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ABSTRACT10

Hippocampal circuits in the brain enable two distinct cognitive functions: construction of spatial maps for navigation
and storage of sequential episodic memories. This dual role of the hippocampus remains an enduring enigma.
While there have been advances in modeling the spatial representation properties of the hippocampus, we lack
good models of its role in episodic memory. Here we present a neocortical-entorhinal-hippocampal network model
that exhibits high-capacity general associative memory, spatial memory, and episodic memory without the memory
cliff of existing neural memory models. Instead, the circuit (which we call Vector-HaSH, Vector Hippocampal
Scaffolded Heteroassociative Memory) exhibits a graceful tradeoff between number of stored items and detail,
achieved by factorizing content storage from the dynamics of generating error-correcting stable states. The
exponentially large space avoids catastrophic forgetting. Next, we show that pre-structured representations are
an essential feature for constructing episodic memory: unlike existing episodic memory models, they enable
high-capacity memorization of sequences by abstracting the chaining problem into one of learning transitions
within a rigid low-dimensional grid cell scaffold. Finally, we show that previously learned spatial sequences in the
form of location-landmark associations can themselves be re-usably leveraged as robust scaffolds and associated
with neocortical inputs for a high-fidelity one-shot memory, providing the first circuit model of the “memory palaces”
used in the striking feats of memory athletes.

11

Introduction12

As we navigate through life, the hippocampus weaves threads of experience into a fabric of episodic memory.13

Cross-linked by various contexts, this fabric allows us to revisit scenes and events from only a few cues, like Proust’s14

famous madeleine1. Such cue-driven recall makes memories available in ways relevant to make inferences in the15

present and to plan for the future. The hippocampal complex is responsible for this functionality2–5, but it is unclear16

exactly how the architecture and representations of the hippocampal formation and the adjoining entorhinal cortex17

and other cortical regions enable it.18

The representations and dynamics in substructures of the hippocampal complex have been studied extensively6–26,19

and experimental findings combined with models and model testing have resulted in striking progress in our20

understanding of local circuit mechanisms18, 27–55. These works put us in an excellent position to now build our21

understanding of the combined system, on how the substructures work together to subserve robust, efficient, and22

high-capacity associative memory storage and recall. A particularly intriguing question centers on the dual role23

of this structure: the hippocampus underlies both general episodic memory and spatial memory. Why are these24

two forms of memory co-localized? The storage of new autobiographical experiences, or episodic memory, is25

famously compromised with damage to the hippocampal complex56–58. Spatial memory refers to our ability to26

navigate and remember the layout of our physical environment. The hippocampus is populated with place cells that27

fire at a particular location in a particular environment and context59, 60. In the entorhinal cortex, grid cells play a28
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complementary role: they generate an invariant spatial representation across environments36, 61–64, in the form of29

triangular grid-like firing patterns61. Thus, entorhinal grid cells are hypothesized to generate a spatial coordinate30

system, while hippocampal cells encode specific locations. Both types of memory (episodic and spatial) can be31

accumulated and accessed over a lifetime without major interference, despite the small size of the hippocampus32

relative to cortex.33

The dual spatial and episodic memory functions of the hippocampus might be understood by three distinct34

(but non-exclusive) hypotheses. The first is that spatial information content is the most critical type of memory for35

survival – remembering details about the locations where we found food or dangers65. In this view, the circuit is36

optimized for spatial memory, while episodic memory is a small augmentation of that system. The second is that the37

circuit is focused on and optimized for episodic memory, but that spatial coordinates (not necessarily detailed spatial38

information content) are merely among the most stable and useful indices into that memory66. The third hypothesis39

is that the highly structured memory architecture’s dynamics are equally optimized for episodic memories that40

may or may not contain spatial information, as well as for spatial memory. In essence, the third hypothesis is that41

the abstract low-dimensional representational architectures that might be interpreted as spatial are equally critical42

scaffolds for linking together (potentially entirely non-spatial) elements of an episodic memory66–73.43

In this work, we build a new neocortical-entorhinal-hippocampal circuit model for content-addressable associative44

memory and extensively characterize its properties numerically and theoretically. The two critical features of this45

model are: 1) A factorization of memory into a structured scaffold for fixed-point dynamics powered by a completely46

invariant grid cell circuit (in accord with our knowledge of that circuit36, 61–64) interacting in a fixed and random way47

with hippocampus, and a separate stage for (hetero)association with input data, and 2) forcing transition dynamics in48

episodic memory to be mediated by a shift operator acting on the low-dimensional latent grid states.49

We find that this circuit excels at three kinds of memory: for individual inputs (item memory), for spatial50

mapping (spatial memory), and for sequences (episodic memory). One of the most interesting properties of the51

model is that the seemingly spatial representations of the grid cell circuit, specifically the low-dimensional and52

vectorial nature of the code, play a critical and distinct role even for completely non-spatial episodic memory. In53

other words, our model supports the third hypothesis about the co-localization of spatial and episodic memory.54

Computationally, for each input the model creates a hash code given by the scaffold state, uses pre-structured55

recurrent connectivity in the scaffold to convert these hash states into fixed points for error-correction, and then uses a56

“strongly full-rank” property of the scaffold to enable (partial) decompression or reconstruction of the input patterns.57

The model also exploits the fact that grid coding states are ordered and lie in a low-dimensional space to enable58

efficient sequence memorization through vector transitions. For these reasons, we call our model Vector-HaSH:59

Vector Hippocampal Scaffolded Heteroassociative Memory. As we will see, critical to the success of Vector-HaSH in60

its properties of massive capacity, graceful tradeoff of content richness with number of memories without a memory61

cliff, non-interference between memories, lack of catastrophic forgetting, and resemblance to biological memory,62

is the factorization of the problems of creating dynamical fixed points (for pattern completion and stability) from63

content storage. Critical to its success in sequential episodic memory is the abstract low-dimensional vector updating64

property of the grid cell circuit, which in the spatial context is called velocity integration.65

We will see that the highly constrained architecture, neural activations (invariant low-dimensional representation66

in grid cells), synaptic weights, and biologically plausible learning rules of Vector-HaSH enable memory without the67

full erasure (memory cliff) seen in existing neural memory models when adding inputs beyond a fixed low capacity,68

Fig. 1a. All code for running the model will be made freely available (upon publication) for others to make and test69

predictions for future experiments.70

Results71

HaSH architecture for hippocampal associative memory: Factorization of dynamics and content72

Our model is based on known and inferred recurrent connectivity between entorhinal cortex and hippocampus77–80
73

and among grid cells in the entorhinal cortex33. Processed extrahippocampal inputs enter the hippocampus (Fig. 1b,74

purple) via direct and non-grid entorhinal inputs (Fig. 1b, green); these inputs carry sensory information from the75
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Figure 1. The challenge of biological memory and a biologically informed architecture for general episodic
and spatial memory.: (a) Left: Hopfield networks exhibit a memory cliff where inputs are perfectly remembered
before approximately N patterns but all memory of prior patterns is precipitously lost after approximately N input
patterns. Center: Networks with N2 plastic synapses have a theoretical bound of N2 total memory bits74, 75. All
variations on Hopfield networks exhibit a memory cliff, albeit at different locations74–76, approaching the bound at
only a point. Here, f = p ln(p) where p is the sparseness of patterns in the Hopfield network with sparse inputs.
Right: An ideal content-addressable memory would demonstrate continued information storage at or near the
theoretical bound, regardless of the number of stored patterns. (b) Processed sensory inputs project from cortical and
non-grid entorhinal neurons (green) into the hippocampus. The hippocampus (purple) also receives grid cell inputs
via a fixed (non-plastic) random projection. Hippocampal projections back to grid cells are set once by associative
learning (e.g. over development) and then held fixed, thus the grid-hippocampal circuit forms a prestructured and
invariant “scaffold”. Non-grid cell-hippocampal connections are bidirectionally plastic and modifiable with
associative plasticity rules. The grid circuit possesses a low-dimensional “shift mechanism” (marked v in a nod to its
role in velocity-based updating in the spatial context), which shifts the grid states (phases) along each module’s
two-dimensional grid representational space. (c) Circuit architecture for updating grid cell phases for high-capacity
content-addressable (hetero)associative memory. (d) Circuit including shift mechanism linked to self-movement
inputs for spatial memory (e) Circuit with hippocampal states driving shift mechanism to efficiently drive transitions
for high-capacity episodic memory. (f) Circuit model of the memory palace mnemonic strategy, in which a
previously learned spatial memory is can be repurposed as a scaffold for high-fidelity one-shot memory.
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world, but also internally generated cognitive inputs from other brain regions66. The hippocampus also receives76

inputs from entorhinal grid cells (Fig. 1b, orange). It connects back out to both grid and non-grid cells.77

The grid cell circuit consists of multiple grid modules81, comprising disjoint groups of cells. Each grid module78

expresses an invariant set of low-dimensional states regardless of task. This invariance is established in an extensive79

set of studies of the population states and cell-cell relationships of co-modular grid cells across behavioral conditions80

and states, including navigation in familiar and novel environments, across different spatial dimensions, and across81

sleep and wakefulness35, 36, 62, 64. In spatial contexts, we can describe grid cell modules as coding position as a phase82

modulo their spatially periodic responses61, 82, 83. In non-spatial contexts, the states of a grid cell module remain the83

same but can be conceptualized as abstract representations constrained to lie on a 2-dimensional torus.84

Connections from grid cells to hippocampus are set as random and fixed. Connections from hippocampus to grid85

cells are set once (e.g. over development) through associative learning, and are then held fixed. As we will see, the86

fixed internal grid connectivity and random fixed projections from grid to hippocampal cells are critical for many87

important properties of the circuit. Connections between hippocampus and non-grid inputs remain bidirectionally88

plastic and set by associative learning.89

Because the grid cell states are fixed and the grid-hippocampal weights are bidirectionally fixed, we refer to90

the grid-hippocampal circuit as the scaffold of the memory network. This architecture, involving a set of fixed91

low-dimensional states (grid cell circuit) that is recurrently coupled through fixed high-rank projections to the92

hippocampus, creates a large bank of well-behaved fixed points, as we will see next. Separately, we refer to the93

hippocampal-non-grid cortical feedback loop as the heteroassociative part of the circuit. In this circuit, a separate94

set of connections than those generating fixed points heteroassociatively attach sensory data to the scaffold. Unlike95

standard associative memory models like the Hopfield network84 in which the recurrent weights stabilize and96

associate content directly, here the two are separated: Vector-HaSH factorizes recurrent dynamics from content.97

We next explore the theoretical and empirical properties of this circuit architecture and its extensions for content-98

addressable memory in various settings, from spatial to non-spatial memory to sequential episodic memory, Fig.99

1c-f.100

Generation of vast library of robust fixed points in an invariant scaffold101

The grid cell circuit consists of a few (M) putatively independent grid cell modules: the population states of the102

neurons in each module are constrained to lie on a 2-dimensional torus. Each grid module can express just one state103

on the torus at a time, independent of the other modules. The ith module can take one of Ki states, thus together104

they express ∏i Ki ∼ ⟨K⟩M many, or exponentially many, distinct states (assuming the Ki’s are coprime). Coupling105

co-active grid cells from all modules to a hippocampal cell through learned bi-directional connections could turn106

that grid-hippocampal state into a fixed point and enable error-correction83, 85. However, the hippocampus does not107

possess enough cells to convert each grid state into an attractor in this way.108

In the scaffold hypothesis, grid cells project with fixed random weights – a high-rank random projection – to109

hippocampal cells, which threshold and rectify their inputs. The return projection is learned once through simple110

Hebb-like learning to reinforce the input grid cell state, then held fixed (Methods).111

Random fixed scaffold converts exponentially many grid states into exponentially many stable fixed points112

Remarkably, the random grid to hippocampal projections combined with associatively learned return projections in113

the scaffold converts all the exponentially many grid states (as a function of number of grid modules) into stable fixed114

points or attractors of the entorhinal-hippocampal circuit, Fig. 2b, for a sufficiently (but not very) large hippocampal115

network, Fig. 2c. Adding noise to a hippocampal state derived from any grid state, then running the dynamics of the116

circuit, exactly restores the correct (denoised) hippocampal state for the original grid state.117

The required number of hippocampal cells is much smaller than the exponential set of grid states (Fig. 2d, left;118

SI Fig. S1): it scales only linearly with the number of modules, and therefore logarithmically with the number of119

grid states. It is also nearly independent of the scale (periodicity) of the grid cells for a given number of modules120

