, adjusted p-value < 0.01) associated with 141 
host age (Fig. 2a). Genera whose relative abundance increased most strongly with age included Bifidobacterium 142 
(Fig. 2b), Turicibacter, and Alistipes, while genera with the greatest decreases included poorly characterized 143 
microbes such as ASF356, UMGS268, and UBA9475. The community feature with the strongest positive 144 
association with host age was uniqueness – defined as a microbiome sample’s β-diversity (or distance) to its 145 
nearest neighbor26 – based on both genera (Fig. 2c) and pathways (Extended Data Fig. 4a). We confirmed that 146 
this trend was present in all dietary groups (Extended Data Fig. 4b) and that it was not due to the number of 147 
mice per cage decreasing with age (Extended Data Fig. 4c). We found that ɑ-diversity (as measured by 148 
Shannon and Simpson indexes) increased with age, but the trend was not significant (Extended Data Fig. 4d). 149 
 150 
Many microbial pathways were affected by host age. The pathway with the largest positive association with age 151 
was starch biosynthesis (PWY-622), a specialized pathway that was strongly correlated with Bifidobacterium 152 
(Extended Data Fig. 4e). The pathway with the largest negative association was glycolysis IV (PWY-1042, Fig. 153 
2d), a community-wide pathway. 154 
 155 
Since many microbiome features were associated with host age, we asked whether microbiome information 156 
could be used to predict host age16,21,43–45 (see Methods). Considering just AL mice, we found that a random 157 
forest classifier could predict host age using either genera (Fig. 2e) or pathways (Extended Data Fig. 4f), 158 
demonstrating that the gut microbiome undergoes age-associated changes that can be detected by a machine-159 
learning algorithm. However, the mean absolute error on held-out samples was high (15.7 ± 13.4 weeks and 160 
22.4 ± 16.0 weeks for genera and pathways, respectively), indicating that additional factors influence microbiome 161 
composition and function. 162 
 163 
Universality of age-associated microbiome changes 164 
To investigate whether any of these age-associated changes constituted a conserved microbiome signature of 165 
aging, we compared our dataset to other aging microbiome datasets. We compared AL mice from the DO cohort 166 
to a longitudinal mouse microbiome study that we conducted in male C57BL/6 mice and to a publicly available 167 
human metagenomic sequencing database46 (Fig. 3a). Because the human samples had been processed with 168 
HUMAnN, we processed the C57BL/6 dataset with HUMAnN and used our taxonomic HUMAnN results for DO 169 
mice to enable more direct comparisons. We fit linear mixed models separately for each dataset to identify age-170 
associated taxonomic and functional features (see Methods). 171 
 172 
Within each dataset, many genera and pathways were significantly associated with age (Fig. 3b), but among 173 
taxonomic features that could be compared across datasets, there was little concordance in age-associated 174 
changes (Fig. 3c). Just one taxonomic feature significantly increased with age in all three datasets: uniqueness 175 
(Fig. 3d). We verified that uniqueness increased with age in most of the studies comprising our human cohort 176 
(Extended Data Fig. 5a). Blautia was negatively associated with age across all datasets, but upon closer 177 
inspection, the association in humans was inconsistent (Extended Data Fig. 5b). Some genera — such as 178 
Paramuribaculum, Muribaculum, and Adlercreutzia — significantly increased with age in both mouse cohorts but 179 
not in humans. No ɑ-diversity metrics were significantly associated with age in all three datasets and, in humans, 180 
the relationship between ɑ-diversity and age was highly variable by study (Extended Data Fig. 5c). Taken 181 
together, the only taxonomic signature of aging that we could identify was an increase in uniqueness. 182 
 183 
 184 
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Fig. 3 | Universality of age-associated microbiome changes. a, We compared 573 samples from DO AL mice to 141 
samples from a different mouse aging cohort ("B6") to 4101 human gut microbiome samples. b, Percentage of features 
significantly associated with age (adjusted p-value < 0.1) within each dataset for genera (top) and pathways (bottom). c, 
Comparison of age-associated taxonomic (top) and functional (bottom) changes across datasets. Each pairwise comparison 
shows all features that passed prevalence filtration in both datasets. Line of best fit and 95% confidence interval shown in 
gray. Pearson correlation and corresponding p-value shown above each plot. Features significantly associated with age 
and with the same sign in the pairwise comparison are shown in green. d, Taxonomic uniqueness increases with age in all 
three datasets. e, Flavin biosynthesis I (RIBOSYN2-PWY) decreases with age in all three datasets. f, Schematic of 
cohousing and separation experiment. Young mice are blue, old mice are red. Y = young always housed with young, O = 
old always housed with old, CY = young housed with old, CO = old housed with young, exCY = formerly CY that were 
separated from old, and exCO = formerly CO that were separated from young. g, PCoA of samples at baseline and after 
one month of cohousing. Ordination based on all samples shown in this plot. + denotes group centroid. h, Bray-Curtis 
distances between previously cohoused mice (exCY, exCO) and non-cohoused controls (Y, O). Significance of group 
differences was evaluated with a t-test. i, Random forest classifier trained on baseline samples and evaluated on cohousing 
and separation samples. Accuracy is the percentage of samples within each group correctly classified as young or old. j, 
Uniqueness split by age and cohousing status. Significance of group differences was evaluated with a t-test. B = baseline, 
C = cohousing, S2 = 2 weeks of separation, S4 = 4 weeks of separation, etc. 
 185 
As with genera, there was poor overall concordance of age-associated pathway changes across datasets. 186 
Nevertheless, several pathways showed consistent changes: inosine-5'-phosphate (IMP) biosynthesis (PWY-187 
7234) increased with age, while thiamine diphosphate formation (PWY-7357), thiamine diphosphate salvage 188 
(PWY-6897), inositol degradation (PWY-7237), and flavin biosynthesis (RIBOSYN2-PWY, Fig. 3e) decreased 189 
with age. With the exception of IMP biosynthesis, these are all community-wide pathways (Extended Data Fig. 190 
5d). In addition, functional uniqueness increased with age in all three datasets. These results suggest that there 191 
may exist a functional signature of microbiome aging characterized by decreased production of cofactors such 192 
as thiamine (vitamin B1) and riboflavin (vitamin B2) and increased production of IMP, a necessary precursor for 193 
de novo purine biosynthesis. 194 
 195 
Microbiome changes over the lifespan reflect cumulative stochastic exposure, not host age 196 
Thus far, we had identified a strong but inconsistent effect of age on the microbiome. This motivated us to ask 197 
what causes the microbiome to change with age. We investigated this question through the lens of selection and 198 
neutral theory47–49. We hypothesized that the apparent “age” of the microbiome is dictated by (a) selective 199 
pressure based on host age (selection theory), or (b) exposure to stochastic events that accumulate with time 200 
(neutral theory). To test these hypotheses, we needed to disentangle host age from microbiome age. We did 201 
this by cohousing young (8 weeks) and old (19-20 months) C57BL/6 mice for one month and monitoring their 202 
microbiomes (with 16S sequencing) after 2, 4, 6, and 8 weeks of separation (Fig. 3f). Cohousing caused the 203 
microbiomes of young mice to resemble those of old mice (Fig. 3g). In other words, it had decoupled host age 204 
and microbiome age in young mice. After separation, the microbiomes of young mice never reverted to a young 205 
state: they remained significantly different from the microbiomes of non-cohoused young mice (Fig. 3h). 206 
Furthermore, a classifier trained on baseline microbiome samples always incorrectly identified both cohoused 207 
and previously-cohoused young mice as old (Fig. 3i). These results indicate that a young host does not dictate 208 
the apparent age of the microbiome. The effect of cohousing was much less pronounced in old mice (Fig. 3g, 209 
h), and the classifier always correctly identified old mice, even during cohousing (Fig. 3i). 210 
 211 
We observed again that uniqueness was higher in old compared to young mice (Fig. 3j). Notably, young mice 212 
cohoused with old mice acquired higher microbiome uniqueness compared to non-cohoused young mice, and 213 
this was not reversed upon separation from old mice. Thus, uniqueness appears to reflect the cumulative 214 
stochastic exposure of the microbial community, rather than host age. More broadly, these findings suggest that 215 
microbiome aging is better explained by neutral theory, with age-associated microbiome changes resulting from 216 
within-community development over time, rather than from host influence. 217 
 218 
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Host genetics shape the gut microbiome 219 
The DRiDO study’s use of genetically diverse and genotyped mice enabled us to evaluate the contribution of 220 
host genetics to microbiome composition and function. The first indication that host genetics might have a 221 
substantial influence on the microbiome was the observation that (genetically diverse) DO mice had higher 222 
uniqueness than (genetically homogeneous) B6 mice (Fig. 3d; t-test, t = 23.226, df = 174.16, p-value < 2.2e-223 
16), suggesting that genetic diversity led to more inter-individual microbiome variation. 224 
 225 
We found that the majority of genera (66%, mean heritability of heritable features = 0.11) and pathways (51%, 226 
mean = 0.08) had significant, though modest, heritability (Fig. 4a, see Methods). The most heritable taxa were 227 
Lactobacillus, Parvibacter, and a novel genus in the Erysipelatoclostridiaceae family. The most heritable 228 
microbial pathway was lactose and galactose degradation (LACTOSECAT-PWY), a specialized pathway 229 
strongly correlated with Lactobacillus (Extended Data Fig. 6a). Heritable community-wide pathways include de 230 
novo queuosine biosynthesis (PWY-6700) and fatty acid biosynthesis initiation (PWY66-429). 231 

 
 