(Fig. 2d, right, SI Fig. S2; analytic proof in SI Sec. C.1). In sum, the number of stable states generated by the121

scaffold is exponential in the combined number of scaffold neurons (grid and hippocampal cells).122
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Figure 2. Scaffold generates exponentially many fixed points with large equal-sized basins. (a) The grid
cell-hippocampal scaffold circuit, with pre-structured grid cell states, random fixed grid projections to hippocampus,
and fixed return projections. Numbers indicate flow of dynamics (order of updating) in the circuit. (b) Illustration of
states and dynamics in circuit. A noisy version of a hippocampal state is cleaned up in one round-trip pass through
the scaffold. (c) The exponentially many coding states (as a function of grid module number)82, 83 are converted into
exponentially many stable fixed points by the scaffold architecture for a sufficiently large number of hippocampal
cells. States are defined as stable fixed points if they correct noise of magnitude 25% of the typical hippocampal
state magnitude. (Grid periods for k modules are set as the first k prime numbers, number of hippocampal cells set to
150× k). Numerical results (diamonds) exactly coincide with analytical theory (forest green dashed curve,
derivation in SI C.1); zero variance across different random initializations. Light green: Learned bi-directional
grid-hippocampal connectivity (with hippocampal states selected as shuffled versions of the states set by random
grid cell projections) destroys the capacity of the scaffold (also see SI Fig. S3). (d) Left: Required hippocampus size
(N∗

h ) grows only linearly with grid modules, and thus only logarithmically with the number of fixed points. Thus, the
number of scaffold fixed points is exponential in the network size. Right: Number of stable fixed points as a
function of number of hippocampal cells (fixed points defined as in (c)). At a fixed number of modules, N∗

h is nearly
independent of grid periods (gray curves), even though the number of fixed points grows with period (SI Fig. S2 and
C.1 for theoretical derivation). Light green: as in (c). (e) Basin size, convexity, and uniformity: Fraction of states
that return to the correct noiseless state after iteration as a function of the noise magnitude (normalized by the
magnitude of the hippocampal vector) computed over 100 random noise realizations. Grey curves: five randomly
selected fixed points. Black: mean over all (3600) fixed points. All basins are convex and uniformly sized. (f)
Number of grid states stabilized as fixed points as a function of number of states over which the
hippocampus-to-grid weights are learned: Learning from a vanishing ratio of seen states to all possible grid states
(∼ MKmax/eM) turns all possible grid states (horizontal dashed blue) into fixed points – termed strong generalization.
Black: Vector-HaSH with optimal sequence of seen grid phases. Dark gray: contiguous sequence of grid phases.
Light gray: random sequence of grid phases. Light green: as in (c). Vertical dashed forest green: theoretical
minimum number of seen grid phases for strong generalization (Fig. S4 and SI Sec. C.4 for analytical derivation).
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Figure 3. High-capacity content-addressable item memory via heteroassociation with scaffold. (a) Network
architecture. Numbers indicate flow of dynamics (order of updating) in the circuit. (b) Associative
content-addressable recovery: A corrupted or partial input is completed by the circuit. (c) Mutual information per
input bit (MI divided by total # of input bits = MI/# patterns/bits per pattern) between memorized and recovered
patterns as the number of memorized patterns is varied from 0 to the exponentially many scaffold fixed points;
beyond the knee (corresponding to the location of the “memory cliff” in Hopfield networks), MI per input bit scales
inversely with the number of input bits: this is the “memory continuum” of Vector-HaSH. Black dashed line: the
theoretical upper bound for information storage (=# synapses/(2×# patterns))74, 75. Inset: Effect of varying the size
of the sensory area (Ns; indicated numbers), see also SI Fig. S7. (d) MI (per synapse) as a function of total number
of input bits per synapse for various memory models. Most models supply zero MI per synapse after a threshold
number (memory cliff). Vector-HaSH asymptotically approaches a constant MI per synapse (dashed gray line),
scaling as the theoretical optimum. (e) Performance comparison of Vector-HaSH (visualized with unfolded
architecture; black arrows and boxes designate predefined weights and activations) and a tail-biting autoencoder86

with the same number of layers and neurons, trained end-to-end with supervised learning and unconstrained
activations and weights; black arrow designates an identity weight matrix. Dashed forest green: analytical capacity
result for Vector-HaSH. Right: reconstructed pattern after storage of a variable number of patterns (black outline:
Vector-HaSH; blue: autoencoder). (f) Left: Number of patterns that can be memorized with perfect recovery
(0-error) for grid, hippocampal, or sensory recall, respectively, when cued with sensory inputs with 2.5% noise.
Most grid and hippocampal states are exactly recalled with big enough Nh. Sensory states are recalled partially,
depending on position along the memory continuum, but fall in the correct basin (black curve). Right: Correct basin
for recovered sensory state even for large noise in the input (shown for 500 memorized patterns; see SI Fig. S8 for
the dependence on this basin structure as a function of the number of stored patterns). (g) Schematic of recovery in
state space, left to right: Initial cues (bottom: masked and noiseless pattern) and where they fall in sensory space
(top). The projection to hippocampus reduces noise; subsequent mapping to grid states completes a nearest-neighbor
computation to the nearest grid state; this state drives the exact associated hippocampal state. The reconstructed
sensory state is some distance from the memorized pattern (distance grows with number of patterns relative to Nh).
Though inexact, recovery is reliable: all cued patterns in the same basin converge to the same recovered state
(bottom). (h) Simple decoder based on the mean hippocampal population firing rate permits discrimination of
familiar patterns (rate distributions for familiar vs. novel patterns in SI Fig. S13). (i) An energy landscape
perspective: In Hopfield networks, the width, depth, and positions of the minima depend on pattern content. In
Vector-HaSH, the scaffold generates a well-behaved landscape of large equally-sized minima. Arbitrary content can
be “hooked” onto the minima, in analogy with a clothesline on which any clothing may be hung. In (c-f) errorbars
(shaded) are SD over 5 runs.
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We find theoretically that there are no spurious stable states, thus the entire hippocampal state space is devoted to123

forming large basins for the grid cell states. We also find theoretically that the basins are all convex and essentially124

identical in size across fixed points, SI Sec. C.2, Sec. C.3. Thus, the basins of each stable state should be uniformly125

and maximally large, which we confirm numerically in Fig. 2e.126

Though remarkable, this result does not violate fundamental capacity bounds for Hopfield-like recurrent networks,127

according to which a network of O(M) neurons and O(M2) synapses can support at most O(M) user-defined points128

as stable states of the dynamics, or O(M2) bits of information74, 75, since the fixed points are pre-determined129

content-free states and not user-defined. The specific structure of the pre-determined grid states, randomly projected130

to the hippocampus, creates well-spaced robust grid-hippocampal attractors with large even-sized basins.131

The specific structure of the fixed weights and activations in the scaffold is critical for its function: if instead132

of being determined by random grid projections, the hippocampal states are set to be randomly shuffled per-state133

versions of these states, preserving their statistics, and the grid-to-hippocampal and return weights are bidirectionally134

learned to make the grid-hippocampal pattern pairs self-consistent, the scaffold capacity collapses (Fig. 2d; theory135

in SI C.1).136

Strong generalization property of scaffold The scaffold network possesses another remarkable property depen-137

dent on grid coding, which we call strong generalization. The hippocampal-to-grid weights are set by visiting the138

grid states, determining the hippocampal states via the grid-to-hippocampal random projection (with thresholding),139

then applying Hebb-like associative learning. We find that all O(KM) grid states become stable fixed points of the140

iterated dynamics after learning the weights for only O(MKmax) of the states, where Kmax is the number of states in141

the largest module. When M and K are large, this is a miniscule fraction of all the states that become automatically142

stabilized, a very strong type of generalization (Fig. 2f). We derive a theoretical proof of this strong generalization143

property in SI Sec. C.4. For strong generalization, the grid states visited during learning could simply be generated144

by traversing a small contiguous set of locations (see SI Fig. S5 for an illustration of the minimal spatial region145

required for learning, compared to the full extent of the grid coding space). Learning from a random subset of146

grid states requires seeing many more patterns before all grid states become stable fixed points – there is some147

generalization, but it is substantially weaker (Fig. 2f). (Certain special sets of non-contiguous locations can lead148

to strong generalization SI C.4, SI Fig. S5.) When grid states are replaced by fixed patterns of otherwise identical149

sparsity (e.g., obtained by shuffling each grid coding states), as in MESH87, there is almost no generalization:150

stabilizing exponentially many states requires learning from exponentially many patterns, close to a fraction of one.151

Theoretically, the metric or ordered (and thus indirectly, spatial) structure of the grid phase code, with learning of152

hippocampal-to-grid projections learned while visiting states in a metric order leads to strong generalization (proof153

in SI Sec. C.4).154

The property of strong generalization is computationally useful and biologically critical: it means that the155

scaffold weights can be learned once, for instance from early spatial exploration within a small environment, then156

held fixed for the rest of the animal’s life. This early and spatially restricted learning is then sufficient to provide a157

massive library of stable fixed points for future spatial and non-spatial memory function over the rest of the animal’s158

life, as we will see below.159

Content-addressable item memory through heteroassociation of inputs onto scaffold160

A content-addressable memory must enable the storage and recall of arbitrary (user-defined) input patterns based on161

partial or corrupted patterns. Scaffold states are not themselves memory states because they are not user-defined.162

Consider external inputs to the hippocampus, which arrive directly from neocortex88–90 or via non-grid entorhinal163

cells, Fig. 3a (green). We will call these sensory inputs for short. An incoming sensory input is ‘assigned’ to a164

randomly chosen scaffold fixed point via Hebb-like one-shot learning between the input and the hippocampal state165

by a biologically plausible online Hebb-like implementation of the pseudoinverse rule91, 92 1. The goal of these166

weight updates is self-consistency: the drive from hippocampus back to the sensory states should attempt to generate167

1We show in SI Sec. D.5 that one could simply use Hebbian learning instead of an iterative or standard pseudoinverse learning, while
maintaining the same asymptotic capacity, with a smaller constant pre-factor, Fig. S6
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the same sensory pattern that activated the hippocampal state. As additional sensory inputs are received, they are168

assigned to other scaffold states, and the weights between sensory inputs and the hippocampus are correspondingly169

updated. Inputs for item memory can be associated to any scaffold state, in any order (scaffold states need not be170

selected in a metric sequence for e.g. item memory).171

Memories are reconstructed from partial sensory cues as follows: these inputs drive hippocampal activity, which172

drives the scaffold toward a valid fixed point; sensory information is then reconstructed via the heteroassociatively173

learned hippocampal-to-sensory weights. Vector-HaSH thus behaves as a content addressable memory (CAM)174

network, Fig. 3b. Reconstructions can be done bidirectionally: If the network is cued only by sensory inputs (the175

initial grid state is unknown), the network reconstructs the grid state. Conversely, given only the grid state (no176

sensory cues), the network reconstructs the sensory data.177

Continued high-information associative memory via graceful item number-information tradeoff Memory178

recall is perfect up to Nh memorized patterns (Ns correctly recovered bits per pattern and a mutual information of 1179

per input bit, where Ns is the size of the sensory input). Beyond Nh stored input patterns, the recovered information180

per pattern scales as the reciprocal of the number of patterns: there is a graceful tradeoff between number of stored181

patterns and recall richness. The mutual information (MI) per input bit between recalled patterns and memorized182

patterns saturates or nearly saturates the theoretical upper bound (given by the square of the number of synapses183

divided by twice the number of patterns), at all numbers of memorized patterns up to the number given by the184

exponentially many scaffold fixed points, Fig. 3c. It asymptotically scales the same way as the MI upper bound (Fig.185

3c, black dashed line). Pattern memorization can occur online (patterns presented once, in sequence) or offline, with186

no difference in recall performance.187

Comparison with existing memory models We can compare the performance of Vector-HaSH with Hopfield188

network models of various varieties: the classical Hopfield network, those with sparse weights, and those with189

sparse patterns. In all these networks, when the number of memorized patterns remains below a threshold (linearly190

proportional to network size), they are perfectly recovered. Memorizing patterns beyond this critical number leads to191

loss of all patterns, including those previously memorized: the mutual information between recalled and memorized192

patterns drops to zero, — a memory “cliff” (Fig. 3d). Other memory models exhibit a similar cliff86, 93–98. Others193

can store only a specific number of patterns for a fixed network architecture76.194

In Vector-HaSH, the network continues to store finite information per input bit, until the number of stored195

patterns equals the exponentially large scaffold number capacity. The recovered information per synapse approaches196

a constant value regardless of the number of stored patterns up to the scaffold number capacity, Fig. 3d – there is no197

memory cliff 2, and the total information in the network scales as the optimal value of N2 regardless of number of198

patterns, Fig. 3c (dashed line). The information recoverable per network synapse tends asymptotically to a constant199

value rather than zero (Fig. 3d (dashed line)). We call the constant retrievable information in Vector-HaSH and200

the smooth tradeoff of information per pattern with number of patterns a memory “continuum”, in contrast to the201

memory cliff of other CAM models87.202

Comparison with end-to-end trained deep networks Vector-HaSH can be unfolded for interpretation as an203

autoencoder86, but a highly constrained one: the encoding in the bottleneck layer is fixed, with fixed recurrent204

dynamics within the layer. The weights from the bottleneck to decoder layers are fixed, and all weights are learned205

through biologically plausible associative rules, Fig. 3e (left). For comparison, we train an unconstrained autoencoder206

of the same dimensions with a tail-biting connection (identity weights from the output of the autoencoder to its inputs)207

to enable iterative reconstruction86 (Fig. 3e (left)) via supervised learning (backprop). Strikingly, Vector-HaSH208

substantially outperforms this autoencoder, despite the latter’s much larger potential flexibility, Fig. 3e (right),209

2Since input sensory patterns are stored via association to scaffold states, once all scaffold states have been associated with an input there
are three possibilities. The first is that the memory is saturated and no further sensory patterns can be stored. The second involves selecting an
existing scaffold state randomly or based on sensory overlap and rewriting the previous memory’s heteroassociative weights to accommodate
the present sensory input. The third involves a gradual decay of the heteroassociative weights between sensory inputs and the scaffold, so that
older memories are lost and those scaffold states are identified for reuse.

8/59

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.28.568960doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.568960
http://creativecommons.org/licenses/by-nc-nd/4.0/


mirroring the significant advantage of MESH over the same autoencoder87. SI Fig. S9 shows that Vector-HaSH also210

outperforms both the tail-biting autoencoder and the non-iterated autoencoder when cued with noisy sensory cues.211

In sum, the fixed attractor states in the scaffold (grid cells in Vector-HaSH) appear to provide a key inductive212

bias for robust high-capacity memory that learning with backpropagation on an unconstrained architecture cannot213

find or achieve.214

Mechanisms of continued high-information associative memory When a partial or corrupted sensory state215

is presented to Vector-HaSH, it retrieves an item from memory. In different parts of the network, the precision of216

retrieval is different (Fig. 3f, left): grid and hippocampal states are recalled exactly almost always (with a threshold217

number of hippocampal cells). The sensory state is recalled only approximately, depending on the number of stored218

patterns relative to the size of the hippocampal area (the memory continuum; Fig. 3f, left, green). Though sensory219

reconstruction is approximate, the retrieved state is in the same Voronoi region as the memorized sensory pattern220

(Fig. 3f, left, black). This is true even when the fraction of error bits in the cue is large (Fig. 3f, right).221

Unpacking the dynamics underlying these results: The projection of a noisy input onto the scaffold via the222

sensory-to-hippocampal weights already reduces some errors (Fig. 3b,g: input states move toward learned states,223

in the transition from green to pink basins). Next, the grid recurrent dynamics finds an exact grid coding state224

closest to the hippocampal inputs (Fig. 3g, transition from pink to orange basins). Further, this mapping is to the225

grid state in the correct basin (cf. Fig. 3f) even deep in the memory continuum, which we show analytically in SI226

Sec. D.1. Next, this grid state reconstructs an exact previously memorized hippocampal state (Fig. 3g, transition227

from orange to pink basin). Finally, the hippocampal to sensory states reconstruct an approximation to the sensory228

pattern corresponding to the hippocampal state. The precision of this reconstruction systematically decreases with229

the number of stored patterns because of interference in the reconstruction weights across patterns – this accounts230

for the memory continuum – but the reconstruction is reliable: regardless of the cue (which might be noiseless or231

corrupted), the reconstructed pattern is the same (Fig. 3g, transition from pink to green basin).232

We prove that high-information associative memory is possible when the set of grid-driven hippocampal states233

is strongly full rank (SI Sec. D.2), a property satisfied if the hippocampal scaffold states: 1) are determined by234

random projection from grid cells and 2) involve some nonlinear transformation of the grid inputs (almost every235

nonlinear transformation in the space of all functions is sufficient, without fine-tuning the functional form). For236

instance, simple rectification with threshold is sufficient, for a wide range of activation thresholds (SI Figs. S10,S11;237

in contrast, a linear hippocampal layer does not result in strongly full rank hippocampal states, SI Fig. S12). The238

strong full rank property of the scaffold permits sensory inputs to be stored via association with scaffold fixed points239

in any order and at any location in the scaffold. We prove in SI Sec. D.2 that it guarantees perfect recall of the first240

Nh stored states, Fig. 3f and continued high-information associative memory beyond.241

High-capacity recognition memory242

The observation that the circuit recollects the correct basin for a previously seen input, even as the detail of recall243

declines, suggests that the circuit might also be exploited as a vast recognition memory system. We explored whether244

a simple statistic of hippocampal activity might differentiate between responses to familiar and novel inputs. We245

found that the activity distributions in the hippocampus are different for familiar versus novel sensory inputs99.246

When a large (small) number of patterns have been stored in the sensory to hippocampal layer weights, the mean247

hippocampal activity for novel sensory patterns is larger (smaller) than the mean activity for familiar sensory patterns248

(Fig. S13). Thus, we classify a pattern as familiar if the activity evoked in hippocampus lies within a narrow band249

around the typical average activation for familiar patterns. Outside this band, we classify it as novel. We found that250

this simple two-threshold classifier on hippocampal activity successfully classified a large fraction of inputs, with251

only a few errors, Fig. 3h.252

Conceptually, we may understand the strong performance of Vector-HaSH compared to conventional (e.g.253

Hopfield) autoassociative memory networks as follows: the latter perform poorly because their fixed point landscape254

is governed by the content of the patterns, leading to highly uneven and small basins sizes, with many spurious255

minima. In Vector-HaSH, the landscape is set by the scaffold, which has large and well-spaced basins, and content256

9/59

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.28.568960doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.568960
http://creativecommons.org/licenses/by-nc-nd/4.0/


is simply “hooked” onto these prestructured states. The analogy is with a clothesline (the scaffold), to which any257

clothes (sensory patterns) can be attached (via heteroassociation), Fig. 2h.258

Spatial memory and inference259

We now consider how this circuit performs spatial memory. Here, the metric or vector ordering of grid states, which260

was not necessary for pattern memory, becomes critical. When self-motion signals during spatial navigation are261

allowed to drive transitions between the metrically ordered grid states, Fig. 4a, we find below that the architecture262

and dynamics of Vector-HaSH support high-capacity life-long spatial memory without catastrophic forgetting and263

zero-shot spatial inference along novel paths.264

In a novel room, we randomly initialize grid module phases, and velocity inputs to each module then update the265

grid phases through path integration101. Vector-HaSH learns associations between these updating grid states and266

spatially sparse sensory cues in the room, through the hippocampus, building up a map of the space which allows for267

bi-directional recall of grid states from sensory cues and vice-versa (Fig. 4a).268

After even very sparse exploration in the room (Fig. 4c, left), Vector-HaSH is able to predict expected sensory269

observations when taking an entirely novel route through the room, on paths and path segments not previously taken270

(Fig. 4c, right). This zero-shot spatial inference ability arises from velocity integration102–104: the initial grid phases271

are updated based on velocity to generate accurate phases at locations even along novel paths, which can then drive272

reconstruction or prediction of the sensory cues associated with those phases from the past.273

Next, we consider the spatial maps constructed by the circuit, and its ability to sequentially learn a series of274

different rooms, Fig. 4d. Grid cells and hippocampal cells exhibit realistic spatial tuning curves, including the275

spatially localized and typically single-bump tuning of place cells (Fig. 4b). For each room, Vector-HaSH learns a276

repeatably reliable spatial map, as assessed by testing after it has learned the room (Fig. 4e: compare the first two277

columns for each cell).278

To assess sequential memory, and the extent of interference and overwriting of memories for different rooms279

acquired one after another, we assessed recall in all prior rooms after learning each of the 11 rooms sequentially280

(Figs. 4e, third column and 4f). The hippocampal and grid cell activations (maps) remain unchanged despite the281

subsequent acquisition of up to 10 new rooms. Notably, there is a complete absence of catastrophic forgetting without282

requiring replay or consolidative associative learning during recall assessments to refresh prior memories. This lack283

of catastrophic forgetting is due to the specific architecture and exponential scaling capacity of Vector-HaSH, in284

which random grid phase initializations result in maps that are well-separated in the coding space, Fig. 4g.285

These properties correspond to observed responses in the entorhinal-hippocampal circuit, including the similarity286

of responses for repeated visits to the same room and orthogonal representation of different rooms, Fig. 4h-i.287

Additional properties of the hippocampal response, including the distribution of probabilities that a hippocampal cell288

has a field in multiple rooms, matches experimental data, Fig. 4j.289

High-capacity sequence scaffold via vector updating of grid states290

Sequence memory is typically modeled with asymmetric Hopfield networks105–107, resulting in similar capacity291

limitations as standard Hopfield networks74, 86, 108. Remarkably, it is possible to construct a massive sequence292

memory in Vector-HaSH in a similar way as item memory: by factorizing the problem into a high-capacity abstract293

scaffold sequence then affixing content via heteroassociation. We first explore how to construct these high-capacity294

sequence scaffolds.295

Memory networks perform poorly when user-defined patterns determine the attractor states (Fig. 2e-f). The296

equivalent problem in sequence memory is when user-defined patterns determine and drive the next user-defined297

pattern: a recurrent Hopfield-like auto-associative hippocampal network with asymmetric weights quickly (within298

∼ 50 steps) results in failure to accurately reconstruct the next step, Fig. 5a.299

We reasoned that coupling hippocampus recurrently with the grid cell modules in the same way as the scaffold300

network might support high-capacity sequence reproduction, by denoising and pattern-completing otherwise301

inaccurate next-step patterns. Doing so roughly doubled the sequence capacity of the circuit (to ∼ 100 steps), but302

did not fundamentally alter the scaling of capacity with network size, Fig. 2b.303
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Figure 4. High-capacity spatial memory, spatial inference, and lifelong learning of environments without
catastrophic forgetting. (a) Left: Vector-HaSH with a path-integration mechanism for velocity-driven shifts in grid
phase. Right: Vector-HaSH performs bidirectional spatial inference of position (internal grid states) from sensory
cues, and predicts sensory landmarks given a grid state, after simple associatve-like learning in an environment. (b)
Randomly sampled hippocampal and grid cell tuning in one environment. (c) Left: First-time traversal of an
environment along only the shown trajectory, accompanied by associative learning over the trajectory. Right:
Vector-HaSH accurately predicts all landmarks during traversal of an entirely novel path from one of the landmarks,
a form of zero-shot inference. For realism, we show the model 596 other patterns (mimicking memorization of
different environments) before it sees these 4 landmarks. This results in approximate sensory recovery as the model
is in the memory continuum regime. (d) Sequential learning protocol for 11 rooms: Vector-HaSH is steered along a
random trajectory in room 1, then tested on a different random trajectory in the same room. During memorization,
there is a landmark at each location of every room. Rooms 1 through 11 are memorized in sequence without
revisiting prior rooms. During testing, only the first landmark in a room is visible, the rest must be predicted. At the
end, the 11 rooms are tested again, then re-tested in the "dark" in each of the 11 rooms. (e) Spatial tuning of two
hippocampal cells, across rooms and across learning and all three testing conditions. (f) Sequential recall curves for
map i after learning maps 1 · · · i−1: there is no interference with or catastrophic forgetting of previously learned
maps in Vector-HaSH and a baseline model consisting of random sparse hippocampal states, similar to the baseline
considered in Figs. 2 and 3. (g) Random assignment of the starting grid states in across the vast grid coding space
results (gray diamond represents the set of all possible grid states across modules – the side-length of the diamond is
the exponentially large unique coding range per dimension of the grid code, across modules) in non-overlapping
grid representations and the lack of catastrophic forgetting. (h) Hippocampal population activity similarity matrix
across rooms (including repeated exposures to some rooms) from Vector-HaSH (left) and experiments100 (right). (i)
Left: Top: spatial maps of a grid cell from each of three modules across a pair of rooms (rooms 8,9), and bottom:
cross-correlation of that cell’s response across rooms. The modules exhibit differential shifts in phase. Right:
Across-room cross-correlations of three hippocampal cells. (j) Hippocampal representation similarity for same
versus different rooms and shuffle controls for Vector-HaSH and experiments: representations of different rooms are
as orthogonal as the shuffles for both. (k) Distribution of number of hippocampal cells active in R rooms as a
function of R, for Vector-HaSH and experiments. In both, most cells were active in only a few rooms.

11/59

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.28.568960doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.568960
http://creativecommons.org/licenses/by-nc-nd/4.0/


Next, we reasoned that learning an abstract sequence of scaffold states rather than user-defined states in the304

full spirit of a scaffold network might be the solution. We tested the performance of learning transitions from one305

abstract grid state to the next, using the projections from hippocampus to grid cells to cue the next grid state, with the306

full benefit of the scaffold architecture. The sequence capacity remained qualitatively similar to Hopfield networks,307

Fig. 5b, with failure within ∼ 30 steps. This is possibly because even abstract grid states are specific large activity308

patterns, which the previous state must sufficiently specify to reconstruct. This failure and hypothesized reason gave309

us the critical insight that learning the input to the velocity shift mechanism, which requires specifying merely a310

2-dimensional vector to specify the next grid state given the current one, would minimize the information, would311

potentially alleviate the capacity limitation for sequence reconstruction.312

We therefore used the previous grid state to cue the next grid state, but via the drastic dimensionality and313

complexity reduction of the velocity-shift mechanism: the previous grid state was used to specify a 2-dimensional314

velocity that signals where to move in the grid coding space to generate the next grid state. We built these associations315

via a simple feedforward network (MLP), Fig. 5a (top) that associated the previous grid state, via the hippocampus,316

with a 2-dimensional velocity vector. This architecture resulted in the accurate reconstruction of scaffold sequences317

of 1.4×104 grid states, using the same (small) number of cells in the scaffold network as before, Fig. 5a (left).318

In other words, recalling a long abstract sequence of grid states can be achieved by solving the much simpler319

task of recalling a sequence of simple abstract two-dimensional vectors, each of which points from one state to320

the next in the grid coding space. This enables much longer sequence reconstruction because the information the321

network must recall for each step in the sequence is a mere two-dimensional vector, not the much larger grid pattern322

state, Fig. 6g. Consistent with this, when we parametrically vary the amount of information the network must recall323

at each step to arrive at the next, by increasing the range of possible 2D vector lengths to be recalled, the fraction324

of recalled sequence length decreases gradually (Fig. 5e; theoretically expected scaling, in which sequence length325

decreases inversely with the number of bits required to specify the next step, is shown in blue). Thus, constraining326

the sequence recall dynamics to a low-dimensional manifold where only low-dimensional velocity tangent vectors327

rather than the manifold states themselves must be reconstructed, results in vast increases in sequence length.328

Quantitatively, we can take a statistical approach and assess how well the circuit can recall random velocity329