Fig. 4 | Genetic influence on the microbiome. a, Heritability of genera (top) and pathways (bottom). For visual clarity, we 
omitted 9 pathways with heritability and standard error approximately equal to zero. Vertical dashed line shows mean 
heritability for heritable features. b, Percentage of taxa with significant heritability (as reported by the authors) in other 
studies. The number of samples per study is indicated. The color of each bar indicates whether the study was performed in 
Diversity Outbred mice, agricultural animals, or humans. c, Proportion of variance explained (PVE) by various experimental 
variables for genera (left) and pathways (right). Horizontal lines show the mean PVE. d, Genome-wide results for the six 
age-specific significant QTLs with adjusted p-value less than 0.1. Markers with LOD greater than 7.5 are colored red.  
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 232 
Since human studies often report a minor role of genetics in shaping the gut microbiome27,31, we confirmed our 233 
surprising result with several orthogonal approaches. First, we made sure that this was not a peculiarity of the 234 
software we used for calculating heritability by exactly reproducing our heritability estimates with an alternative 235 
software package (Extended Data Fig. 6b). Second, we compared our results to an independent dataset of DO 236 
mice50 and found that, of genera that could be compared across studies, the most heritable genus in both 237 
datasets was Lactobacillus (Extended Data Fig. 6c, see Methods). Third, we calculated heritability separately 238 
per age (see Methods) to determine whether our widespread heritability was a consequence of using longitudinal 239 
data, as previously suggested34. Many more features had significant heritability when using longitudinal data 240 
compared to cross-sectional data, but downsampling to a similar number of samples as in cross-sectional data 241 
completely erased heritability (Extended Data Fig. 6d). In other words, a large number of samples was critical 242 
for detecting heritability, not the use of longitudinal data per se. 243 
 244 
Another potential explanation for why we observed higher heritability than typically reported in human studies 245 
relates to differences in environmental variability. Heritability is a relative measure; it is defined as VG / (VG + VE), 246 
where VG is the amount of variance explained by additive genetic effects, and VE is all other sources of variance. 247 
Therefore, larger VE will decrease heritability even if VG is unchanged. If we assume that human observational 248 
studies have higher VE (i.e., more unexplained environmental variability) than studies involving agricultural 249 
animals and even higher VE than studies in laboratory animals, then differences in VE may partially explain why 250 
heritability estimates are generally lower in humans than in agricultural animals and lower still than in DO mice 251 
(Fig. 4b). 252 
 253 
How does the magnitude of this genetic effect compare to the effects of other experimental variables? To answer 254 
this question, we fit a linear mixed model in which all variables were treated as random effects (see Methods). 255 
We found that the proportion of variance explained by genetics was similar to that of dietary restriction and aging 256 
(Fig. 4c). The majority of variance remained unexplained (63% for genera, 76% for pathways), emphasizing that 257 
the microbiome is strongly influenced by factors that are yet unaccounted for. Technical factors such as cage, 258 
cohort of DO breeding, and DNA extraction batch explained smaller, but still significant, amounts of variance, 259 
emphasizing the importance of retaining these technical factors in our linear modelling. 260 
 261 
Lastly, because many microbiome features showed significant heritability, we performed genome-wide 262 
quantitative trait loci (QTL) mapping to find loci that influence microbiome composition (see Methods). We tested 263 
107 features at five different ages and identified just six significant QTLs (Fig. 4d, Extended Data Table 2). The 264 
disconnect between widespread microbiome heritability but few significant QTLs likely reflects the fact that 265 
microbial abundance is a complex, polygenic trait. Furthermore, these six QTLs were significant at only one age 266 
(Extended Data Fig. 6e), suggesting that the genetic influence on the microbiome may be temporally variable. 267 
 268 
Effects of dietary restriction 269 
In addition to host age and genetics, dietary restriction also had a strong influence on the microbiome (Fig. 1d, 270 
Fig. 4c). Indeed, we found that nearly all microbiome features were affected by DR (Fig. 5a). We recovered the 271 
commonly observed phenomenon17,51–53 of DR increasing the abundance of Lactobacillus and closely related 272 
genera (Fig. 5b). We also found that ɑ-diversity is increased by DR (except 2D fasting, Fig. 5c), and uniqueness 273 
is increased by DR (Fig. 5d), in addition to increasing with age. The microbial functions most affected by DR 274 
were specialized pathways (Extended Data Fig. 7a), such as lysine biosynthesis (PWY-2941, highly correlated 275 
with Ligilactobacillus) and O-antigen building blocks biosynthesis (OANTIGEN-PWY, highly correlated with 276 
Lactobacillus). Community-wide pathways affected by DR included the urea cycle (PWY-4984, Fig. 5e) and 277 
citrulline biosynthesis (Extended Data Fig. 7b). 278 
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Fig. 5 | Effects of dietary restriction on the microbiome. a, Effect of dietary restriction (DR) on genera (left) and pathways 
(right). Horizontal dashed gray lines are visual aids to help compare across dietary groups. b, Ligilactobacillus was increased 
by DR. Statistical significance evaluated by a t-test against the AL group. c, ɑ-diversity (as measured by Shannon index) 
was increased by all DR groups except 2D fasting. d, Taxonomic uniqueness was increased by DR. e, The urea cycle 
(PWY-4984) was decreased by DR. f, Absolute magnitude of DR coefficients for genera (left) and pathways (right). Each 
dot is a microbiome feature, gray lines connect the same feature. Horizontal bars show the mean. Statistical significance 
evaluated by a paired t-test. g, Comparison of DR coefficients. Each dot is a genus (top) or pathway (bottom). Pearson 
correlation and p-value is indicated above each scatterplot. Line of best fit and 95% confidence interval are shown in purple. 
h, Predicting dietary group with genera (left) or pathways (right). Each dot represents prediction accuracy in one cross-
validation fold. Horizontal dashed line at 20% represents expected accuracy by chance. Statistical significance evaluated 
by a one-sided t-test (testing whether the mean accuracy is greater than 20%). i, Age prediction with a random forest 
classifier trained on AL samples. Input to classifier was either genera (left) or pathways (right). Vertical dashed line at six 
months represents start of dietary restriction, diagonal dashed line represents perfect prediction. Statistical significance 
evaluated by a t-test between AL and DR predictions at each age. 
 279 
We observed that 40% CR had the strongest overall effect on the microbiome, followed by 2D fasting and 20% 280 
CR, and finally by 1D fasting, suggesting that the intensity of dietary restriction parallels the extent of microbiome 281 
changes (Fig. 5f). To determine whether fasting and CR have similar global effects on the microbiome, we 282 
correlated dietary restriction coefficients calculated by the linear mixed model (Fig. 5g). For both genera and 283 
pathways, dietary coefficients from different DR groups were highly correlated, but correlations were higher for 284 
pathways. For genera, the correlations within CR and fasting groups (i.e., 20% to 40%, 1D to 2D) were higher 285 
than the correlations across CR and fasting groups (i.e., 20% to 1D, 20% to 2D, 40% to 1D, 40% to 2D). This 286 
pattern was not observed for pathways. Two examples of taxonomic changes specific to CR or fasting are 287 
Emergencia — which was unaffected by fasting but decreased by CR — and Roseburia — which was decreased 288 
only by fasting (Extended Data Fig. 7c). We were unable to find pathways differentially affected by CR or fasting 289 
(Extended Data Fig. 7d). These findings suggest that, overall, CR and fasting have similar effects on microbial 290 
composition and function, but the effects on composition are more variable and more specific to the type of DR. 291 
 292 
As an orthogonal way to investigate how the gut microbiome is influenced by dietary restriction, we asked 293 
whether a machine-learning algorithm would be able to predict the dietary group of a mouse based on its 294 
microbiome profile. We trained a random forest classifier (separately at each age) to predict dietary group (see 295 
Methods). As expected, the classifier performed no better than chance (20% accuracy) at five months (i.e., prior 296 
to the start of dietary restriction) for both genera and pathways (Fig. 5h). After the initiation of dietary restriction, 297 
the classifier performed significantly better than chance. Accuracy was higher for genera than for pathways (t-298 
test between genus and pathway accuracies after five months, p=9.6e-11), consistent with the idea that CR and 299 
fasting induce more distinct taxonomic changes than functional changes. Furthermore, accuracy was highest for 300 
the AL, 2D, and 40% dietary groups (Extended Data Fig. 7e), also consistent with our finding that a more intense 301 
dietary intervention creates a more distinct microbiome state. 302 
 303 
Because DR extended lifespan and improved various health parameters (see manuscript by Di Francesco et 304 
al.), we assessed whether DR induced a more youthful microbiome state. To answer this question, we trained a 305 
random forest classifier on all AL samples and predicted the host age of DR samples. If DR produced a more 306 
youthful microbiome state, the predicted age of DR samples would be lower than the predicted age of AL 307 
samples. Surprisingly, we found that DR samples had higher (t-test, p-value < 0.01) predicted ages than AL 308 
samples (Fig. 5i). Conversely, a classifier trained on all 40% CR samples predicted lower age for AL samples 309 
than for the other DR samples (Extended Data Fig. 7f). Furthermore, two-dimensional ordination showed that 310 
aging and DR shifted the microbiome in the same direction (Extended Data Fig. 7g). In summary, we find that 311 
more intense dietary interventions cause larger microbiome changes, that CR and fasting have more concordant 312 
functional effects than taxonomic effects, and that DR does not “rejuvenate” the microbiome to a more youthful 313 
state. 314 
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Fig. 6 | Microbiome-phenotype associations. a, Association and mediation analyses were used to identify host 
phenotypes influenced by the microbiome. For association analysis, a linear mixed model was fit for every microbiome 
feature-phenotype pair, with age, DR, and mouse as covariates. For mediation analysis, we tested each microbiome feature-
phenotype pair to see which effects of DR are mediated by the microbiome. b, Percentage of significant (adjusted p-value 
< 0.01) microbiome-phenotype associations per phenotypic assay. The denominator for the percentage is the number of 
microbiome-phenotype pairs tested within each assay. c, Select associations between genera and body mass-related 
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phenotypes. Positive associations are red, negative associations are blue. * indicates adjusted p-value < 0.01. d, 
Paramuriculum is associated with percent fat, as measured by dual-energy X-ray absorptiometry (DEXA). Blue line shows 
line of best fit and 95% confidence interval. e, Overlap of microbiome-phenotype pairs with significant (adjusted p-value < 
0.01) association and mediation results. f, Heatmap of select microbiome-phenotype pairs significant by just association 
analysis (indicated with +) or by both association and 40% CR mediation analysis (indicated with ++). Phenotypes are 
grouped by phenotypic domain (e.g., energy expenditure or frailty). Microbiome features are sorted alphabetically. Color 
indicates the association coefficient. Positive associations are red, negative associations are blue. Pathways labeled in red 
are specialized pathways, and their most similar genus is labeled on the right side of the heatmap. g, Akkermansia is 
associated with energy expenditure, as measured by metabolic cages. h, Methionine biosynthesis (PWY-7977) is positively 
associated with the volume of carbon dioxide produced, as measured by metabolic cages. i, Percentage of significant 
(adjusted p-value < 0.01) cross-sectional microbiome-phenotype associations per phenotypic assay. The denominator for 
the percentage includes associations across all five ages tested. Lifespan is bolded to emphasize the absence of significant 
microbiome-lifespan associations. 
 315 
The microbiome influences host physiology but not lifespan 316 
Having characterized the factors that influence the microbiome, we next asked whether the microbiome 317 
modulates any of the host phenotypes measured in the DRiDO study. We tested genera and pathways for 318 
association with 197 phenotypic traits across 13 assays, while controlling for age, dietary group, and mouse (Fig. 319 
6a, see Methods). The proportion of significant (adjusted p-value < 0.01) associations was similar for genera 320 
(0.9%) and pathways (0.7%, Extended Data Fig. 8). We observed associations with phenotypes measured in 321 
the body weight, body composition (dual-energy X-ray absorptiometry, DEXA), metabolic cage, frailty, and flow 322 
cytometry assays (Fig. 6b). No associations were observed with phenotypes measured in the echocardiogram, 323 
glucose, grip strength, void (bladder function), rotarod, or wheel running assays. 324 
 325 
Focusing on phenotypes related to body mass and composition, we identified that genera positively associated 326 
with body mass included Alistipes, COE1 (Lachnospiraceae family), Lachnospira, and Ligilactobacillus, while 327 
genera negatively associated with body mass included Angelakisella, Bifidobacterium, Dubosiella, and 328 
Paramuribaculum (Fig. 6c, d). 329 
 330 
To determine whether the microbiome was involved in the impact of DR on host phenotypes, we used mediation 331 
analysis (Fig. 6a, see Methods). Several hundred microbiome-phenotype pairs were significant (mediation effect 332 
adjusted p-value < 0.01) by mediation analysis, and a subset of these overlapped with significant associations 333 
(Fig. 6e). The mediation effect was small (mean proportion mediated = 19% for both genera and pathways), 334 
consistent with the microbiome having a modulatory, rather than driving, role in mediating the effect of dietary 335 
restriction on host physiology. 336 
 337 
We focused on the microbiome-phenotype pairs with a significant association and significant 40% CR mediation 338 
result (Fig. 6f). These microbiome-phenotype pairs represent hypotheses about causal microbiome effects on 339 
host physiology. For example, Muribaculum, a novel genus in the Muribaculaceae family, and Akkermansia (Fig. 340 
6g) are positively associated with energy expenditure. Indeed, the association between Akkermansia and 341 
increased energy expenditure has been reported previously54. Furthermore, pathway-phenotype associations 342 
propose mechanisms for the taxonomic associations. For example, the methionine biosynthesis pathway (PWY-343 
7977) is associated with increased carbon dioxide production — a parameter used to calculate energy 344 
expenditure — suggesting that the methionine may be involved in the associations with energy expenditure. 345 
 346 
Lastly, we asked whether the microbiome is associated with lifespan. Because lifespan is not a longitudinal 347 
measurement, we performed association analysis separately per age (see Methods). Consistent with the 348 
longitudinal analysis (Fig. 6b), we identified numerous associations with frailty and body composition (Fig. 6i) 349 
but no significant associations with lifespan, indicating that several parameters of host health are affected by the 350 
microbiome, but that lifespan is not a microbiome-associated trait. 351 
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Discussion 352 
We generated nearly 3000 metagenomic profiles from more than 900 genetically diverse mice to conduct a 353 
comprehensive analysis of factors shaping the microbiome and how the microbiome itself influences host 354 
physiology. We integrated our dataset with host genomes, with a second longitudinal mouse metagenomic 355 
dataset, with thousands of human metagenomic samples, and with hundreds of longitudinal host phenotypes. 356 
Our analysis generated four major insights. 357 
 358 
First, while microbiome information can be used to predict host age, we find that age-associated microbiome 359 
changes are better explained by cumulative exposure to stochastic environmental influences (neutral theory) 360 
than by the influence of the host (selection theory). This finding is consistent with a recent publication arguing 361 
that increased stochasticity is the signal used by methylation clocks to successfully predict an animal’s age55. 362 
We propose that microbiome uniqueness is a suitable proxy for quantifying the microbiome’s cumulative 363 
exposure to stochastic events. 364 
 365 
Second, we find that host genetics explain similar amounts of microbiome variation as aging and dietary 366 
restriction, and that most microbiome features show significant but modest heritability. We demonstrate that 367 
detecting this genetic influence requires not only large sample sizes but also a controlled laboratory environment, 368 
such that the effect of host genetics is not obscured by unexplained environmental variability. Notably, even in a 369 
controlled study like DRiDO, the overall effect of unexplained environmental variability is larger than the effect of 370 
all other measured variables combined (Fig. 4c). 371 
 372 
Third, we find that dietary restriction induces an older-appearing microbiome. We speculate that this finding is 373 
consistent with the age of the microbiome reflecting its cumulative exposure to stochastic events. The 374 
microbiomes of mice on dietary interventions were exposed to a diversity of feeding conditions — ranging from 375 
a 48-hour fasting state to a state of having just rapidly consumed three days’ worth of food — while the 376 
microbiomes of AL mice only experienced the fed state. We posit that this diversity of intestinal states increases 377 
the microbiome’s cumulative exposure to stochastic events that in turn affect its composition and function. 378 
 379 
Lastly, we find that the microbiome is associated with aspects of host health — namely, body composition, 380 
immune function, and frailty — but not with longevity. In other words, we do not see evidence for the microbiome 381 
mediating the lifespan-extending effect of dietary restriction. 382 
 383 
In summary, this work advances our understanding of the factors shaping the microbiome and elucidates which 384 
aspects of host physiology are influenced by the microbiome. 385 
  386 
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Supplementary Discussion 387 
 388 
Aging 389 
An important question addressed by our study is whether the gut microbiome contains a signature of host age. 390 
We discovered a large number of age-associated microbiome changes, but the only taxonomic change that was 391 
consistent across two mouse cohorts and thousands of human samples was uniqueness. 392 
 393 
Wilmanski and colleagues first described uniqueness increasing with age in humans26, but this trend had not yet 394 
been observed in model organisms. By recapitulating this phenomenon in mice living under strictly controlled 395 
housing conditions, we provide evidence that this pattern is not due to confounding variables inherent to human 396 
studies — such as different diets, living environments, or medications — but that it may be a general feature of 397 
aging gut microbiomes. 398 
 399 
Wilmanski and colleagues further argued that uniqueness characterizes not only aging, but specifically healthy 400 
aging. Like Ghosh and colleagues25, we did not find support for this second argument: uniqueness was not 401 
associated with frailty or lifespan, and its negative association with the proportion of lymphocytes (Fig. 6) is 402 
reminiscent of myeloid skewing, a detrimental phenomenon associated with aging56. 403 
 404 
Rather, we propose that uniqueness quantifies the microbiome’s cumulative exposure to stochastic events. In 405 
addition to increasing with age, we show that uniqueness is increased by dietary restriction and, through the 406 
cohousing experiment, that uniqueness remains high in young mice harboring an old microbiome (Fig. 3j). Aging 407 
increases the microbiome’s exposure to stochastic events through the passage of time, DR increases exposure 408 
by subjecting the microbiome to a variety of fed and fasted intestinal states, and the cohousing experiment shows 409 
that an old microbiome in a young mouse retains its history of stochastic events. 410 
 411 
More broadly, the cohousing experiment suggests that age-associated microbiome changes are better explained 412 
by cumulative exposure to stochastic events (neutral theory) than by the influence of the host (selection theory). 413 
Arguments have been made for49 and against48 the utility of neutral theory in describing the gut microbiome. We 414 
do not claim that selection theory has no applicability to the gut microbiome, but rather that age-associated 415 
changes, particularly in young mice, are better described by neutral theory. 416 
 417 
Besides uniqueness, we identified several age-associated microbial pathways, including decreased production 418 
of vitamins like thiamine and riboflavin. An age-associated decrease in microbial production of thiamine may 419 
help to explain why older individuals have an increased prevalence of thiamine deficiency57–59. Moreover, age-420 
associated decreases in vitamin biosynthesis pathways have been reported previously in mice15. It remains to 421 
be seen whether these functional changes are also the result of accumulating stochastic events or caused by 422 
an aging host. 423 
 424 
Genetics 425 
In line with previous studies27,28, we find that the proportion of variance explained by host genetics is small (mean 426 
7% across genera and 5% across pathways), and the majority of variance remains unexplained (Fig. 4c). 427 
However, we also find that many microbiome features (66% of genera and 51% of pathways) are significantly 428 
heritable, and the influence of genetics is as large as that of aging and dietary restriction. 429 
 430 
We argue that we observed higher heritability than typically reported in human studies for two reasons: 1) large 431 
sample size and 2) limited environmental variability due to a controlled laboratory environment. Downsampling 432 
our dataset from thousands of samples to hundreds of samples erased heritability (Extended Data Fig. 6d). The 433 
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necessity of large sample sizes for detecting microbiome heritability has also been reported previously34,60. 434 
Grieneisen and colleagues further argued that longitudinal data was critical for detecting microbiome 435 
heritability34, but we find that large sample size, rather than longitudinal data per se, is more important (Extended 436 
Data Fig. 6d). We note that Bruijning and colleagues have pointed out that large sample sizes alone may lead 437 
to spuriously high estimates of microbiome heritability when using relative abundances60. We attempted to avoid 438 
this issue by using centered log ratio-transformed data. 439 
 440 
We believe the second reason why we observed higher heritability than expected is related to environmental 441 
variability. Heritability is defined as VG / (VG + VE), where VG is the amount of variance explained by additive 442 
genetic effects, and VE is all other sources of variance. We posit that VE — unexplained environmental variability 443 
— is higher in observational human studies than in studies involving agricultural animals and higher still than in 444 
studies with laboratory animals, and that larger VE leads to lower heritability estimates (Fig. 4b). An exception to 445 
this model is the extremely high microbiome heritability reported by Grieneisen and colleagues in baboons34. We 446 
believe the explanation for this exception is that Grieneisen and colleagues included a plethora of covariates in 447 
their linear modeling, like seasonality and dietary composition, that allowed them to effectively decrease the 448 
amount of unexplained environmental variance VE. 449 
 450 
Despite widespread heritability, we were unable to find any QTLs that were consistent across ages. One 451 
explanation for this paradox is that we identified age-specific host-microbiome interactions. We recently 452 
demonstrated in this same cohort of DO mice that the influence of genetics on body weight varies over time and 453 
in different environments61, so it is plausible that the microbiome is also influenced by temporally variable genetic 454 
effects. Another explanation is that the genetic influence on the microbiome is extremely polygenic, and there 455 
are no individual loci that drive the association (i.e., our age-specific QTLs were false positives). Distinguishing 456 
between these explanations will be left for future investigations. QTL mapping has been performed previously in 457 
DO mice but never at multiple ages50,62. 458 
 459 
Dietary restriction 460 
We found that both caloric restriction and fasting strongly modulate the microbiome. Perhaps unsurprisingly, the 461 
intensity of DR is proportional to the magnitude of microbiome changes (Fig. 5f), with 40% CR causing the 462 
largest changes. Overall, the effects of CR and fasting were concordant (Fig. 5g), but they induced slightly more 463 
distinct taxonomic changes than functional changes, suggesting that different types of DR lead to more varied 464 
compositional changes than functional changes. 465 
 466 
We were surprised to find that DR induced an older-appearing microbiome state, in contrast to prior reports51,63,64. 467 
This conclusion was supported by two different analyses: a random forest classifier predicted older host age for 468 
DR samples than for AL samples, and PCoA plots showed DR and aging shifting the microbiome in the same 469 
direction. As discussed above, we propose that the apparent age of the microbiome as well as uniqueness reflect 470 
the microbiome’s cumulative exposure to stochastic events, not the biological age of the host or the chronological 471 
age of the microbiome. Therefore, an “older-appearing” microbiome state should not be interpreted as DR 472 
increasing host biological age, but rather as DR subjecting the microbiome to a greater diversity of intestinal 473 
conditions. The literature provides examples for both beneficial11 and detrimental65 consequences of microbiome 474 
adaptations to DR. 475 
 476 
Associations with host phenotypes 477 
Consistent with the well-known link between obesity and the microbiome35–37, we observed numerous 478 
microbiome associations with body mass and composition. In addition, we observed associations with immune 479 
parameters, hematological parameters, and measures of frailty. Mediation analysis demonstrated that individual 480 
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microbiome features are involved in some of the effects of DR on host physiology, but the proportion of the total 481 
effect mediated by the microbiome is small, and the assumption of unidirectional mediation is likely not fulfilled 482 
by microbiome data. Taken together, these results indicate that the microbiome modulates, rather than drives, 483 
the effect of DR on several aspects of host physiology. 484 
 485 
In contrast, we saw no associations with lifespan. A lack of association with lifespan is not surprising; given that 486 
the microbiome undergoes even daily fluctuations, it seems improbable that a snapshot of the microbiome could 487 
predict mortality years later. Furthermore, the lack of a microbiome-lifespan association is consistent with our 488 
observation that DR induces an “older-appearing” microbiome state; even though DR clearly extends lifespan 489 
(Fig. 1b), this effect is independent of the gut microbiome. In the companion manuscript by Di Francesco et al., 490 
we demonstrate that other host phenotypes are predictive of lifespan, just not microbiome features. 491 
 492 
Resource 493 
Several aspects of the DRiDO microbiome study make it a unique resource to the research community. First, it 494 
is the largest-to-date mouse microbiome dataset. The data are longitudinal and, because we performed 495 
metagenomic sequencing, provide both taxonomic and functional information. Second, we performed thorough 496 
and conservative quality control, including a pipeline to confirm that stool samples unambiguously matched their 497 
corresponding host genomes (Extended Data Fig. 2, Supplementary Note 1). Third, microbiome 498 
measurements are paired with host genomes and hundreds of longitudinally-collected host phenotypes. In 499 
addition to the raw sequencing files, we have made available summarized data tables, code, and an example 500 
analysis tutorial (https://github.com/levlitichev/DRiDO_microbiome) to facilitate use of this dataset by the 501 
community. 502 
  503 
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Extended Data Figures 504 
 505 