(shift) vectors assigned to each grid state, Fig. 5c. The circuit memorizes and perfectly recalls sequences of length330

∼ 1.5×105 with a scaffold consisting of Nh = 500 and Ng = 275 grid cells of periods 5,9 and 13 (and hence a total331

of ∼ 3.4×105 total scaffold states); longer sequences are reproduced with modest decreases in recall performance.332

The dependence on the number of hippocampal cells is again smaller than logarithmic, similar to scalings for item333

memory, Fig. 5d (left), and the dependence on the number of units needed to learn the dimension-reducing mapping334

from state to velocity vectors is linear, Fig. 5d (right).335

Given that the velocity transitions are 2-dimensional, we can plot the grid and hippocampal states as a function336

of these 2-dimensional transitions (which may or may not correspond to physical 2-dimensional space), and as337

expected given the invariance of grid modules, we obtain periodic grid responses in this space, Fig. 5f; hippocampal338

cells exhibit more-sparse and more-localized tuning relative to grid cells, Fig. 5g.339

In sum, the velocity shift mechanism of the grid cell integrator networks enables memorization of exponentially340

large cumulative-length sequences of abstract grid states, relative to network size. Remarkably, therefore, the341

path integrability of the grid cell code can support not only highly efficient spatial inference and mapping but342

also sequence memory, even if the sequences do not involve physical navigation in real spaces. This defines a343

high-capacity abstract sequence scaffold.344

Episodic memory345

Just as high-capacity item memory was supported by the factorization of dynamics and content into a fixed-point346

scaffold and heteroassociation, Vector-HaSH supports high-capacity episodic memory by factorization into a347

sequence scaffold (above) and heteroassociation. As before, abstract grid cell and hippocampal scaffold states are348

heteroassociatively linked to sensory inputs during a temporally unfolding event.349

This temporal unfolding through scaffold states can occur through next-step velocity recall based on hippocampal350

states (as seen in Fig. 5); however in this case the total sequence capacity is limited by the number of MLP units351
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Figure 5. High-capacity scaffold for sequences via low-dimensional velocity update mechanism in grid cells
(a) Architecture and performance of the Vector-HaSH sequence scaffold, where transitions of grid states are driven
by hippocampus via the two-dimensional grid cell velocity shift mechanism33, 109. Hippocampal states are converted
to velocity states by a small feedforward network (MLP, NM=250), violet. Left to right: Recall of a self-avoiding
random walk (Lévy flight), a hairpin curve sequence that spans the entire grid coding space, a Hilbert space-filling
curve that spans every point in a subset of the grid coding space, and a uniform self-avoiding random walk (in the
first, parameters are as in (b); in the last three, λ = [3,4,5] with a 3600 sized state space). (b) Architectures and
recall performance of hippocampus as an asymmetric Hopfield network (left), as an asymmetric Hopfield network
assisted by the scaffold (center), and of the whole scaffold network with hippocampal-grid cell connections driving
transitions from one grid cell state to the next (right). In all cases, the network readout is visualized by the grid state
(a 585×585 state space, λ = [5,9,13]) and the asymmetric Hopfield network is constructed on Nh = 500 nodes. (c)
Left: Each point in grid coding space is assigned a random shift to link it to the next step. Vector-HaSH successfully
recalls large sequences while the Hopfield baselines fail to do so. (d) Left: the recalled sequence length increases
exponentially with the number of hippocampal cells, when trained on all 585×585 random shifts. Right: The
recalled sequence length increases exponentially with the size of the MLP that maps hippocampal states to a
2-dimensional velocity vector, when trained on all 585×585 random shifts. (e) Increasing the information load of
next-state generation by increasing the range of potential shift step-sizes results in reduced performance. Blue
curves: performance declines as the log of the number of distinct possible shift vectors. (f-g) Sample grid and
hippocampal cell tuning in the abstract 2D space defined by the grid velocities. This space is abstract: it can, but
need not, correspond to physical space.
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Figure 6. High-capacity episodic (sequence) memory via heteroassociation with sequence scaffold.
(a)Architecture of Vector-HaSH for episodic memory. Top: Hippocampal states determine a 2-dimensional shift
vector�v for grid cells, via a decoding network (3-layered MLP, purple hexagon). Bottom: Alternatively, the
reconstructed sensory state (ŝ) determines the 2-dimensional shift vector�v (this resembles route learning, SI Fig.
S14). (b) The accuracy of hippocampus-driven shifts depends on the size of the decoding network (MLP); the
accuracy of sensory recall-based shifts can be consistently high because of the size of the sensory network. Because
shifts are learned from the recalled sensory states rather than true sensory states, and sensory recall is reliable even
when inaccurate (Fig. 3g), the shifts remain accurate deep into the memory continuum. The fraction of correct shifts
is computed over learning a mapping from all scaffold states to random shifts, as in Fig. 5d. (c-d) Example recalled
trajectory and sensory states in Vector-HaSH (c) and an asymmetric Hopfield network with the same number of
synapses (d) for bw-mini-imagenet sensory inputs (see Methods; periods [3,4,5], Ng=50,Nh=400,Ns=3600 for
Vector-HaSH, and Ns=3600 for Hopfield). (e) MI (per input bit) between the stored and recalled next-step sensory
states as a function of episode (sequence) length when storing episodic memories, across models. (Sensory states
are random binary patterns.) Vector-HaSH asymptotically approaches a constant amount of information per input bit.
(f) MI between stored and recalled sensory states in Vector-HaSH as a function of sequence length (total number of
stored memories), similar to the item memory curve of Fig. 3c. (g) In conventional sequence memory models, the
recalled content of one item must be used to reconstruct the entire content of the next item. Vector-HaSH instead
requires one item to specify or reconstruct a mere 2-dimensional vector, a task requiring far less information to be
stored in the recurrent synapses. (h) As seen in (f) and Fig. 3c, Vector-HaSH thus achieves the memory continuum
desired in Fig. 1a. (i) The space-complexity of storage and time-complexity of recall: Top: When perfectly
recovering all stored patterns (when # patts ≤ Nh = Ns), the storage space complexity of Vector-HaSH scales the
same way as Hopfield models. When storing a larger number of patterns (when # patts = Ns =Cs � Nh), the space
complexity of Vector-HaSH scales much more slowly. Bottom: The time-complexity of recall in Vector-HaSH
scales similarly to Hopfield models for perfect recovery of a small number of patterns, but the scaling of
time-complexity is much lower for partial recovery of a large number of patterns.
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(Figs. 5d, 6b). We hypothesize an additional architecture wherein the next-step velocity recall is based on the352

recalled sensory inputs (Fig. 6a bottom, SI Fig. S14). In this case, all next-step transitions can be recalled due to353

the large number of sensory cells (Fig. 6b, proof in SI Sec. D.6). Note that, as earlier, the synaptic weights storing354

sensory information continues to be completely independent of the weights storing scaffold states355

The heteroassociation part of the sequence scaffold is the same as heteroassociation for individual item memory,356

Fig. 6a, including one-shot learning via biologically plausible rules, robust recall of arbitrary inputs, and graceful357

memory degradation with increasingly many stored inputs. As in Fig. 3g, internal hippocampal states are computed358

with high fidelity throughout the memory continuum, while heteroassociative sensory recall fidelity degrades359

with sequence length Fig. 6f. Because sequence recall at each step is based on the (accurately reconstructed)360

previous hippocampal state, there is no degradation over time in the identity of the sensory state at each point in the361

sequence, Fig. 6c. The cumulative amount of sensory information recovered by the network during sequence recall362

asymptotically approaches a constant, Fig. 6e, as in item memory, Fig. 3f. For episodic memories with content that363

is not explicitly spatial, the sequential trajectory in the grid-hippocampal scaffold can be arbitrarily chosen — in our364

numerical simulations examining the maximal extent of sequential memory in Vector-HaSH (Figs. 6e-f), we choose365

a space-filling “hairpin” trajectory in scaffold space.366

Thus, Vector-HaSH with heteroassociation onto the sequence scaffold generates a high-capacity episodic367

memory, Fig. 6f. This is in sharp contrast to the poor performance of Hopfield networks and tail-biting autoencoders368

attempting to memorize the same sequence of sensory inputs86, Fig. 6d-e.369

In sum, the hippocampal-entorhinal circuit in Vector-HaSH is able to store episodic memory of arbitrary input370

sequences with high capacity by exploiting the grid-hippocampal scaffold and vector updating of grid cell states,371

even in the absence of any spatial content in the memory.372

Space- and time-complexity of memory in Vector-HaSH373

The number of synapses in Vector-HaSH scales as NsNh =O(Ns) for large K and fixed M (Fig. 2d right, SI Fig.374

S2). The number of nodes Ns +Nh +Ng =O(Ns) scales the same way, meaning that Vector-HaSH is a highly sparse375

network. The number of stored patterns ranges from Nh =O(1) patterns relative to Ns (with information stored per376

pattern given by O(Ns) =O(# synapses) bits), all the way up to Ns patterns (with information stored per pattern377

being a nonzero amount), Fig. 6h.378

For storage and perfect recovery of Nh patterns of length Ns, comprising I = NhNs total bits, Vector-HaSH379

has a space complexity of O(I) (SI Sec. D.4). This is the same as Hopfield-like networks, which also require380

O(I) space to store I total bits, Fig. 6i (top). The time complexity for perfect recovery in Vector-HaSH scales as381

O(I3/2
√

Nh/Ns) ≤ O(I3/2). When Nh ≪ Ns, this scaling is faster than Hopfield-like models, which have a time382

complexity of O(I3/2), Fig. 6i (bottom).383

When the number of stored patterns is much larger, scaling as cNs for 0 < c ≤ 1, Vector-HaSH partially recovers384

the stored information (Fig. 3). In this regime, Vector-HaSH has further improved time and space complexity relative385

to the number of synapses: the required space complexity scales only as O(INh/(cNs)), and time complexity scales386

only as O(I3/2Nh/(Ns
√

c)) (Fig. 6i; see SI Sec. D.4 for a derivation of these scalings).387

Vector-HaSH reproduces multiple additional aspects of hippocampal phenomenology388

Vector-HaSH reproduces the results of memory consolidation experiments, as well as hippocampal place cell389

remapping (cf. Fig. 4) and the phenomenology of splitter cells110–113.390

The multiple traces theory of memory hypothesizes that episodic memory remains hippocampally dependent,391

and thus hippocampal damage should result in recall degradation but repeated presentation or recall of a memory392

should selectively reinforce it and make it more resistant to damage114, 115. We exposed Vector-HaSH to a set of393

inputs, out of which a fraction were presented or recalled multiple times. Each presentation or recall results in394

an further increment of the sensory-hippocampal weights, with the same learning rule. We found that memories395

reinforced in this way are remembered with richer detail relative to the rest, even after removal of a fraction of396

the hippocampal cells, Fig. 7a-b, SI Fig. S15. An alternative potential mechanism for consolidation could be that397

each repeated presentation or recall event activates a new scaffold state, adding associations between the same398
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sensory input and multiple scaffold states. Our numerical results in Vector-HaSH did not support this mechanism, as399

associating the same input with two different scaffold states resulted in the activation of a third scaffold state when400

the partial input was presented for recall.401

To model splitter cells (a fraction of hippocampal neurons whose firing in an unchanging environment varies402

based on context, e.g. varying with start and target locations, or for random foraging versus directed search)110–113,403

we assumed that a sufficiently distinct context triggers re-initialization (remapping) across grid modules. A randomly404

selected set of initial grid phases is assigned to each context, and sensory-hippocampal-grid associations are built405

while traversing the environment in this context. When the agent returns to this context, the stored associations are406

recalled.407

Under these assumptions, we simulate experiments in which splitter cells have been observed. Simulated408

grid and place fields on the shared stem of a Y maze are distinct based on the context of a right or a left run;409

the same is true for tree-shaped mazes, left- versus right- runs on a one-dimensional track, and clockwise versus410

counterclockwise runs on a closed path, Fig. 7c-f, SI Figs. S16,S17,S18. In the simulations, the ratio of splitter or411

route- or context-dependent cells to non-splitter cells was similar to the ratios seen in experiments, Fig. 7g, as were412

path and ‘directionality indices’ that quantified the degree with which context like the direction of the trajectory413

modified field locations112, 113, Fig. 7h-j. Our results indicate that we would expect similar directionality-dependence414

in the spatial tuning curves of grid cells, SI Fig. S19415

Mechanism for the method of loci (memory palace) technique416

An intriguing memory technique known for millennia, the memory palace or method of loci116–119, is widely417

exploited by memory athletes in mnemonic competitions120, 121. Given a list of typically non-spatial items to418

memorize, such as a list of names or a sequence of playing cards, memory athletes imagine a walk through a419

highly familiar and richly remembered space, such as one’s childhood home or school. They attach the sequence of420

items to be memorized by mentally organizing and storing them near different locations and objects in a mental421

reimagining of the walk. Through unknown neural circuit mechanisms, this association enables highly accurate422

one-shot memorization and recall122, 123.423

A simple extension of Vector-HaSH provides the first model for how memory palaces might work, helping to424

explain their power. Vector-HaSH is initialized to the start of a spatial trajectory in a highly familiar space. We425

assume that the neocortical representations of the sequence of items to be remembered is associated to the recalled426

sensory states in the familiar spatial trajectory. Crucially, even when these recalled trajectory sensory states are mere427

approximations of the actual sensory inputs (typical in the memory continuum), the approximate states are reliably428

the same: sensory reconstruction in Vector-HaSH is reliable even when approximate, Fig. 3b. Association with this429

reconstructed state allows the new patterns to themselves be highly accurately reconstructed even in the memory430

continuum of Vector-HaSH. The critical advantage of heteroassociation of new neocortical sequences with sensory431

recall states rather than hippocampal states as in episodic memory is that even in the memory continuum, the recall432

of new associated inputs is precise and detailed.433

In sum, Vector-HaSH can explain the power and mechanisms of the memory palace technique: Associating434

arbitrary new input sequences with existing memory sequences (even when these are themselves imperfectly recalled)435

leads to one-shot high-capacity and high-precision memory for the new input sequences.436