 
 

Extended Data Fig. 1 | Positive and negative controls. a, Number of read pairs per sample (prior to aggregation), grouped 
by sample type. b, PCoA of all samples prior to aggregation. Two positive controls (BZIZNTZA and JVOMNOOB, highlighted 
in red) clustered separately from the other positive controls. PCoA1 and PCoA2 explain 30% and 10% of overall variance, 
respectively. c, Species-level relative abundances (MetaPhlAn4) for positive controls. Two positive controls (BZIZNTZA and 
JVOMNOOB, highlighted in red) did not display the expected community composition. d, PCoA of non-control samples prior 
to aggregation. Samples originating from the same DNA are connected by a colored line. e, Same PCoA plot as d, 
highlighting instances in which a library was sequenced multiple times. 
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Extended Data Fig. 2 | Identifying sample mix-ups. a, Sample mix-ups were identified by comparing host reads from 
each microbiome sample against all host genotypes (we term this pipeline “mbmix”). For more details, see 
Supplementary Note 1. b, Example of concordance between a microbiome sample and the expected host genotype. 
The x-axis is each host genotype, the y-axis is the proportion of single nucleotide polymorphisms (SNPs) that were 
discordant between the microbiome sample and the host genome. c, Example of discordance. Microbiome sample 
DO_20_1188_021w was supposed to originate from mouse DO-20-1188, but it appears to have come from DO-2D-4188. 
d, Best proportion discordant SNPs versus proportion of discordant SNPs against the expected genotype. The fate of 
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each sample is indicated by its color: kept (green), discarded (red), or renamed (blue). e, Plate view of mbmix 
categorization. Each panel is a "final plate", a 96-well plate of libraries prior to pooling. White regions either didn't contain 
a sample, contained a sample that obtained no reads (e.g., left half of final plate 31), contained a sample whose mouse 
did not have a genotype, or contained a control sample. f, Proportion discordant SNPs for stool samples from mice DO-
AL-0097 and DO-AL-0105. Samples from 44 weeks were concordant with the expected mouse genotype. All other 
samples from mouse DO-AL-0097 appeared to come from mouse DO-AL-0105, except DO_AL_0097_148w, which was 
inconclusive. The two other samples from mouse DO-AL-0105 appeared to come from DO-AL-0097. For discordant 
results, the mouse with the lowest proportion of discordant SNPs is colored red. g, Body weight for mice DO-AL-0097 
and DO-AL-0105. The vertical dashed line at 56 weeks represents the likely time that these mice were swapped in their 
cages. 
 
 
 

 
Extended Data Fig. 3 | Additional quality-control and details related to taxonomic and functional classification. 
a, Histogram of all pairwise sample distances (Bray-Curtis on relative abundances). Distances involving any of 13 outlier 
samples are shown in red. b, Percentage of reads that could be classified for non-control samples using either 
Kraken2+MGBC or MetaPhlAn4. Mean percent classified indicated in black text. c, Difference between Kraken2+MGBC 
and MetaPhlAn4 genus-level relative abundances for the 41 genera present in both taxonomic databases. Each horizontal 
line shows the mean ± standard deviation across all non-control samples. d, Examples of community-wide and specialized 
pathways. The largest correlations for the specialized pathway (PWY-8004) were with Lactobacillus and 
Limosilactobacillus. e, PCA plot based on microbial pathways. PC1 and PC2 explain 21% and 8% of overall variance, 
respectively. For more details, see Fig. 1 legend. 
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Extended Data Fig. 4 | Additional details related to age-associated microbiome changes in DO mice. a, Functional 
uniqueness increases with age. Green line represents line of best fit and 95% confidence interval. Vertical dashed line at 
six months represents start of dietary restriction. b, Taxonomic uniqueness increases with age in all dietary groups. c, 
Taxonomic uniqueness increases with age even when the number of mice per cage is kept fixed. For various n, cages with 
at least n mice at that age were considered. If the number of mice was greater than n, then n mice were randomly chosen. 
Uniqueness was then recomputed on this subset of samples. d, ɑ-diversity (as measured by Shannon and Simpson indexes) 
has a non-significant (adjusted p-value > 0.01) positive association with host age. Line of best fit and 95% confidence 
interval shown in gray. e, Histograms of pathway-genus correlations. The largest genus correlation for the specialized 
pathway (PWY-622) is to Bifidobacterium. There are no correlations above 0.5 for the community-wide pathway (PWY-
1042). f, Age prediction based on pathways. The classifier was provided with pathway log2(TPM) profiles from AL mice. 
Gray and green dots are predictions on training and testing data, respectively. Black dotted line at y=x represents perfect 
accuracy. 
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Extended Data Fig. 5 | Additional details related to universal age-associated microbiome changes. a, Uniqueness 
increases with age in most human studies and significantly increases with age in the two largest studies. Adjusted p-values 
< 0.1 are shown in green. The number of individuals per study is indicated. b, Blautia decreases with age in just a few 
studies, and when regressing against age separately per study, no studies have an adjusted p-value < 0.1. c, ɑ-diversity 
versus age, separately per human study. p-values were adjusted separately per metric. d, Histograms of pathway-genus 
correlations. For the specialized pathway (PWY-7234), the largest genus correlation is to Ligilactobacillus. 
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Extended Data Fig. 6 | Additional details related to microbiome heritability. a, Histograms of pathway-genus 
correlations. For the specialized pathway (LACTOSECAT-PWY), the largest genus correlation is to Lactobacillus. b, 
Heritability computed with lme4qtl or ASReml using the same model and data. c, Comparison of heritability estimates from 
a different DO mouse study (Schlamp et al. 2021). Plot shows the eight genera for which heritability was assessed in both 
datasets. Of these eight, the most heritable taxon in both studies was Lactobacillus (highlighted in yellow). d, Cross-sectional 
versus longitudinal versus downsampled longitudinal heritability. Genera with significant heritability (adjusted p-value < 0.01) 
are shown in blue. The longitudinal results are the primary heritability results presented throughout the manuscript. e, Allele 
effects across ages for the top six age-specific QTLs (permutation test, adjusted p-value < 0.01). The title above each sub-
panel indicates the genus, chromosome, and genotyping marker for the QTL result. Color of each line represents the allele 
effect for each of eight founders comprising the Diversity Outbred genetic pool. 
 506 
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Extended Data Fig. 7 | Additional details related to the effects of dietary restriction on the microbiome. a, Examples 
of community-wide and specialized pathways. The specialized pathways are most highly correlated with Lactobacillus and 
Ligilactobacillus. b, The L-citrulline biosynthesis pathway (CITRULBIO-PWY) is decreased by all DR groups. c, Taxonomic 
changes unique to fasting or caloric restriction. Emergencia is exclusively decreased by CR, while Roseburia is decreased 
by fasting and increased by caloric restriction. Horizontal dashed gray line at the AL group median is a visual aid to help 
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compare across groups. Statistical significance evaluated with a t-test against the AL group. d, Mean CR versus mean 
fasting coefficients for genera (top) and pathways (bottom). Vertical lines highlight the difference in mean CR coefficients 
(red) versus mean fasting coefficients (blue). Features with opposite signs are opaque, while features with the same sign 
are transparent. Dashed horizontal line at 0. e, Diet prediction accuracy, stratified by dietary group, using genera (left) and 
pathways (right). Only predictions after the start of dietary restriction were considered. f, Age prediction of a classifier trained 
on all 40% CR samples and evaluated on all other samples, using genera (left) or pathways (right). Horizontal dotted line 
shows the actual age of samples collected at that timepoint. Statistical significance evaluated with a t-test. g, PCoA of AL 
and 40% CR samples from middle-aged (10 months) and old (28 months) samples. Ordination based on just these samples. 
Group centroids are depicted by the four large points, along with 95% data ellipses. Arrows connect group centroids to 
depict the effect of age (gray) and the effect of caloric restriction (red). PCoA1 and PCoA2 explain 39% and 8% of overall 
variance, respectively. 
 507 
 508 

 
Extended Data Fig. 8 | Additional details related to microbiome-phenotype associations. Histogram of p-values for 
associations between phenotypes and genera (left) or pathways (right). Associations with an adjusted p-value < 0.01 are 
shown in blue. 
  509 
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Extended Data Tables 510 
 511 
Extended Data Table 1. Phenotypic assays in the DRiDO study. 512 
Assay Frequency Example traits 

Body weight Weekly Body weight, change in body weight over the last three months 

Frailty Twice per year Overall frailty, individual frailty metrics like alopecia and distended abdomen 

Grip strength Twice per year Fore paw strength, all paw strength 

Acoustic startle (hearing) Yearly Average voltage response to loud sounds (physical startle measured with a 
piezoelectric accelerometer), slope of voltage response for increasingly loud 
sounds 

Glucose Yearly Fasting and non-fasting glucose 

Complete blood count Yearly Hematocrit, mean corpuscular volume, red blood cell distribution width, 
percent monocytes, etc. 