Discussion437

Related models: Vector-HaSH is related to recent memory models87, 99, in that it shares the idea of a pre-structured438

exponential-capacity fixed-point scaffold for memory. However, Ref. 99 does not memorize externally specified439

patterns. Like Ref. 87, Vector-HaSH has a tripartite architecture in which external cues are heteroassociated with the440

scaffold. However, Ref. 87 does not include grid cell-like representations; as a consequence, the properties of strong441

generalization and high-capacity sequence memory from Vector-HaSH are absent in 87.442

Though dense associative memories are capable of strong large numbers of patterns, their implementation443

is abstract in the form an gradient descent on energy landscapes; when implemented in a neural circuit with444
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Figure 7. Vector-HaSH reproduces multiple aspects of hippocampal phenomenology. (a-b) Memory
consolidation simulated in Vector-HaSH via the formation of multiple traces: repetition or recall of some input
patterns drives an increment in the strength of the corresponding learned weights (red outlined arrows in (a)). (b)
Repeated patterns are recovered, after hippocampal lesion, with smaller error than unrepeated patterns and than any
of the patterns pre-consolidation. Recalled states are shown in SI Fig. S15. (c-f) Splitter cells110, route-dependent
spatial tuning111, directional tuning112, and task-dependent cells in an open arena113 can all be modeled by
Vector-HaSH if different trajectories traverse different regions of the grid coding space (grid cell remapping). (g-j)
Quantification of directional/contextual/route selectivity of responses from the hippocampus in Vector-HaSH (left
column) and experiments (right column), corresponding to (c-f). (g) Firing ratio distribution shows significantly
different left- versus right-turn hippocampal tuning in the model and experiment110 (see also SI Fig. S18). (h)
Ensemble decoding of individual trajectories based on route population vectors, with color indicating the p-value of
correct matches made by chance. (SI Sec.3.3 and SI Fig. S16)111). (i-j) The directionality index (a normalized
metric for the difference in neural activity for different run directions111, 112) shows that a majority of hippocampal
cells have directional fields112 ( Qualitatively similar results hold for a radial maze environment113, SI Fig. S17.)
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Figure 8. Method of loci: Accurate recall of arbitrary inputs by heteroassociation onto landmarks in a
“memory palace" formed by Vector-HaSH. (a) The memory palace or Method of Loci technique for memory
(figure adapted from124). (b) Model of the Method of loci: the full sequential Vector-HaSH circuit serves as a
memory scaffold for new inputs, via heteroassociation with the sensory network. The path through the memory
palace is learned via sequence learning, as in Fig. 6. The recollected sensory landmarks along the path are now
(hetero)associated with the new items to be stored. (c) The large sensory area encoding spatial landmarks now forms
the scaffold basis for heteroassociation of arbitrary sensory inputs in neocortex (cf. the smaller hippocampal basis
for heteroassociation of sensory inputs within Vector-HaSH). (d-e) Scaffold states for neocortical input in the
memory palace model are the (potentially imprecisely) recalled spatial landmarks. Because landmark recall is
reliable even when imprecise (Fig. 3g, new items represented in neocortex can be recalled perfectly deep into the
memory continuum even where landmark recall is substantially degraded relative to the true landmark, (d). Error
bars (too small to be visible): standard deviation over 5 runs. (e) Two examples of the actual spatial landmarks, the
recalled sensory states, and the recalled new neocortical inputs in the memory palace model, at different depths into
the memory continuum. In (d-e), λ = [3,4,5], Nh = 400.

pairwise synapses, they require exponentially many neurons (rather than the linearly many of Vector-HaSH) to store445

exponentially many patterns76, 125, 126.446

Vector-HaSH is similar to the hippocampal models of Refs. 127, 128, which also use fixed grid cell representa-447

tions. In 127, hippocampal cells drive a low-dimensional update mechanism via grid cells, like our vector updating448

model. However, in both these models the scaffold is not invariant though the grid representations are fixed because449

the grid-hippocampal weights are learned. Therefore, they lack the properties of high capacity, large basins, and450

strong generalization. These models also do not memorize external inputs and are thus not memory models. A451

related memory model of the hippocampal complex is given in Ref. 72. This model memorizes external cues but like452

127, 128 it lacks a fixed scaffold both because there is no fixed grid representation (recurrent interactions within the453

proto-grid network are (re)learned for each environment) and the grid-hippocampal weights are learned. Therefore,454

it lacks the high capacity and avoidance of catastrophic forgetting properties made possible by a fixed scaffold.455

It also lacks the low-dimensional shift mechanism learned from hippocampal or sensory states, and therefore the456

ability to store sequential memory at any level approaching that needed for episodic memory.457

Given that the hippocampus is orders of magnitude smaller than the cortical states that represent events458

memorized by hippocampus, it is clear that any model of the hippocampus must involve state compression. In459

Vector-HaSH, the hippocampal representation is compact because the grid-hippocampal circuit functions as a content-460
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independent pointer or hash mechanism for content in the cortex. A contrasting way to compress information is via461

content-based compression, as done by the bottleneck layer of an autoencoder (Fig. 3 and129). As we have seen here,462

direct content compression through learning is not highly performant: these models lack the capacity, resistance to463

catastrophic forgetting, and sequence memory properties of Vector-HaSH.464

Nevertheless, the commonalities among many of these models point toward a converging view of the hippocampal465

complex. The highly performant features of Vector-HaSH suggest a first-level computational understanding of the466

circuit mechanisms of hippocampus as a highly performant memory system. Vector-HaSH is the first model we467

know of, besides MESH130, that is capable of storing an exponentially large set of input patterns in an associative468

content-addressable memory.469

Future extensions and directions: Vector-HaSH accounts for a range of phenomena in entorhinal cortex and470

hippocampus100, 110–115. At the same time, there are numerous avenues for future research and extensions. These471

include incorporating different subregions of the hippocampus; relating the phenomena of different hippocampal472

LFP frequency peaks and the dominance of different inputs to the structure with the loop of dynamical updating and473

information flow in Vector-HaSH; investigating how the hippocampus and Vector-HaSH deal with conflicts between474

internal states and external cues and with changes in primary versus contextual inputs; enabling hierarchical and475

similarity-respecting representations for distinct but similar memories; exploring the dynamics of fragmentation of476

space and events into submaps and discrete episodes (e.g. via surprisal102) and map mergers; and understanding the477

contribution of different specific cell types and their roles in episodic memory within this circuit.478

Relationship to anatomy: Vector-HaSH is based on the structure of hippocampal-entorhinal circuitry. However,479

in some respects it varies from the classic view: While hippocampal outputs to and inputs from entorhinal cortex are480

believed to be separated between deep versus superficial layers of entorhinal cortex, the scaffold involves a tight loop481

in which grid cells drive hippocampus and receive direct mirrored input back in a way that reinforces the input grid482

patterns. This structure is a prediction that the deep-to-superficial entorhinal projection closes a fully self-consistent483

loop, which can potentially be tested connectomically. Although much is known about entorhinal-hippocampal484

circuitry, new discoveries can still surprise: recent reports show that deep layers of EC, which receive hippocampal485

inputs and were believed to primarily send outputs to neocortex in fact send a copy of their outputs back to the486

hippocampus131.487

Random grid-to-hippocampal weights were key for several properties of Vector-HaSH, but are they a unique488

solution? Our theory and simulations show the sufficiency of random weights and the insufficiency of several489

types of non-random or learned weights. However, they do not eliminate the possibility of non-random solutions.490

The situation is similar to the construction of expander graphs for high-capacity error-correcting codes132: though491

non-random solutions can exist in principle, it has been hard to find them, while random connections are sufficient.492

Because Vector-HaSH is a full dynamical neural circuit that can be easily and directly queried for experimental493

predictions about representation, dynamics, and learning under a large variety of conditions and perturbations.494

Summary: In sum, we have proposed a model that unifies the spatial and episodic memory roles of the495

hippocampal complex by showing that nominally spatial representations and architectures are critical for a well-496

behaved episodic memory, even if the memories are devoid of spatial content. Unlike unstructured recurrent memory497

models76, 84, 86, 93–98, 125, 126, 133, the model factorizes the problem of associative memory into one of the creation of498

an abstract fixed point scaffold (for robust autoassociative recall of a massive number of abstract states and state499

sequences), with separate feedforward heteroassociation (abstract “pointers”) to attach content to these abstract500

states. Mathematically, the model creates a hash code for each input pattern, which is given by the scaffold state,501

uses the pre-structured recurrent connectivity of the scaffold to be able to recreate those hash states as fixed points502

of the dynamics, and then uses the strongly full-rank property of the scaffold to enable (partial) decompression503

or reconstruction of the input patterns. In many senses, the model is consistent with past hints of the existence of504

abstract sequences that later become associated with newly explored spaces66, 134. As a result, Vector-HaSH exhibits505

biologically realistic features of memory, such as avoiding the memory cliff of existing memory models. It maintains506

near-maximal use of its memory potential across a huge variation in numbers of stored memories, by gracefully507

trading off memory detail and number of items in memory. For sequence memory, the vectorized and metric nature508

of the grid cell states becomes critical: a very large combined sequence length capacity becomes possible when the509
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only information required to specify the next state is a two-dimensional vector specifying direction and distance,510

rather than the full pattern of the next state.511

Vector-HaSH provides a computational hypothesis for the mechanisms of the memory palace technique, based on512

understanding the advantages of co-localizing spatial and non-spatial memory. The model explains why impressive513

memory performance does not require exceptional intellectual ability or structural brain differences, but can be514

leveraged by anybody trained to appropriately engage the hippocampus120, 122, 135. From a neuro-AI perspective, the515

specific biological architectures, representations, and learning rules of Vector-HaSH led it to significantly outperform516

fully end-to-end supervised trainable memory models with similar architectures, comparable or more parameters,517

and fewer constraints – a realization of the hypothesis that biological structures (inductive biases) can produce better518

performance than fully end-to-end trained models as commonly used in machine learning.519

Methods520

In87, the MESH associative memory architecture was introduced, leveraging a three-layer network to store numerous521

independent memory states. This architecture allowed for a high-capacity memory with a trade-off between the522

number of stored patterns and the fidelity of their recall. However, MESH did not require specifically grid cell523

encodings, did not exhibit strong generalization in scaffold learning, and did not exhibit a high sequence capacity.524

In Vector-HaSH, our memory scaffold consists of a recurrent circuit incorporating MEC grid cells and a525

hippocampal layer that may be interpreted as the proximal CA1 and distal CA3 regions of the hippocampal complex.526

Specifically, we represent the MEC grid cells as outlined in Ref.136, where each grid module’s state is expressed527

using a one-hot encoded vector that represents the module’s phase (and thus the active grid cell group within the528

module). The states are on a two-dimensional discretized hexagonal lattice with period λ . Thus, the state of each529

grid module is represented by a vector with a dimensionality of λ 2.530

M such grid modules are concatenated together to form a collective grid state g∈ {0,1}Ng , where the Ng =∑M λ 2
M .

The continuous attractor recurrence in the grid layer33 is represented by a module-wise winner-take-all dynamics,
which ensures that the equilibrium states of g always correspond to a valid grid-coding state.

g(t +1) =CAN[g(t)]. (1)

We represent these equilibrium states by g⃗x, where we index the coding states by the two-dimensional location x⃗.531

For coprime periods λM, the grid states can encode a spatial extent of Npatts = ∏M λ 2
M spatial locations.532

This layer of grid cells projects randomly onto the hippocampal layer, through a Nh ×Ng random matrix Whg,
with each element drawn independently from a Gaussian distribution with a mean of zero and standard-deviation one
N(0,1). This matrix is sparsified such that only a γ fraction of connections is retained, leading to a sparse random
projection. This projection constructs an Nh dimensional set of hippocampal sparse states, h⃗x defined as

h⃗x = ReLU[Whgg⃗x −Θ]. (2)

The return weights from the hippocampal layer back to the grid cell layer is set up through Hebbian learning between
the predetermined set of grid and hippocampal states, g⃗x and h⃗x.

Wgh =
1

Nh
∑
x⃗

g⃗xhT
x⃗ . (3)

The dynamics of the hippocampal scaffold is then set up as

g(t +1) =CAN[Wghh(t)] (4)

h(t +2) = ReLU[Whgg(t)−Θ] (5)

(6)

These equations maintain each g⃗x, h⃗x state as a fixed point of the recurrent dynamics, as we prove in SI Sec. C.1.533
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This constructed hippocampal memory scaffold is then used to generate independent memory locations to store
information presented through a sensory encoding layer, representing the non-grid cell component of the Entorhinal
cortex. Information to be stored is presented as a binary encoding of states in the sensory layer, and is ‘tagged’ onto
a memory location x⃗ of the scaffold through pseudo-inverse learned heteroassociative weights.