Dual energy X-ray 
absorptiometry (DEXA) 

Yearly Percent fat, bone mineral density, lean tissue mass, etc. 

Echocardiogram Yearly Heart rate, ejection fraction, left ventricular volume during systole, etc. 

Flow cytometry of 
peripheral blood 

Yearly Percent of viable cells that are myeloid, percent of lymphocytes that are B 
cells, percent of CD4+ T cells that are effector T cells, etc. 

Metabolic cage Yearly Volume of carbon dioxide produced, respiratory quotient, distance traveled, 
food consumed, etc. 

Rotarod Yearly Time until fall, number of trials without a fall 

Urinary voiding Yearly Number of spots, volume of urine 

Wheel running Yearly Total distance run, average speed, etc. 

Lifespan Once  

 513 
Extended Data Table 2. Significant (permutation test, adjusted p-value < 0.1) age-specific microbiome 514 
quantitative trait loci (QTLs). 515 
Microbiome feature Age 

(months) 
Chromosome Position 

(bp) 
LOD p-value Adjusted p-

value 
Angelakisella 5 11 116956666 8.33 0.01 0.078 

CAG-475 10 X 103262003 10.10 0.01 0.078 

1XD42-69 16 5 115024909 8.40 0.01 0.078 

Acutalibacter 16 7 135473480 8.42 0.01 0.078 

COE1 16 7 29431249 10.14 0.01 0.078 

Mailhella 28 15 69199803 9.17 0.01 0.078 

  516 
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Supplementary Note 1: Identifying sample mix-ups 517 
 518 

1. Introduction 519 
Sample mix-ups and well-to-well contamination are common in microbiome studies66. In this study, we were able 520 
to identify and remedy potential mix-ups or contamination due to our unique experimental design. Because every 521 
Diversity Outbred mouse was genotyped, we could compare each mouse genome to the small fraction of host 522 
reads in each stool sample to confirm that every stool sample came from the expected mouse (Extended Data 523 
Fig. 2a). To do this, we implemented a previously published pipeline38 as a Sunbeam67 extension: 524 
https://github.com/levlitichev/sbx_mbmixture. Below, we refer to our implementation of this pipeline as “mbmix”. 525 
 526 

2. Genotyping 527 
Mice were genotyped with the GigaMUGA genotyping array, which contains 143,259 markers. The genomes of 528 
DO mice contain large regions inherited directly from one of eight founder lines, so we are able to impute many 529 
more genomic positions than those directly measured by the genotyping array. After quality control, 946 530 
genotypes remained. For stool samples belonging to mice without a genotype, we were unable to apply mbmix. 531 
 532 

3. Description of method 533 
For every sample, we filtered to mouse reads by mapping quality-controlled reads with bwa68 to the mouse 534 
genome (mm10). An average of 1.1 M reads (9.1% of quality-controlled reads) could be mapped to the mouse 535 
genome. These mouse reads were compared to every mouse genotype. At each single nucleotide polymorphism 536 
(SNP), we counted the number of times that a read agreed or disagreed with the expected nucleotide. Summing 537 
across all SNPs, we reported the discordance between a stool sample and a mouse genotype as the proportion 538 
of discordant SNPs. 539 
 540 
An example of concordance is shown in Extended Data Fig. 2b: the stool sample from mouse DO-AL-0020 at 541 
97 weeks of age has the lowest proportion of mismatches with the genotype of mouse DO-AL-0020. Therefore, 542 
we are confident that this stool sample came from the expected mouse. An example of discordance is shown in 543 
Extended Data Fig. 2c: the stool sample from mouse DO-20-1188 at 21 weeks of age has much lower 544 
discordance with mouse DO-2D-4188, rather than the expected mouse DO-20-1188. In this case, the likely 545 
explanation is that somewhere during data generation — probably during stool collection or DNA extraction — 546 
“20” was mistaken for “2D,” and the wrong tube was picked up. This is an example of a stool sample that was 547 
discarded because we could not confidently determine from which mouse it originated. For more details about 548 
this method, please see Lobo et al. 2021. 549 
 550 

4. Overview of sample mix-ups 551 
mbmix was run on all samples. The primary outcome of the pipeline was the proportion of discordant SNPs 552 
against each mouse genome. Samples with considerably fewer discordant SNPs against a different genome 553 
than against the expected genome (self_proportion_mismatch - best_proportion_mismatch > 0.05) were 554 
considered potential sample mix-ups. During our manual inspection, we also assessed whether mix-ups were 555 
geographically concentrated in certain regions of 96-well plates. 556 
 557 
After extensive manual inspection of 4352 sequenced samples, we discarded or renamed 886 samples (20.3%, 558 
Extended Data Fig. 2d, Supplementary Table 1). Samples were renamed when we could confidently 559 
determine which stool sample was actually sequenced. We now address each of the reasons why samples were 560 
discarded or renamed.  561 
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4.1 Suspicious region, cause unknown 562 
The largest category of potential sample mix-ups consisted of samples in suspicious geographic regions of 96-563 
well plates (Extended Data Fig. 2e). Specific examples of suspicious geographic regions are listed in 564 
Supplementary Table 2. In certain cases, the cause of the mix-ups could be traced to a specific step of data 565 
generation (for example, tubes that were dropped during DNA extraction of samples on final plate 27), but for 566 
most cases, it was unclear whether the mix-ups occurred during stool collection, DNA extraction, or library 567 
preparation. 568 
 569 

4.2 Within-cage 570 
The next largest category of potential mix-ups were geographically scattered samples whose predicted mouse 571 
was in the same cage. Within-cage mix-ups were particularly likely to occur because samples from the same 572 
cage were handled together (during stool collection, DNA extraction, and library preparation), but another equally 573 
likely explanation is coprophagy, i.e., mice consuming each other’s feces. We are unable to distinguish between 574 
these two possibilities, so we took the conservative approach of discarding these samples. 575 
 576 

4.3 Index collision 577 
We identified one clear example of an index collision, where one library batch (LB46) accidentally received the 578 
same sequencing indexes as another library batch (LB83). This mistake required discarding a full 96-well plate 579 
of samples plus a smaller number of samples that were sequenced as part of a redo sequencing run. Because 580 
the DNA from these samples was unaffected, we were able to successfully remake and sequence libraries from 581 
the DNA. 582 
 583 

4.4 Suspicious region, cause known 584 
These samples correspond to a geographic region of potential mix-ups where we were able to confidently 585 
determine what stool sample was actually sequenced (Supplementary Table 2). For example, on final plate 7, 586 
one column of samples all corresponded to the mouse in the adjacent column. This likely represented a pipetting 587 
error during library preparation. 588 
 589 

4.5 Cross-cage 590 
These samples correspond to scattered samples in which the predicted mouse was not in the same cage as the 591 
expected mouse. These mix-ups are very unlikely to be explained by coprophagy. Possible explanations include 592 
well-to-well contamination or sample mishandling during DNA extraction or library preparation. These samples 593 
were discarded. 594 
 595 

4.6 Very low uniqueness 596 
These samples had a borderline mbmix result (self_proportion_mismatch - best_proportion_mismatch < 0.05, 597 
but > 0) and high similarity to another microbiome sample. These samples were identified by calculating all 598 
pairwise distances between microbiome profiles and subsetting to samples frequently involved in very small 599 
pairwise distances (< 0.15). For each of these “very low uniqueness” samples, we asked whether the most similar 600 
microbiome profile belonged to the same mouse as predicted by mbmix. We identified 15 samples where this 601 
was the case. For example, the most similar sample to DO_2D_4051_069w was DO_2D_4050_069w, and the 602 
predicted mouse by mbmix was DO-2D-4050, suggesting that DO_2D_4051_069w was either a duplicate of or 603 
contaminated by DO_2D_4050_069w. These 15 “low uniqueness” samples were discarded. 604 
 605 

4.7 Animal swap 606 
Lastly, mbmix identified one instance where two mice were accidentally put back into the wrong cages after a 607 
phenotyping session and misidentified the rest of their lives. Microbiome profiles from mice AL-0097 and AL-608 
0105 correctly matched their corresponding genotypes at 44 weeks of age, but afterwards, samples from mouse 609 
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AL-0097 appeared to come from AL-0105, and samples from AL-0105 appeared to come from AL-0097 610 
(Extended Data Fig. 2f). Both mice were white, had the same ear tag, and were housed in adjacent cages. 611 
Examining the longitudinal body weight for these two mice revealed that they were swapped at approximately 612 
56 weeks (Extended Data Fig. 2g). Microbiome samples from these mice after 44 weeks were renamed, and 613 
the body weight data was fixed. 614 
 615 

5. Conclusion & discussion 616 
The mbmix pipeline allowed us to identify and remedy errors made during data generation in order to increase 617 
the quality of our final dataset. We discarded 775 (17.8%) and renamed 111 (2.5%) samples. In the previous 618 
application of this pipeline, 22 of 297 (7.4%) samples were discarded38. Why did we discard a larger fraction of 619 
samples? First, we applied this pipeline on cohoused mice. As a result, there were 255 samples where we were 620 
unable to distinguish between a potential sample mix-up and coprophagy. We made the conservative decision 621 
to discard these samples. Second, we discarded 136 samples because of one index collision. Excluding these 622 
two issues, our proportion of discarded samples (9.7%) more closely resembles that of Lobo et al. We suspect 623 
that this range of sample mix-ups (5-10%) is common in large-scale microbiome sequencing studies, but few 624 
experimental designs allow for identifying and fixing these errors.  625 
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Supplementary Tables 626 
 627 
Supplementary Table 1. Summary of potential sample mix-ups identified by mbmix. 628 

Category # 
samples 

Action Description 

Suspicious region, 
cause unknown 

305 discard A region of a plate with many potential sample mix-ups, but the 
cause of the mix-ups is unknown. 

Within-cage 255 discard Scattered samples whose predicted mouse is in the same cage. 
Unknown if these are caused by coprophagy or errors during data 
generation. 

Index collision 136 discard LB46 received the wrong indexes, which caused it to collide with 
LB83. Prior to identifying the cause of the problem, these samples 
were re-sequenced as part of a redo run, and they again collided 
with other redo samples. 

Suspicious region, 
cause known 

106 rename A region of a plate with many sample mix-ups, and the cause of 
the mix-ups could be confidently determined. There was enough 
information to confidently rename these samples. 

Cross-cage 64 discard Scattered samples whose predicted mouse is not in the same 
cage. These mix-ups could not be the result of coprophagy and 
are therefore very likely to have been caused by a mistake during 
data generation. 

Very low 
uniqueness 

13 discard Samples with borderline mix-up results that also looked unusually 
similar to another sample. The two possible explanations for this 
situation are 1) the same DNA was added to two wells during 
library preparation, or 2) well-to-well contamination. 

Animal swap 5 rename These correspond to the known swap of mice AL-0097 and AL-
0105. 