Whs = HS+, and, (7)

Wsh = SH+, (8)

where H is a Nh ×Npatts dimensional matrix with columns as the predetermined hippocampal states h⃗x, and S is a534

Ns ×Npatts dimensional matrix with columns as the encoded sensory inputs to be stored at location x⃗. To reduce535

computational time-complexity, we use an exact pseudoinverse rather than an iterative pseudoinverse for calculation536

of these inter-layer weights, unless otherwise specified.537

Given the above equations, we can now perform bi-directional inference of sensory inputs from grid states and
vice versa:

h(t +1) = ReLU[Whss(t)] (9)

g(t +1) =CAN[Wghh(t +1)] (10)

and

h(t +2) = ReLU[Whgg(t)−Θ] (11)

s(t +2) = sgn[Wshh(t +2)] (12)

The above two sets of equations can then be combined to use Vector-HaSH as a content-addressable memory to538

recover stored sensory inputs from corrupted inputs — first the grid states are inferred from the corrupted sensory539

input, and then the true sensory input is recalled from the inferred grid state.540

The above equations have been written considering sensory inputs to be random binary states. In cases where541

sensory states are continuous valued (as in Fig. 3b, for example) the s reconstruction equation, Eq. (12) is replaced542

with simply s(t +2) =Wshh(t +2).543

Equations (1-12) describe the core working of Vector-HaSH— this core version and its variants can then be used544

to generate item memory, spatial memory, episodic memory, as well as a wide range of experimental observations,545

such as those discussed in Fig. 7.546

1 High-capacity pattern reconstruction547

For the basic task of pattern storage and reconstruction, we utilize the simplest form of Vector-HaSH without any548

additional components. To examine reconstruction capacity, Npatts sensory cues are stored in the network via training549

the Whs and Wsh weights as described in Eqs. (7-8).550

The Npatts sensory cues need to be stored corresponding to distinct scaffold states. In our implementation, for551

simplicity, we selected scaffold states in a “hairpin” like traversal, similar to that shown in Fig. 5a top middle to552

achieve this.553

Then, a clean or corrupted version of a previously stored pattern is presented to the network in the sensory554

encoding layer, which then propagates through the network via Eqs. (9-12), finally generating the recalled pattern s.555

In all numerical examples we consider in the main text we either construct random binary {−1,1} patterns, or556

consider images from mini-imagenet137. In particular, we took 3600 images from the first 6 classes {‘house-557

finch’, ‘robin’, ‘triceratops’, ‘green-mamba’, ‘harvestman’, ‘toucan’} and center-cropped them to consider the middle558

60×60 image and converted them to grayscale. We refer to this set of grayscale images as bw-mini-imagenet.559

In all models, the memorized patterns are a noise-free set, then we test memory recall with noise-free, partial, or560

noisy cues.561

In Figs. 2, 3, the recall performance and quality was examined in networks with three grid modules, γ = 0.6,562

and θ = 0.5.563
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The capacity in Fig. 2c(right) was evaluated by injecting a noise into the hippocampal layer of magnitude 20%564

of the magnitude of the hippocampal state vector, and requiring the iterated dynamics to return the hippocampal state565

to within 0.6% of the original hippocampal state (Here magnitudes and distances were calculated via an L2 metric).566

In Fig. 2d(left) and SI Fig. S2, the critical N∗
h is estimated as the smallest value of Nh such that all scaffold states567

have been stabilized as fixed points. The corresponding module periods for data points plotted in SI Fig. S2, for two568

modules are listed in Table. 1 left, and for three modules are listed in Table. 1 right. Similarly, the grid module569

periods for the data in Fig. 2c(left) are listed in Table 2.570

λ Ng Npatts

2,3 13 36
3,4 25 144
4,5 41 400
5,6 61 900
6,7 85 1764
7,8 113 3136

λ Ng Npatts

1,2,3 14 36
2,3,5 38 900
3,4,5 50 3600
4,5,7 90 19,600
5,6,7 110 44,100

Table 1. Grid module periods, number of grid cells and total number of patterns for data in Fig. 2e.

λ Ng Npatts

7,8 113 3136
λ Ng Npatts

3,5,8 98 14400

λ Ng Npatts

3,4,5,7 99 176400
λ Ng Npatts

1,3,4,5,7 100 176400

Table 2. Grid module periods, number of grid cells and total number of patterns for data in Fig. 2f.

To estimate the basin sizes of the patterns stored in the scaffold, as shown in Fig. 2e, we compute the probability571

that a given pattern is perfectly recovered (i.e., remains within its correct basin) as we perturb the hippocampal states572

with a vector of increasing magnitude. We assume that the size of any given basin can be estimated as the typical573

magnitude of perturbation that keeps the system within the same basin of attraction — this is not generally true574

for non-convex basins, particularly in high-dimensional spaces. However, this estimate is relevant in the context575

of testing robustness under corruption with uncorrelated noise. Further, we later demonstrate in SI Sec. C.3 that576

the basins are indeed convex. Here grid module periods λ = [3,4,5], number of grid cells Ng = 50, and Nh = 400577

hippocampal cells were used. Probability that a given pattern remains within its correct basin was estimated by578

computing the fraction of runs where a given pattern was correctly recovered for a 100 different random realization579

of the injected noise.580

Figure 2f examines the learning generalization in Vector-HaSH, i.e., the capability of Vector-HaSH to self-581

generate fixed points corresponding to scaffold grid-hippocampal states despite training on a smaller number of fixed582

points. For a given number of training patterns, we calculate the number of generated fixed points by counting the583

number of states that when initialized at a scaffold state remain fixed upon iteration through Eqs. 4,5. As discussed in584

the main text, when training on a given number of training patterns (that is less than the complete set of all patterns),585

the ordering of the patterns is crucial in controlling the generalization properties of the model. For Vector-HaSH, we586

order patterns such that a two-dimensional contiguous region of space is covered (see Sec. C.4 for additional details587

of the ordering and the freedom of possibilities in this ordering), resulting in the strongest generalization (Sec. C.4).588

For comparison, in Fig. 2f we also consider “shuffled hippocampal states”, wherein scaffold states are randomized589

in order before subsets are selected for training. We also consider “random hippocampal states”: here we consider590

each hippocampal state vector and randomize its indices, in effect constructing a new state vector with exactly the591

same sparsity and statistics, but now uncorrelated to the grid state corresponding to that hippocampal state. Then, we592

use bi-directional pseudoinverse learning between grid and hippocampal states and construct this as a scaffold. This593
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lack of structured correlations between grid and hippocampal population vectors results in catastrophic forgetting,594

with no observed fixed points remaining once all scaffold states have been used for training.595

All curves shown in Fig. 3c-f are averaged over 5 runs with different random initialization of the predefined596

sparse connectivity matrix Whg, error bars shown as shaded regions represent standard deviation across runs. In597

Figs. 3b,e,h, grid module periods λ = [3,4,5], Ng = 50, Ns = 3600 was used. The total capacity of the network598

in this case is capped by Npatts = ∏M λ 2
M = 3600. In Fig. 3d, all shown networks have ≈ 5×105 synapses, with599

Vector-HaSH module periods λ = [2,3,5], and layer sizes: Ng = 38, Nh = 275, Ns = 900. Number of nodes in other600

networks are as follows: (i) Hopfield network of size N = 708, synapses = N2. (ii) Pseudoinverse Hopfield network601

of size N = 708, synapses = N2. (iii) Hopfield network with bounded synapses was trained with Hebbian learning on602

sequentially seen patterns. Size of the network N = 708, synapses = N2. (iv) Sparse Hopfield network (with sparse603

inputs) with a network size of N = 708, synapses = N2, sparsity = 100(1− p). (v) Sparse Hopfield network. Size of604

the network N, synapse dilution κ , synapses = κ ×N2 = 105. (vi) Tailbiting Overparameterized Autoencoder86 with605

network layer sizes 900, 275, 38, 275, 900.606

For stored patterns of size N, recall of an independent random vector of size N would appear to have a mutual607

information of ∼ 1/
√

N, which when evaluating the total mutual information across all O(N) patterns or more608

would appear to scale as O(
√

N), despite no actual information being recalled. To prevent this apparent information609

recall, in Fig. 3f if the information recall is smaller than 1/
√

N we then set it explicitly to zero.610

To examine Vector-HaSH’s performance on patterns with correlations, in Fig. 3e we trained it on bw-mini-imagenet611

images using grid module sizes λ = [3,4,5], and layer sizes: Ng = 50, Nh = 400, Ns = 3600. The plotted curve612

shows the mean-subtracted cosine similarity between recovered and stored patterns illustrating that Vector-HaSH613

shows gradual degradation as the number of stored patterns is increased. The resultant curve is an average over 5614

runs with different sparse random projections Whg.615

In Fig. 7b, Vector-HaSH with grid module periods λ = [3,4,5], Ng = 50, Nh = 400, Ns = 3600 was used, with616

random binary patterns in left,middle, and bw-mini-imagenet patterns inright. The results are averaged over 20617

runs. Iterative online psuedoinverse learning91 (with ε = 0.01 ) was used to reinforce a subset of patterns by adding618

addition traces to all the learnable weight matrices Whs, Wsh and Wgh. Whs reinforcement mathematically doesn’t619

change Whs due to iterative pseudoinverse being perfect from sensory to hippocampal layer. However, since Wsh620

leads to a gradual decay of reconstructed s states (i.e., iterative pseudoinverse learning from hippocampal layer to621

sensory cell layer is lossy), therefore reinforcement in Wsh changes these weights. Additional results from each layer622

of Vector-HaSH while testing the Multiple-Trace Theory are shown in Fig. S15, right. Further, Fig. S15, left shows623

the results when only Wsh weights are reinforced, assuming pre-trained scaffold weights Wgh. In both case, same624

parameter settings were used as in Fig. 7b.625

1.1 Multiple Traces Theory626

In Fig 7b, we consider Vector-HaSH with λ = [3,4,5], Ng = 50, Nh = 400, Ns = 3600, γ = 0.6, and θ = 0.5. The627

model was trained on 3600 images from bw-mini-imagenet. For sensory inputs presented multiple times, the628

sensory hippocampal weights are reinforced multiple times using online pseudoinverse learning rule91 (Fig 7b),629

and the grid hippocampal weights are reinforced multiple times using Hebbian learning (Fig 7b, right). Given a630

particular lesion size, the cells to be lesioned are randomly chosen from the set of all hippocampal cells, and their631

activation is set to zero. Sensory recovery error is defined as the mean L2-norm between the ground truth image and632

the image reconstructed by the model. During testing, the model receives the ground truth sensory image as input,633

and the reconstruction dynamics are as follows:634

h(t +1) = ReLU[Whss(t)] (13)

g(t +1) =CAN[Wghh(t +1)] (14)

h(t +2) = ReLU[Whgg(t +1)−Θ] (15)

s(t +3) = sgn[Wshh(t +2)]. (16)
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2 Mapping, recall, and zero-shot inference in multiple spatial environments without635

catastrophic interference.636

Here we add a path-integration component to Vector-HaSH, that utilizes a velocity input to change the grid cell637

population activity akin to Ref.33, such that the phase represented by each module changes in correspondence to638

the velocity input. Corresponding to the discrete hexagonal lattice space used to represent each grid module, for639

simplicity the velocity is assumed to have one of six directions, and magnitude is assumed to be fixed at a constant640

such that the phase of each grid module updates by a single lattice point in a single timestep. This input velocity641

vector, that we call a velocity shift operator, v⃗, is thus represented by a six-dimensional one-hot encoded vector642

determining the direction of the shift.643

In order to capture the inherent randomness and uncertainty present in real-world scenarios, a small amount644

of neuronal noise was introduced by adding random perturbations to the activation values of hippocampal cells in645

Vector-HaSH. This noise, generated from a uniform distribution between 0 and 0.1, mimics the fluctuations and646

disturbances observed in individual neurons, and corresponds to a noise magnitude of roughly 25% the magnitude of647

the hippocampal state vectors.648

In Fig. 4a,c we first demonstrate bi-directional recall of grid states from sensory inputs and vice versa. Here649

we consider Vector-HaSH with λ = [3,4,5], Ng = 50, Nh = 400, Ns = 3600. We train the model on a total of 600650

sensory inputs taken from bw-mini-imagenet (including the 4 landmarks placed in the room shown in Fig. 4c).651

To demonstrate zero-shot recall in panel c, the model dynamics are simulated on a novel trajectory (right) through652

the same room with some locations overlapping with the previous trajectory. Note that the reconstructed landmarks653

do not have perfect recall. Instead, the reconstructions are degraded relative to the originally stored landmarks since654

the total number of stored landmarks in the model exceeds Nh = 400 (Fig. 2f).655

For all other panels of Figure 4, we use Vector-HaSH with grid module periods λ = [3,4,5,7], Ng = 99, Nh = 342,656

γ = 0.1, and θ = 2. The total capacity of this grid coding space is 176400 ≈ 2× 105. Each room is stored by657

allocating a random 10×10 patch of the grid coding space to it (This is constructed by first choosing any random658

point in the room to map to a randomly chosen area of the grid coding space. Then as the model moves in the room,659

path integration correspondingly updates the grid phases in each grid module. The region of grid coding space660

explored as the model physically explores a room is then the patch of grid coding space storing the particular room).661

To each of the 100 locations comprising a room, we simulate an independent sensory landmark as a binary662

{−1,1} vectors. At initialization, before observing any room, we begin with a pretrained memory scaffold, wherein663

the Whg and Wgh matrices have already been constructed and trained corresponding to Eqs. 2, 3.664

When first brought to a room, the grid state is initialized to the grid state vector corresponding to the random665

region of grid coding space allocated to the room. Then, as path integration updates the grid state upon moving666

around the room, the observed sensory landmark states are associated with the corresponding grid-hippocampal667

scaffold states through learning the Whs and Wsh matrices following Eqs. 7, 8.668

In the first two tests of each room (first tested right after each room has been learned, and then tested after669

all rooms have been learned; shown in Fig. 4d) sensory landmark cues can be observed by Vector-HaSH. Using670

Eq. 9, the observed sensory landmarks can be used to reconstruct the hippocampal state, resulting in the reliably671

reconstructed hippocampal tuning curves as seen in Fig. 4e. For testing stable recall in dark (Fig. 4d,e), Vector-HaSH672

is provided a random single sensory landmark cue from any given room. This landmark is used to ascertain the673

grid state corresponding to that landmark through Eq. 9. Thereafter, path integration is used to construct the674

grid-hippocampal scaffold state as room is explored in the absence of any further sensory cues. As seen in Fig. 4e675

this also reliably reconstructs the hippocampal state at each location in every room.676

In Fig. 4f, we examine the dark recall of 3600-dimensional sensory landmarks in each room in a continual677

learning setting. Here we begin again with simply the pretrained grid-hippocampal scaffold. As the ith room is678

explored, the sensory-hippocampal weight matrices are updated to store the thus far observed landmarks and their679

locations. At each step of exploration within the ith room, Vector-HaSH is queried on the current and all previous680

rooms in the following fashion: for any completed room j (i.e., 0 ≤ j < i), Vector-HaSH is dropped randomly681

anywhere in the room and allowed to observe the sensory landmark solely at that start location and no further sensory682
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landmarks. Then the model moves around the room through path integration, and attempts to predict the sensory683

landmarks that would be observed at each location. We then compute the average mutual information recovered684

for each landmark at each position in the room, which is shown in Fig. 4f. For the partially completed room i,685

Vector-HaSH is similarly dropped randomly in the room, restricted to the set of previously observed locations686

within the room. The mutual information recovered during sensory prediction is similarly only evaluated over the687

previously observed portion of the room.688

For the baseline model shown in Fig. 4f, we first construct the grid-hippocampal network through random689

hippocampal states with the same sparsity as those in Vector-HaSH, and bi-directional pseudoinverse learning690

between grid and hippocampal layers. Thereafter, the sensory landmarks are associated with the hippocampal layer691

as in Vector-HaSH described above, and this baseline model is subjected to an identical test protocol to examine692

continual learning. The number of nodes in the baseline model is kept identical to Vector-HaSH.693

For Fig. 4h, we follow the same analysis as in the experiment100. Dot product between population vectors (PVs)694

across all combinations of the eleven test rooms were computed. To construct the population vectors, we record the695

activations of hippocampal cells for each of the 10×10 positions in the simulated room. We stack these into 100696

composite population vectors (PVs), one for each position in the room. To compute overlaps between representations,697

the activation of each hippocampal cell in any particular room was expressed as a ratio of its activation to the maximal698

activation of that cell across all rooms. The overlap was then calculated as the normalized dot product between the699

hippocampal cell activation vectors in two rooms i.e., the sum of the products of corresponding components divided700

by the total number of hippocampal cells (Nh = 342) for a given position/pixel, averaged over 100 positions. The701

color-coded matrix in Fig. 4h shows the average dot product values for PVs across rooms (
(11

2

)
= 55 room pairs).702

Repeated exposures to three familiar rooms were also added to this analysis leading to a total of
(14

2

)
= 91 room703

pairs.704

For Fig. 4j, we plot the distribution of PV normalized dot products computed above (for multiple visits to all the705

rooms) and use this PDF to compute the corresponding CDF. Similarly, the CDFs for shuffled data are computed706

through the same procedure, but using shuffled data to compute the PV normalized dot products. Shuffled data is707

obtained either by random assignment of rate maps across rooms (shuffle room) or by shuffling of cell identities708

within rooms (shuffle cells) or by a combination of the two procedures (shuffle room and cells). The number of709

different shuffles generated in each case was 1000.710

3 Path learning in the hippocampal scaffold711

Here again, we add a path-integration component to Vector-HaSH as described in the section above, such that a712

velocity shift operator, v⃗, can be used to path integrate and update the grid cell population activity akin to Ref.33,713

such that the phase represented by each module changes in correspondence to the input shift.714

For learning of trajectories in space, this vector v⃗ is either associated with spatial locations and corresponding715

hippocampal state vectors (as in path learning) or with sensory landmark inputs (as in route learning).716

The results in Fig. 5 and Fig. 6 were generated using Nh = 500, γ = 0.6, θ = 0.5, M = 3 and Ns = ∏M λ 2
M with717

λ = [5,9,13] in Fig. 5b-e, Fig. 6b and λ = [3,4,5] in Fig. 5f,g, Fig. 6c.718

All networks in Fig. 6e were constructed to have approximately 5×105 synapses, with network parameters719

identical to those in Fig. 3d. All panels in Fig. 6 considers random binary patterns, apart from Fig. 6c,d which720

considers bw-mini-imagenet images.721

3.1 Path learning722

Learning associations from the hippocampal layer directly to the velocity inputs through pseudoinverse learning
would result in perfect recall for only Nseq ≤ Nh, which may be much smaller than the grid coding space, and would
hence result in an incapability to recall very long sequences. To obtain higher capacity, we learn a map from the
hippocampal cell state to the corresponding velocity inputs at that spatial location through a multi-layer perceptron,
MLP. For all the results shown in Fig. 5 and Fig. 6c,h, we use a single hidden layer in the MLP with 250 nodes.
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The dynamics of the network are as follows:

v⃗(t) = MLP[h(t)] (17)

g(t +1) = PI[g(t); v⃗(t)] (18)

h(t +1) = ReLU[Whgg(t +1)−Θ] (19)

s(t +1) = sgn[Wshh(t +1)] (20)

(21)

3.2 Route learning723

Since detailed sensory information cannot be recalled at very high capacities, route learning is performed by learning
associations between the recollection of the sensory inputs at a location x⃗, and the velocity shift vector v⃗ determining
the direction of motion of the trajectory being learned at that location. This association can be learned directly
through pseudoinverse learning as

Wvs =V S+r , (22)

where, Sr is a Ns ×Nseq dimensional matrix with columns as the recalled sensory inputs s⃗x, and V is a 6×Nseq

dimensional matrix with columns as the corresponding velocities. These associations can then be used to recall long
trajectories through

v⃗(t) = WTA[Wvss(t)] (23)

g(t +1) = PI[g(t); v⃗(t)] (24)

h(t +1) = ReLU[Whgg(t +1)−Θ]s(t +2) = sgn[Wshh(t +1)] (25)

(26)

As argued in Sec. D.6, this results in perfect sequence recall for Nseq ≤ Ns, which can scale as the exponentially724

large capacity of the grid coding space.725

3.3 Goal and context-based remapping726

When initialized in a new environment, we model the grid state population activity to be randomly initialized in the727

grid-coding space (a mechanistic model for such random initialization will be discussed in future work), i.e., the728

grid state undergoes remapping. This grid coding state, along with the corresponding hippocampal coding state and729

sensory observations at that location are then stored in the corresponding weight matrices, i.e., Whs and Wsh, via Eqs.730

(7-8). When brought back to a previously seen environment, these weight matrices in Vector-HaSH use the observed731

sensory observations to drive the hippocampal cell (and hence grid cell) population activity to the state initialized at732

the first traversal of that environment.733

Similar to new environments, we also model contextual information (such as goals, rewards, start-end location734

pairs) to be appended to the sensory inputs. We allow new contextual information to also trigger reinitialization of735

grid state, which then permits storage of multiple paths that involve the same spatial location, provided that they are736

distinguished by a contextual signal.737

We use this set up of manual reinitialization of the grid state to reproduce the experimental observations of738

splitter cells110, route dependent place cells111, directional place fields in one-dimensional environments112 and on739

directed routes in two-dimensional environments113 in Fig. 7c-j; and of directional place fields in a radial eight-arm740

maze113 in Fig. S17. In all of these cases, we first generate trajectories corresponding to the paths that the animals741

are constrained to traverse in the given experiment. These trajectories, are then stored in Vector-HaSH at a random742

location in the grid coding space through a path learning mechanism. At new contexts, the grid state in the model is743

reinitialized and the agent then continues at a new location in the grid coding space. This results in different spatial744

firing fields, irrespective of whether the agent is at the same spatial location as in a different previous context.745
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For all the simulations in Fig. 7c-j and Fig. S17, Vector-HaSH with λ = [3,4,5,7], Nh = 500, Ng = 99, θ = 2.0746

and γ = 0.10 was used. The total size of the grid coding space is 420×420 ≈ 105. In order to capture the inherent747

randomness and uncertainty present in real-world scenarios, a small amount of neuronal noise was introduced by748

adding random perturbations to the activation values of hippocampal cells in Vector-HaSH. This noise, generated749

from a uniform distribution between 0 and 0.1, mimics the fluctuations and disturbances observed in individual750

neurons.751

Splitter cells : For Fig. 7c,g, we follow an analysis method similar to the analysis done on the experimental data110.752

The central stem is divided into 4 equal regions (Fig. S18b), and the mean activation of every hippocampal cell is753

computed in each of the four regions. Figure S18c plots mean activations in each of the four regions, of cells that754

show different activity patterns as Vector-HaSH traverses the central stem on Left-Turn and Right-Turn trials. The755

"activation ratio" on Right-Turn trials versus Left-Turn trials is then calculated for each cell in the region for which756

the given cell has maximum difference in activations. The distribution of these activation ratios is plotted in Fig. 7g,757

that shows the frequency distribution of cells with preferential firing associated with Left-Turn or Right-Turn trials.758

Note that the distribution of cells preferring left-turn and right-turn trials is approximately even. The percentage of759

hippocampal cells with non-differential firing was found to be ≈ 3.896%, and the percentage of hippocampal cells760

with differential firing was found to be ≈ 96.103% in Vector-HaSH (using a threshold of 2 on the activation ratio).761

Route encoding : In Fig. 7d,h we employed an ensemble analysis approach mirroring that used in111 to validate762

if hippocampal cells demonstrate route-dependent activity. Our simulated session comprised four blocks, each763

representing one of four routes (0-3), with 11 trials per block. We performed ensemble analysis on the maze region764

common to all routes.765

We compared the population vector (PV)—activations of all hippocampal cells on an individual trajectory—to766

the average activation of these cells across all trajectories on each route (route-PV). Specifically, we compared the767

PVs for each trajectory to the average activation population vectors (route-PVs) of all four routes, excluding the768

trajectory in consideration from its route-PV calculation to avoid bias.769

Using cosine similarity, we assessed the likeness between each trajectory PV and each of the four route PVs. We770

then calculated the fraction of correct matches (the highest similarity score was with its corresponding route-PV)771

and incorrect matches (a higher similarity score was with a different route-PV). The comparison results are shown in772

Fig. S16a, left.773

We repeated the process 10,000 times with randomized data to estimate the chance probability of correct matches.774

We randomized the session data by shuffling trials across blocks, randomly assigning each trajectory to one of the775

four routes, thereby disrupting any correlation between the hippocampal cell activations and a specific route. Fig.776

S16a,right depicts a typical result from one such shuffle.777

For each matrix element (i, j), we plotted the distribution of data from these 10,000 matrices in Fig. S16b. We778

then estimated the Probability Density Function (PDF) from this distribution using a Gaussian kernel (Python’s779

scipy.stats.gaussian_kde method). To gauge the chance probability of correct matches in our original,780

unshuffled analysis, we calculated the percentile position of our observed match proportion, referencing the same781

matrix element (i, j) from the unshuffled matrix in Fig. S16a.782

Fig. 7h presents the probability of correct matches in the unshuffled analysis based on these distributions783

from 10,000 shuffles. Low diagonal values indicate that trajectories significantly match only their corresponding784

route-PVs.785

Directional cells : For Figs. 7i,j and Fig. S17, the directionality index is defined similar to that defined for786

the experimental data analysis112,111. Given the activation (A) of a hippocampal cell in positive and negative787

running directions (A+ and A−), we define the directionality index as |A+−A−| / |A++A−|. By this definition,788

a directionality index of one indicates activity in one direction only, and a directionality index of zero indicates789

identical activity in both directions.790

We use the same definition of directionality index to compute the directionality of the grid cells in Vector-HaSH,791

shown in Fig. S19.792
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A Supplementary Information1055

This SI is structured as follows: First, we present the quantification metrics and tools used to generate the numerical1056

results presented in this paper in SI Sec. B. Then, in SI Sec. C-D, we provide theoretical guarantees of the results1057

about Vector-HaSH, first in SI Sec. C focusing on the grid-hippocampal memory scaffold and in SI Sec. D focusing1058

on heteroassociative learning with the sensory cells. In particular, in SI Sec. C we prove that the setup of the memory1059

scaffold described in the main text results in a network with an exponentially large number of robust fixed points1060

with large basins of attraction. Then, in SI Sec. D, we first demonstrate that heteroassociative pseudoinverse learning1061

will result in a memory continuum with the desired properties, and then show that one may feasibly replace the1062

pseudoinverse learning with simpler Hebbian learning and continue to obtain qualitatively similar results.1063

B Quantification Metrics1064

B.1 Software and Data1065

The source code for the models presented in this paper will be made available at the following GitHub repository1066

upon acceptance:1067

https://github.com/FieteLab/1068

B.2 Mutual Information1069

In this Appendix, unless otherwise specified, we use sµ

i to represent the ith bit of the µ th pattern stored in the network,1070

and σi to represent the ith bit of the pattern recovered by the network. Here we primarily consider the case of random1071

patterns such that bits of sµ are independently sampled from i.i.d. random variables. This allows us to calculate1072

information theoretic quantities for a single bit, and then scale the calculation by the pattern length to obtain the1073

corresponding quantities for entire patterns.1074

Further, for simplicity of notation in this section, we overload σ and s to also represent the random variables1075

from which the stored patterns and recovered patterns are being sampled.1076

We characterize the quality of pattern recovery by a network through the mutual information between stored1077

patterns s and recovered patterns σ . For discrete random variables, the mutual information can be quantified as:1078

MI(σ ;s) = H(σ)−H(σ |s), (27)

where H(σ) is the information entropy of the recovered pattern σ ,

H(σ) =−∑
σ

P(σ) logP(σ) (28)
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and H(σ |s) is the conditional entropy of the recovered pattern given the stored pattern s,

H(σ |s) =−∑
s

∑
σ

P(σ ,s) logP(σ |s). (29)

As we now show in the following sections, the mutual information can be explicitly computed for dense and1079

sparse random binary patterns.1080

B.2.1 Dense binary patterns1081

For unbiased random binary {-1,1} patterns,

H(σ) =−1
2

log
(

1
2

)
− 1

2
log
(

1
2

)
= 1.