Total 775 discard  

111 rename  

 629 
  630 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.568137doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.568137
http://creativecommons.org/licenses/by/4.0/


 

Page 31 

Supplementary Table 2. Specific mix-up events. 631 

Final 
plate 

Action Type of mix-up n (n 
including 
redoes) 

Description 

7 rename Suspicious region, 
cause known 

14 Pipetting error during library preparation. Samples 
were offset by one column. 

12 discard Suspicious region, 
cause unknown 

11 (13) One region of the plate was mostly mix-ups. Cause 
unknown. Libraries were unsuccessfully remade 
for these samples (see final plate 47). 

13 discard Suspicious region, 
cause unknown 

45 (60) Left half of the plate was mostly mix-ups. Cause 
unknown. Libraries were unsuccessfully remade 
for these samples (see final plate 47). 

15 discard Suspicious region, 
cause unknown 

43 (44) Bottom half of the plate was mostly mix-ups. Cause 
unknown. Libraries were unsuccessfully remade 
for these samples (see final plate 48). 

16 discard Suspicious region, 
cause unknown 

7 All samples in row H (except one) were mix-ups. 
Cause unknown. 

18 discard Suspicious region, 
cause unknown 

16 One region of the plate was mostly mix-ups. Cause 
unknown.  

19 discard Suspicious region, 
cause unknown 

27 Bottom 3 rows of the plate were mostly mix-ups. 
Cause unknown. Likely that a mistake happened 
during EB60. 

20 discard Suspicious region, 
cause unknown 

26 Top 3 rows of the plate were mostly mix-ups. Cause 
unknown. Likely that a mistake happened during 
EB60. 

25 rename Suspicious region, 
cause known 

36 (37) Problem with EB74. Some samples were offset by 
2 positions, others by 1 position. Renamed 
contiguous samples with the same offset, kept 
samples that found the correct mouse, and 
discarded the rest. 

discard Suspicious region, 
cause unknown 

14 (17) 

27 rename Suspicious region, 
cause known 

7 Discovered a note in a technician’s lab notebook 
indicating that a row of partially labeled, closed 
tubes (every other tube was labeled) had been 
dropped during DNA extraction. Tubes were 
replaced based on the technician’s best guess. 
Samples were renamed based on the results of 
mbmix. 

28 & 29 
 
 

rename Suspicious region, 
cause known 

17 Appears that 4 sets of 6 tubes each were incorrectly 
rearranged during DNA extraction. Samples were 
renamed based on the results of mbmix. 

31 discard Index collision 77 (136) Index collision between LB46 (left half of plate) and 
LB83 (right half of plate). All samples from this plate 
were discarded, even if the mbmix result was okay. 
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LB46 redo samples also collided with other redo 
samples that had to be discarded. Libraries were 
successfully remade for these samples. 

32 rename Suspicious region, 
cause known 

12 One region from right half of the plate was mostly 
mix-ups. Most samples were offset by 1, so these 
were renamed. One sample was offset by -1. This 
sample was discarded. 

discard Suspicious region, 
cause unknown 

1 

42 rename Suspicious region, 
cause known 

19 Bottom 2 rows were all offset in the same way; they 
contained the mouse in a well one column to the 
left and five rows up. These samples were 
renamed. Some samples corresponded to a library 
well that itself looked like a mix-up, so these 
samples were discarded. 

discard Suspicious region, 
cause unknown 

3 

47 discard Suspicious region, 
cause unknown 

49 Top half of plate and row H were mostly mix-ups. 
Top half was redo of LB36 (final plate 13), row H 
was redo of LB32 (final plate 12). 

48 discard Suspicious region, 
cause unknown 

42 Bottom half of plate was mostly mix-ups. Bottom 
half was redo of LB47 (final plate 15). 

 632 
  633 
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Methods 634 
 635 
DRiDO study 636 
The Dietary Restriction in Diversity Outbred mice (DRiDO) study is described in depth in Di Francesco et al. 637 
Briefly, 960 DO mice were enrolled in quarterly waves from breeding generations 22-24 and 26-28. Just one 638 
female mouse was used from each litter, so no mice in the study were siblings. Mice were housed up to eight 639 
animals per pen. Only female mice were used to prevent aggressive competition for limited food resources69. 640 
 641 
At six months of age, mice began one of five dietary interventions: ad libitum, 20% caloric restriction, 40% caloric 642 
restriction, one day per week fasting, or two consecutive days per week fasting. 960 mice were enrolled in the 643 
study, but only 937 mice were alive at six months. Dietary restriction was initiated at six months to evaluate the 644 
consequences of adult-onset, rather than lifelong, DR. 20% CR mice received 2.75 grams of food per day, 40% 645 
CR mice received 2.06 grams per day, 1D mice were fasted from Wednesday 3pm until Thursday 3pm, and 2D 646 
mice were fasted from Wednesday 3pm until Friday 3pm. CR mice received a triple feeding on Friday afternoon. 647 
They consumed this food quickly, causing the 20% CR and 40% CR mice to undergo approximately one day or 648 
two days of fasting, respectively, over the weekend. 649 
 650 
Body weight was measured weekly, while a variety of other phenotypes were collected every six months or 651 
yearly (Extended Data Table 1). The experiment was conducted at The Jackson Laboratory (Bar Harbor, ME), 652 
and animal procedures were approved by the Animal Care and Use Committee at The Jackson Laboratory 653 
(protocol # 06005). 654 
 655 
Stool collection 656 
Mice were scruffed, and one stool pellet was collected fresh. The pellet was added to RNAlater and stored at -657 
80°C. 658 
 659 
DNA extraction 660 
Stool pellets were removed from RNAlater with clean tweezers. DNA was extracted with the QIAGEN DNeasy 661 
PowerSoil Pro Kit (Cat. # 47016) following manufacturer instructions with one modification: pellets were 662 
homogenized for one minute using the MP Biomedicals FastPrep-24 Classic Bead Beating Grinder and Lysis 663 
System, rather than using a vortex adapter. DNA was eluted in 50 uL of C6. DNA concentration was measured 664 
using a NanoDrop Spectrophotometer. DNA samples with concentration < 10 ng/uL were excluded from further 665 
data generation. DNA was extracted across 124 batches of 24 or 48 samples. We included at least one negative 666 
control (nothing added to lysis tube at start of protocol) and one positive control every ~100 samples. We used 667 
two different positive controls: ATCC 10 Strain Even Mix Whole Cell Material (Cat. # MSA-2003) or 668 
ZymoBIOMICS Gut Microbiome Standard (Cat. # D6331). These controls contain cells from 10 and 21 microbes, 669 
respectively, with a variety of relative abundances. 670 
 671 
Library preparation 672 
Extracted DNA was prepared for sequencing using the Illumina DNA Prep Kit (Cat. # 20060059). We added 7.5 673 
uL of input DNA diluted to 3-22 ng/uL. We modified the protocol to use ¼ of the manufacturer recommended 674 
reagent volumes. Samples were barcoded using IDT for Illumina DNA/RNA UD Indexes Sets A and B (Cat. # 675 
20027213, 20027214), except for a handful of samples that were barcoded with Nextera DNA CD Indexes (Cat. 676 
# 20018708). Samples were eluted in 35 uL of elution buffer. DNA concentration was measured using the Qubit 677 
dsDNA High Sensitivity Assay Kit (Cat. # Q32851). If library preparation was unsuccessful (i.e., concentration < 678 
1 ng/uL), we attempted to redo the library starting from the input DNA. We examined a random subset of samples 679 
from each batch on a TapeStation 4200 instrument using a High Sensitivity D1000 ScreenTape (Cat. # 5067-680 
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5584). Library preparation was performed in 96-well plates across 70 batches of 48 or 96 samples each. We 681 
included at least one negative control (7.5 uL of dilution buffer added to well at start of protocol) and one positive 682 
control every ~100 samples. The positive control was the ATCC 10 Strain Staggered Mix Genomic Material (Cat. 683 
# MSA-1001), which contains DNA from 10 bacteria at a variety of relative abundances. 684 
 685 
Pooling and sequencing 686 
Libraries were pooled and sequenced on a NovaSeq 6000 with paired ends (2x150 bp). Sequencing was 687 
performed across eight sequencing runs and two NovaSeq 6000 machines: one at Calico Life Sciences LLC and 688 
one at the University of Pennsylvania. 689 
 690 
Data preprocessing 691 
We performed quality control of our sequencing reads using the Snakemake pipeline Sunbeam67 (v2.1.1). More 692 
specifically, we removed adapters with cutadapt70 (v3.1, forward and reverse adapters = 693 
CTGTCTCTTATACACATCT); we trimmed low-quality bases and discarded low-quality reads with trimmomatic71 694 
(v0.39, ILLUMINACLIP:trimmomatic/adapters/NexteraPE-PE.fa:2:30:10:8:true LEADING:3 TRAILING:3 695 
SLIDINGWINDOW:4:15 MINLEN:36); we discarded reads with many repetitive sequences with komplexity 696 
(https://github.com/eclarke/komplexity); and we removed host reads (mean 9% of input reads) using bwa68 697 
(v0.7.17) against the mm10 genome. 698 
 699 
Quality control 700 
We collected 4214 stool samples from 944 DO mice (16 mice died prior to the first collection). Of these 4214 701 
stool samples, 3586 stool samples (85%) were sequenced. We were unable to sequence 628 stool samples 702 
because either A) we could not successfully extract DNA (the DNA concentration had to be > 10 ng/uL) or B) we 703 
could not prepare a library from the DNA (the library concentration had to be > 1 ng/uL) despite multiple attempts. 704 
After accounting for positive and negative controls and some stool samples being sequenced more than once, 705 
we sequenced 4352 samples. 706 
 707 
Samples were discarded for any of the following reasons (in this order): 708 
 709 

1) The sample did not definitively come from the expected mouse (see “Identifying sample mix-ups” below), 710 
n=775 711 

2) We discovered that the date of sample collection was after the animal’s date of death, so we could not 712 
be certain that the stool sample was correctly identified, n=6 713 

3) The sample received too few reads (< 750k read pairs for stool samples, < 100k read pairs for positive 714 
controls), n=29 715 

4) The proportion of reads assigned to the mouse genome was suspiciously high (> 50%), n=53 716 
5) The sample was very different from all other samples (see “Discarding outliers” below), n=13 717 

 718 
After these quality-control steps, we were left with 3473 samples, corresponding to 2997 stool samples (71% of 719 
the original 4214) from 913 DO mice. 720 
 721 
Identifying sample mix-ups 722 
Because every DO mouse was genotyped, we could compare the small fraction (~9%) of host reads in each 723 
stool sample to each mouse genome to confirm that every stool sample came from the expected mouse. We did 724 
this by adapting a previously published pipeline5. The idea is to count the number of times that host reads are 725 
discordant with the host genotype. After running this pipeline on all samples, we discarded 775 samples and 726 
renamed 111 samples. Notably, 136 of the discarded samples were due to one mistake (an index collision 727 
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between two library batches), and 225 of the discarded samples may not have been mix-ups but the result of 728 
coprophagy. The small number of renamed samples involved situations in which we could confidently identify 729 
the cause of the mistake. For complete details, please see Supplementary Note 1. 730 
 731 
Discarding outliers 732 
We calculated all pairwise sample distances to identify potential outliers (Extended Data Fig. 3a). The largest 733 
distances were enriched for 13 samples: the 45,348 pairwise distances greater than 0.9 involved 3310 samples, 734 
but just 13 samples were involved in 48.3% of these distances. These 13 samples were considered outliers and 735 
omitted from analysis. 736 
 737 
Taxonomic and functional classification 738 
After quality control, we performed taxonomic and functional classification with two distinct approaches. First, we 739 
used HUMAnN3 (ref. 41) for taxonomic (MetaPhlAn4, ref 72) and functional profiling with the following databases: 740 
mpa_vOct22_CHOCOPhlAnSGB_202212, full_chocophlan.v201901_v31, and uniref90_annotated_v201901b. 741 
We used all default parameters and added `--unclassified-estimation` to estimate the proportion of unclassified 742 
reads. We also performed taxonomic profiling with a second approach: Kraken2 (ref. 39, v2.1.2) with the Mouse 743 
Gastrointestinal Bacterial Catalogue40 (MGBC) and default parameters. Because the Kraken2+MGBC approach 744 
classified more reads (Extended Data Fig. 3b) and returned fewer uncharacterized taxa, we present Kraken 745 
taxonomic results except in two places: positive control stacked barplots (because MGBC does not contain all 746 
microbes present in the positive controls, Extended Data Fig. 1c) and comparisons to the other datasets (see 747 
“Comparison to B6 and human datasets” below). 748 
 749 
We identified 376 genera and 482 species using MetaPhlAn, 252 genera and 1093 species with Kraken, and 750 
422 MetaCyc42 pathways with HUMAnN3. Because so many microbes in the mouse gut microbiome are 751 
uncharacterized, we focused on genera rather than species for better interpretability. 752 
 753 
To account for differences in sequencing depth, we calculated genus-level relative abundances (exclusive of 754 
unclassified reads), and we divided pathway reads-per-kilobase (RPK) abundances by the sample sum 755 
(excluding UNMAPPED and UNINTEGRATED) and multiplied by 1 million. This is equivalent to the transcripts-756 
per-million (TPM) normalization used in RNA sequencing73, so we adopt this nomenclature even though we are 757 
not referring to transcripts. 758 
 759 
Samples produced from the same stool sample were aggregated together. For Kraken taxonomic results, we 760 
aggregated by summing absolute counts. For HUMAnN results, we aggregated by taking the mean genus-level 761 
relative abundance and mean pathway TPM abundance. 762 
 763 
We distinguished between “community-wide” and “specialized” pathways on the basis of their similarity to 764 
taxonomic features. Specialized pathways were defined as having a small number (1-4) of Pearson correlations 765 
with genera above 0.5. Correlations were calculated using centered log ratio-transformed relative abundances 766 
for genera and transcripts-per-million (TPM) abundances for pathways.  767 
 768 
Data normalization prior to linear modeling 769 
For downstream linear modeling, we used centered log ratio-transformed, genus-level relative abundances and 770 
pathway TPM abundances after replacing zeros. Zeros were replaced with each feature’s minimum non-zero 771 
value divided by two. 772 
 773 
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We excluded low prevalence features. For Kraken taxonomic results, we considered the 100 most abundant 774 
genera (based on total counts across all samples), which accounted for >99% of all genus-level counts. For 775 
HUMAnN, we retained pathways with at least 100 TPM in at least 10% of samples (273 of 422 pathways). 776 
 777 
We included several community features in our linear modeling: three genus-level measures of ɑ-diversity 778 
(Shannon index, Simpson index, and Chao1 index), the first three principal coordinates (based on Bray-Curtis 779 
distance of genus-level relative abundances), taxonomic uniqueness (also based on genus-level Bray-Curtis 780 
distance), and functional uniqueness (based on Euclidean distance of log2(TPM) pathway abundances). 781 
Uniqueness is defined as the distance (or β-diversity) of a microbiome sample to its nearest neighbor26. 782 
 783 
Finally, prior to use in a linear model, features were scaled so that estimated coefficients were comparable across 784 
features. 785 
 786 
PCoA and PCA 787 
Principal coordinate analysis (PCoA) plots were based on Bray-Curtis distances of genus-level relative 788 
abundances. The principal component plot (PCA) plot was based on Euclidean distance of pathway log2(TPM) 789 
abundances. 790 
 791 
PERMANOVA 792 
We performed permutational multivariate analysis of variance (PERMANOVA) using the adonis2 function from 793 
the vegan74 R package with the following parameters: formula = dist ~ age + DR, by = “margin”, permutations = 794 
999. Age is a continuous variable encoding age in months, DR is a categorical variable encoding each of the 5 795 
dietary interventions (samples collected prior to dietary randomization are considered AL). We ran PERMANOVA 796 
on all 2997 samples. For genera, we used Bray-Curtis distance on relative abundances. For pathways, we used 797 
Euclidean distance on log2(TPM) abundances. 798 
 799 
Linear mixed model per microbiome feature 800 
To assess the influence of age, dietary restriction (DR), and genetics on each microbiome feature (y_mb), we fit 801 
the following linear mixed model: 802 
 803 

1. y_mb ~ age + DR + (1|mouse) + (1|cohort) + (1|batch) + (1|cage) + (1|genetics) 804 
 805 
Where age (in weeks, scaled) is a fixed effect; DR is a fixed effect with five levels (AL, 1D, 2D, 20, 40); (1|mouse) 806 
is a random intercept; (1|cohort) is a random intercept corresponding to DO breeding cohorts; (1|batch) is a 807 
random intercept corresponding to microbiome DNA extraction batch; (1|cage) is a random intercept 808 
corresponding to the cage in which a mouse was housed for the entirety of its life; and (1|genetics) is a random 809 
effect corresponding to additive genetic effects, which we encode by providing the kinship matrix. In ecology, 810 
this model is referred to as the repeated measures animal model75. The (1|mouse) random effect accounts for 811 
“repeatability” or “permanent environment effects”, while (1|genetics) accounts strictly for additive genetic effects. 812 
 813 
We used the previously published61 kinship matrix for this cohort of DO mice. Importantly, we multiplied the 814 
kinship matrix (in which the diagonal was approximately 0.5) by 2 before using it in the linear mixed model. This 815 
step is necessary because the genetic covariance matrix in a linear mixed model must contain coefficients of 816 
relationships, which are twice the kinship coefficients76. 817 
 818 
The significance of each fixed effect was evaluated using a conditional Wald test. The significance of each 819 
random effect was evaluated using a likelihood ratio test where the null model omitted the random effect. P-820 
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values were adjusted with the Benjamini-Hochberg procedure, separately for taxonomic and functional features. 821 
Adjusted p-values < 0.01 were considered significant. 822 
 823 
Model 1 was fit using ASReml-R77 (v4.1.0.716), as well as lme4qtl78 (v0.2.2) to confirm identical results with a 824 
different software package (Extended Data Fig. 6b). 825 
 826 
Age prediction 827 
We used a random forest classifier (randomForest R package v4.7-1.1 with default parameters) to predict the 828 
age of a mouse based on its microbiome profile. We performed age prediction in 3 different contexts: 1) predicting 829 
the age of DO AL mice, 2) predicting the age of DR mice using a classifier trained on AL mice, and vice versa; 830 
and 3) predicting age in the cohousing experiment. 831 
 832 
For predicting age of DO AL mice, we split into training (70%) and testing (30%) sets while stratifying by cage, 833 
i.e., samples from the same cage were not present in both the training and testing set. We used out-of-bag 834 
predictions when reporting training accuracy. The classifier did not see samples from the testing set except when 835 
making its final prediction. Age was treated as a continuous variable. We used relative abundances for the top 836 
100 most abundant genera and log2(TPM) abundances for the 272 pathways that passed prevalence filtration. 837 
 838 
For predicting age of DR mice, the classifier was trained on all AL samples and evaluated on all DR samples. 839 
We used out-of-bag predictions when reporting AL accuracy. For predicting age of AL mice, we trained a 840 
classifier on all 40% CR samples and evaluated it on all other samples, including the other DR groups. Age was 841 
treated as a continuous variable, and we again considered 100 genera and 272 pathways. 842 
 843 
For predicting age of mice in the cohousing experiment, the classifier was trained on all baseline samples and 844 
tested on all other samples. Age was treated as a binary variable (young or old). We considered relative 845 
abundances for all 125 genera (see “Cohousing experiment”). 846 
 847 
Longitudinal B6 mouse cohort 848 
Fifteen four-week-old male C57BL/6 (“B6”) mice were ordered from The Jackson Laboratory. Mice were housed 849 
five per cage across three cages. Stool pellets were collected upon arrival and then every three months. Pellets 850 
were collected fresh into empty 1.7 mL tubes and frozen at -80°C. Animal procedures were approved by the 851 
Institutional Animal Care and Use Committee at the Perelman School of Medicine at the University of 852 
Pennsylvania (protocol # 806361).  853 
 854 
DNA was extracted with the Qiagen Dneasy PowerSoil Pro Kit (Cat. # 47016), libraries were prepared with the 855 
Nextera DNA Flex Library Prep Kit (Cat. # 20018705), and libraries were sequenced on a NextSeq 550 machine 856 
with 75-bp single-end sequencing. Data were analyzed the same way as the DO samples: pre-processed with 857 
Sunbeam and then taxonomically and functionally classified with HUMAnN. 858 
 859 
Human metagenomic data 860 
Human metagenomic sequencing data was obtained using the curatedMetagenomicData46 package (v3.6.2). 861 
We filtered for stool samples from individuals meeting the following criteria: age ≥ 18 years, “healthy” or “control”, 862 
and no current antibiotic use. Furthermore, we only included studies with ≥ 50 individuals meeting these criteria 863 
and an age interquartile range ≥ 5 (to make sure each study had a diversity of ages). This resulted in 4101 864 
individuals from 20 studies. We obtained genus-level relative abundances and pathway RPK abundances, which 865 
we normalized to log2(relative abundances) and log2(TPM) values after replacing zeros, as described above. 866 
  867 
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Comparison to B6 and human datasets 868 
We considered only samples from AL mice when comparing the DO cohort to the B6 cohort and human samples. 869 
We fit the following linear models to identify age-associated microbiome features in each dataset: 870 
 871 

2. DO AL mice: y_mb ~ age + (1|mouse) + (1|cohort) + (1|batch) + (1|cage) 872 
3. B6 mice: y_mb ~ age + (1|cage) 873 
4. Humans: y_mb ~ age + (1|study) 874 

 875 
Where (1|study) is a random intercept corresponding to one of 20 studies comprising the human cohort. See 876 
“Linear mixed model per microbiome feature” for details about the other terms. Models 2, 3, and 4 were fit with 877 
MaAsLin2 (ref. 79, v1.12.0). 878 
 879 
Because the human dataset had been processed with HUMAnN, we used our MetaPhlAn taxonomic results for 880 
the DO AL mice, instead of the Kraken taxonomic results. We used log2-transformed genus-level relative 881 
abundances after zero replacement. For prevalence filtration, we retained genera with at least 0.001% relative 882 
abundance in at least 10% of samples (DO AL: 248 of 311, B6: 262 of 310, humans: 90 of 331) and pathways 883 
with at least 100 TPM in at least 10% of samples (DO AL: 262 of 399, B6: 233 of 329, humans: 358 of 573).  884 
 885 
We also tested several measures of ɑ-diversity (Shannon index, Simpson index, inverse Simpson index, and 886 
richness) and uniqueness. For DO AL mice, uniqueness was recalculated considering just AL mice. For humans, 887 
uniqueness was calculated separately within each of 20 studies.  888 
 889 
The significance of the age coefficient was evaluated using a conditional Wald test. P-values were adjusted with 890 
the Benjamini-Hochberg procedure, separately per dataset and separately for taxonomic and functional features. 891 
Due to the additional burden of needing to be consistent across datasets, the adjusted p-value threshold was 892 
increased to 0.1 for this analysis. 893 
 894 
For select microbiome features, we also fit the following basic linear model separately within each human study 895 
to assess consistency across studies (Extended Data Fig. 5a-c): 896 
 897 

5. Within each human study: y_mb ~ age 898 
 899 
The 20 p-values (one from each human study) were adjusted with the Benjamini-Hochberg procedure. 900 
 901 
Cohousing experiment 902 
We obtained n=25 8-week-old female C57BL/6 mice from The Jackson Laboratory and n=20 19- and 20-month-903 
old female C57BL/6 mice from the National Institutes on Aging. Prior to the start of the experiment, mice were 904 
housed five per cage with other mice of the same age. Mice were allowed to acclimate for at least one week 905 
prior to the start of the experiment. During cohousing, three young mice were housed with two old mice for one 906 
month. Control young and old mice remained housed with other mice of the same age. After one month, two of 907 
the cohousing cages were separated by age and two cohousing cages remained cohoused. Stool pellets were 908 
collected at baseline, after one month of cohousing, and after two, four, six, and eight weeks of separation. 909 
Animal procedures were approved by the Institutional Animal Care and Use Committee at the Perelman School 910 
of Medicine at the University of Pennsylvania (protocol # 806361). 911 
 912 
We performed 16S sequencing of these stool samples. DNA was extracted using the Qiagen DNeasy PowerSoil 913 
Pro Kit (Cat. # 47016). We amplified the V1/V2 variable region using KAPA HiFi HotStart ReadyMix (Roche, Cat. 914 
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# KK2602) and the 27F/338R primer pair (27F: 5’-TATGGTAATTGTAGAGTTTGATCCTGGCTCAG-3’, 338R: 915 
5’-XXXXXXXXXXXXTGCTGCCTCCCGTAGGAGT-3’, where the sequence of X’s represents the sample-916 
specific barcode). We performed a bead-based clean-up of the pooled libraries using AMPure XP SPRI beads 917 
(Cat. # A63881). Libraries were paired-end (2x250 bp) sequenced across two MiSeq runs. The first run contained 918 
samples collected at baseline, at 4 weeks of cohousing, and at 4 weeks of separation. The second run contained 919 
samples collected at 2, 6, and 8 weeks of separation. Data were processed using QIIME2 (ref. 80, v2023.2.0). 920 
Reads were demultiplexed81 and denoised with DADA2 (ref. 82). For the first run, the forward read was trimmed 921 
to 250 bp and the reverse read to 165 bp. For the second run, the forward read was trimmed to 240 bp and the 922 
reverse read to 220 bp. Reads from the two runs were then merged and taxonomically classified against the 923 
SILVA 138 database83,84 using a naïve Bayes classifier85,86. 924 
 925 
Heritability 926 
Using model 1, heritability was calculated as the variance assigned to the (1|genetics) random effect divided by 927 
total variance. The standard error of heritability was estimated using the vpredict function from ASReml. A feature 928 
was considered heritable if it had an adjusted p-value < 0.01 (likelihood ratio test, followed by Benjamini-929 
Hochberg for p-value adjustment). 930 
 931 
We also calculated heritability with the following cross-sectional model, separately at each of 5, 10, 16, 22, and 932 
28 months (Extended Data Fig. 6d): 933 
 934 

6. y_mb ~ DR + (1|cohort) + (1|batch) + (1|cage) + (1|genetics) 935 
 936 
The DR term was omitted from the 5-month analysis because this was prior to dietary randomization. Model 6 937 
was fit with ASReml. For this cross-sectional analysis, heritability was computed using all samples at a given 938 
age. We also fit model 1 after downsampling to 110 mice in order to obtain a similar number of samples as in 939 
cross-sectional data (Extended Data Fig. 6d). 940 
 941 
Comparison to heritability estimates from other studies 942 
For Extended Data Fig. 6c, we compared our heritability estimates to those reported in Supplementary Table 943 
3A by Schlamp and colleagues50. This table contained 27 operational taxonomic units (OTUs) that could be 944 
classified to the level of genus. Of these 27, only 8 overlapped with the genera that we tested for heritability. For 945 
Fig. 4b, we plotted the proportion of significantly heritable taxa (based on the authors’ definitions) from 8 other 946 
studies29–32,50,87–89. 947 
 948 
Comparing all experimental variables 949 
To compare the effects of all experimental variables to each other, we used a modified version of model 1 in 950 
which age and DR were encoded as random intercepts: 951 
 952 

7. y_mb ~ (1|age) + (1|DR) + (1|mouse) + (1|cohort) + (1|batch) + (1|cage) + (1|genetics) 953 
 954 
This allowed us to compare the variance explained by each variable. Age was provided as a categorical variable. 955 
p-values were adjusted separately for each experimental variable. Model 7 was fit with ASReml. 956 
 957 
Quantitative trait loci (QTL) mapping 958 
We performed QTL mapping as described previously90. Briefly, we tested the association between each SNP 959 
marker against each of 107 microbiome features (top 100 genera plus seven community features) at each of 5 960 
ages: 5, 10, 16, 22, and 28 months. Dietary group and DO mouse cohort were included as covariates, except at 961 
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5 months (prior to the start of DR) when only cohort was included as a covariate. QTL mapping was performed 962 
with R/qtl2 (ref. 91) using previously published leave-one-chromosome-out kinship matrices and genotype 963 
probabilities90. p-values were calculated based on permutation and adjusted using the Benjamini-Hochberg 964 
procedure. 965 
 966 
Prediction of dietary group 967 
We used a random forest classifier to predict the dietary group of DO mice. We performed prediction separately 968 
per age. Within each age, we performed 10-fold cross-validation while stratifying by cage so that no samples 969 
from the same cage were present in both the training and validation set. We used predictions on the validation 970 
sets when reporting accuracy. Dietary group was treated as a categorical variable, and we considered 100 971 
genera and 272 pathways. 972 
 973 
Microbiome-phenotype associations 974 
To identity associations between microbiome features and host phenotypes, we tested all microbiome-phenotype 975 
pairs with the following model: 976 
 977 

8. y_pheno ~ y_mb + age + DR + (1|mouse) 978 
 979 
Where y_pheno is a phenotypic trait such as body weight, age and DR are fixed effects, and (1|mouse) is a 980 
random intercept. For each phenotype, we selected the measurement closest in time to each microbiome sample 981 
and only included microbiome-phenotype pairs obtained within 100 days of each other. The significance of each 982 
microbiome-phenotype association was calculated using a likelihood ratio test where the null model omitted 983 
y_mb. We tested 100 genera and 252 pathways against 197 phenotypic traits measured across 13 assays.  984 
 985 
Model 8 could not be used to test for association for lifespan (a non-longitudinal measurement), so we fit the 986 
following cross-sectional model at each of 5, 10, 16, 22, and 28 months: 987 
 988 

9. y_pheno ~ y_mb + DR 989 
 990 
The DR term was omitted from the 5-month analysis because this was prior to dietary randomization. Model 8 991 
was fit with lme4 (ref. 92, v1.1-33) while model 9 was fit with the lm function in R. 992 
 993 
Mediation 994 
Mediation analysis estimates the proportion of treatment T’s effect on outcome Y that is mediated by mediator 995 
M. In our study, the treatment T is dietary restriction, the outcome Y is a phenotypic trait, and the mediator M is 996 
a microbiome feature. We performed mediation analysis using the model-based approach within the mediate R 997 
package93 (v4.5.0). We fit the following two models: 998 
 999 

10. Mediator model: y_mb ~ DR_X + age + (1|mouse) 1000 
11. Outcome model: y_pheno ~ y_mb + DR_X + age + (1|mouse) 1001 

 1002 
Where DR_X corresponds to one of the 4 dietary interventions. Mediation analysis was performed separately for 1003 
each of the DR groups. We report the average causal mediation effect (ACME) estimate and p-value. P-values 1004 
were adjusted with Benjamini-Hochberg separately per dietary group. Microbiome-phenotype pairs with an 1005 
ACME adjusted p-value < 0.01 were considered significant. We tested the same features as for association 1006 
analysis. When reporting the mean proportion mediated, we consider only significant mediation results where 1007 
the direct effect and mediation effects estimates have the same sign. 1008 
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 1009 
Statistics 1010 
p-values were adjusted using the Benjamini-Hochberg procedure. Significance was defined as an adjusted p-1011 
value < 0.01, unless explicitly stated otherwise. t-tests were used for pairwise comparisons. All t-tests were two-1012 
sided except in Fig. 5h. Tests were unpaired except in Fig. 5f. For boxplots, boxes extend from the 25th to 75th 1013 
percentiles, whiskers extend to 1.5 times the interquartile range, and the center line is the median. p-value 1014 
symbols are defined as follows: ns : p ≥ 0.05, * : p < 0.05, ** : p < 0.01, *** : p < 0.001, **** : p < 0.0001. 1015 
Downstream analysis and plotting was performed in RStudio (R v4.2) using the tidyverse94 (v2.0.0). phyloseq95 1016 
(v1.42.0), and vegan74 (v2.6.4) packages. Final figures were created with Adobe Illustrator. 1017 
 1018 
Code and data availability 1019 
Raw sequencing fastq files and summarized data tables will be made available on SRA. Code for reproducing 1020 
manuscript figures is available at https://github.com/levlitichev/DRiDO_microbiome. Host phenotypes collected 1021 
as part of the DRiDO study are available at https://doi.org/10.6084/m9.figshare.24600255.v1. The genetic 1022 
kinship matrix and genotype probabilities are available at https://doi.org/10.6084/m9.figshare.13190735. 1023 
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