Further, since we assumed that each bit is independent, we obtain

P(σ |s) = (1+mσs)/2, (30)

where m is the overlap between the stored and recovered pattern, m = 1
N ∑i σisi

98. Using Eq. (29), this can be used
to obtain

H(σ |s) =−1
2

(
1+m

2
log

1+m
2

+
1−m

2
log

1−m
2

)
− 1

2

(
1−m

2
log

1−m
2

+
1+m

2
log

1+m
2

)
(31)

=−1+m
2

log
(

1+m
2

)
− 1−m

2
log
(

1−m
2

)
. (32)

Following Eq. (27) we thus obtain

MI(σ ;s) = 1+
1+m

2
log
(

1+m
2

)
+

1−m
2

log
(

1−m
2

)
(33)

B.2.2 Sparse binary patterns1082

For sparse binary {0,1} patterns, let p denote the fraction of “1” bits in the stored pattern (i.e., the average activity of1083

the stored pattern). Let the average activity of the recovered pattern be denoted as q = ∑i σi/N.1084

Let P1e be the probability of error in a bit of σ if the corresponding bit of s is 1, and P0e be the error probability
in a bit of σ if the corresponding bit of s is 0. Then,

H(σ) =−[q log(q)+(1−q) log(1−q)] (34)

H(σ |s) =−p[P1e log(P1e)+1−P1e log(1−P1e)]− (1− p)[P0e log(P0e)+1−P0e log(1−P0e)] (35)

(36)

To obtain the probabilities P1e and P0e, we compute the overlap m and the average activity of the recovered
pattern q in terms of these probabilities as

m = (1/N)∑
i

σisi = p(1−P1e), (37)

q = ∑
i

σi/N = p(1−P1e)+(1− p)P0e = m+(1− p)P0e. (38)

These equations can then be solved to obtain

P1e = 1−m/p, (39)

P0e =
q−m
1− p

, (40)

which can then be used to compute MI(σ ;s) using Eq. (27).1085
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B.2.3 Continuous random normal patterns1086

The calculation of mutual information so far has been restricted to the case of discrete binarized patterns. For
continuous valued patterns (as in Fig. 3), entropy is ill-defined via Eq. (28). Instead, in this case we can defined the
differential entropy as

h(X) =−
∫

∞

−∞

φ(x) logφ(x)dx = E[− logφ(x)], (41)

where φ(x) is the probability density function of the random variable X .1087

For random continuous patterns with patterns are sampled from a normal distribution with zero mean and unit
variance, this gives

h(X) = log
√

2πe. (42)

The conditional entropy can similarly be calculated as

h(X) = log
√

2πe(1− r2), (43)

where r is the correlation coefficient between X and Y . This can be used to obtain the mutual information

MI(X ;Y ) = log

√
1

1− r2 (44)

Thus in the case of random normal patterns the mutual information between the stored pattern s and the recovered1088

pattern σ can be computed directly through the correlation between them using Equation 44 above.1089

B.3 Metrics1090

We quantify the recovery error, i.e., the error between the stored pattern and the recovered pattern in the network by1091

computing the L2 norm of the difference between stored and recovered patterns. This recovery error is then used to1092

quantitatively apply a recovery threshold to ascertain the capacity of the memory scaffold.1093

After choosing a recovery threshold (see Methods), the capacity of the network is defined as the largest number1094

of stored patterns for which the average recovery error across patterns is below threshold.1095

C Theoretical Results on the Memory Scaffold1096

First, we prove that the memory scaffold network has ∏
M
i=1 λ 2

i fixed points, while having only O(M ∑i λ 2
i ) synapses,1097

establishing an exponentially large number of fixed points. Then, we demonstrate that each of these basins are1098

maximally large, and finally demonstrate that these basins are convex, ensuring robustness of basins and protection1099

against adversarial input.1100

C.1 Justification for the exponentially large capacity of the memory scaffold1101

We first provide broad qualitative justification for why the memory scaffold as constructed in Vector-HaSH is capable1102

of storing such a large number of fixed points, then present a mathematical proof in a simplified setting. In this1103

subsection, for ease of notation, we denote the number of phases in the ith grid module, λ 2
i , as li.1104

Unlike associative memory in the usual context of random patterns (as in the random shuffled hippocampal1105

states considered in Figs. 2d,f and 3d), note that the hippocampal states are determined by a random projection of1106

the structured grid states. As a result, the predefined hippocampal states inherit similar pattern-pattern correlations1107

as the predefined grid cell states. This allows for Hebbian learning to act more efficiently in learning pairwise1108

correlation resulting in a high capacity. Indeed, while in Hopfield networks any given fixed point is destabilized due1109

to interference from other fixed points (resulting in catastrophic forgetting when a large number of fixed points have1110

been memorized), the shared pattern-pattern correlations in the memory scaffold result in the interference terms1111
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being positively correlated with each fixed point (which also leads to the scaffold generalization properties Fig. 2f,1112

Sec. C.4).1113

To show this result more quantitatively, recall that

g(t +1) = CAN[Wghh(t)]. (45)

where CAN[x] is a nonlinear function that acts independently on each module of grid cells, such that CAN[x] will be1114

a vector with exactly one element set to “1” in each of the li indices corresponding to each module. and all other1115

elements set to “0”. Further, the element set to 1 in a given module corresponds to the same index as the largest1116

element x within that module.1117

Corresponding to the state hµ , consider the pattern h(t) = hµ +ζ , where ζ represents a random noise vector.1118

For simplicity, we assume that ζ is a continuous-valued vector whose each component is drawn independently from1119

a normal distribution with zero mean and variance ε2.1120

From h(t), we aim to recover g(t+1) = gµ via the mapping Wgh. For ease of notation, we denote the prespecified
random projection Whg as W .

hµ = Φ[Wgµ ], (46)

where Φ represents the neural transfer function for the grid to hippocampal synapses, which we implement as a1121

thresholded rectifying function (see Methods). We implement W such that each element is independently sampled1122

from a prespecified distribution (see Methods). Without loss of generality, we can assume that this distribution1123

has zero mean and unit variance, since any transformations of the mean and variance can be absorbed into the1124

nonlinearity Φ.1125

Now, from the definition of Wgh and hµ ,

g(t +1) = CAN[GHT (Φ(Wgµ)+ζ )], (47)

= CAN[LΦ(GTW T )Φ(Wgµ)/Nh +GΦ(GTW T )ζ/Nh], (48)

where we have added a scaling factor 1/Nh that leaves the CAN continuous attractor dynamics unchanged, but will1126

be useful for normalization of random variables later in our calculation.1127

For analytic simplicity, we make the assumption that the nonlinearity Φ in the above equation can be ignored.
While this is a gross simplification, the obtained results are broadly consistent with the numerical observations in
Fig. 2. This approximates the above equation to

g(t +1) = CAN[GGTW TWgµ/Nh +GGTW T
ζ/Nh] = CAN[Agµ +Z], (49)

where A = (GGT )(W TW/Nh), and Z = GGTW T ζ/Nh.1128

Since each element of the Nh ×Ng matrix W was drawn independently from a normal distribution with unit1129

variance, W TW (and hence A) can be treated as a matrix random variable. Under the distribution of the matrix1130

random variable A and the vector random variable Z we will compute the probability of g(t +1) = gµ . Note that this1131

simplification of the problem into Eq. (49) has fundamentally relied on Eq. (46), which establishes hippocampal1132

states as being derived from random projections of grid states. Qualitatively, hippocampal states being projections of1133

grid states results in a similarity of state-state relationships between grid states and hippocampal states. As a result,1134

overloading the scaffold network weights with a large number of patterns will not result in loss of previously stored1135

information through interference; instead, pattern interference will re-inforce previously stored patterns (which1136

also results in the strong generalization property, Sec. C.4). In contrast, if the hippocampal states were arbitrarily1137

determined (such as through consideration of random sparse vectors, or sensory-input-dependent vectors), then1138

interference due to storage of additional patterns would result in catastrophic forgetting, as in classic Hopfield1139

memory.1140
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We first focus on the structure of the matrix GGT . This matrix will have a block structure, with the sizes of the
blocks determined by the number of phases in each grid module, li. In particular we write GGT as

GGT =

Γ11 Γ12 . . .
Γ21 Γ22 . . .

...
. . .

 , (50)

with each Γi j being a submatrix of size li × l j. From the structure of the grid code matrix G, it follows that

Γii =

(
∏
k ̸=i

lk

)
I= γiiI (51)

and

Γi j =

(
∏

k ̸=i, j
lk

)
1 = γi j1, (52)

where I is an appropriately sized identity matrix, and 1 is an appropriately sized matrix with each element equal to 1.1141

This can be shown by noting that GGT = ∑µ gµ(gµ)T , and that each gµ(gµ)T will be a matrix with a single nonzero1142

element equal to 1 in each Γ block of GGT .1143

We now compute the distribution of the matrix random variable W TW . As argued above, each element of the1144

Nh ×Ng matrix W can be assumed to be drawn independently from a distribution with zero mean and unit variance.1145

As is justified later, we can assume that these elements are drawn from a normal distribution in particular, since we1146

shall be applying central limit theorem which will wash away particulars of the shape of the distribution.1147

Thus W TW can thus be approximated to have each diagonal element distributed as the sum of the squares of
Nh standard normal variables, and each off-diagonal element distributed as the sum of the products of Nh pairs of
uncorrelated standard normal variables. Thus

W TW ∼

 χ2(Nh) NP(Nh) . . .
NP(Nh) χ2(Nh) . . .

...
. . .

 , (53)

where χ2(N) is the sum of N i.i.d. χ2 distributions, and NP(N) is the sum of N i.i.d. normal product distributions1148

(i.e., the distribution of the product of two i.i.d. standard normal variables). Note that we have suppressed the indices1149

on each matrix element, however it should be noted that each element is an independent sample from the distribution1150

and are identical in distribution but not in value.1151

In the large Nh limit, each of these matrix elements is the sum of a large number of random variables and can1152

hence be approximated as a normal distribution due to central limit theorem. Thus, χ2(Nh) ∼ N (Nh,2Nh), and1153

NP(Nh)∼N (0,Nh), where N (µ,σ2) is a normal distribution with mean µ and variance σ2.31154

We thus treat W TW/Nh as a matrix random variable with elements on the diagonal being drawn from a
distribution D, having unit mean and a variance of 2/Nh; and elements on the off-diagonal being drawn from a
distribution O, having zero mean and 1/Nh variance. For ease of calculation, we write this matrix as having a block
structure similar to GGT , given by

W TW/Nh =

w11 w12 . . .
w21 w22 . . .

...
. . .

 , (54)

3Had we not earlier assumed that elements of W are drawn from a normal distribution we would have arrived at this same result with
different intermediate distribution instead of χ2 and NP
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with wi j being an li × l j matrix such that wii has diagonal entries drawn from D and off diagonal entries drawn from1155

O, and wi j for i ̸= j being a matrix with all entries drawn from O1156

We can now compute the distribution of the elements of A. The matrix A will have a similar block structure to1157

GGT ,1158

A = GGTW TW/Nh (55)

=

A11 A12 . . .
A21 A22 . . .

...
. . .

 , (56)

with

Ai j = ∑
k

Γikwk j. (57)

Since each wi j consists of elements drawn from random normal distributions, the distribution of the matrix variables1159

Ai j can be exactly computed through sums of random normal variables. Even without explicit computation, we1160

can ascertain certain properties of A given the symmetry of grid states across module-preserving permutations. In1161

particular, Aii will be a matrix random variable with diagonal element drawn from an i.i.d. distribution Ad
ii, and each1162

off-diagonal element drawn from a different i.i.d. distribution Ao
ii. In contrast, Ai j for i ̸= j will have all elements1163

drawn from an i.i.d. distribution Ai j.1164

We first consider Aii.

Aii = ∑
k

Γikwki (58)

= Γiiwii +∑
k ̸=i

Γikwki (59)

= γii

D O . . .
O D . . .
...

. . .

+ γik

∑lk termsO ∑lk termsO . . .

∑lk termsO ∑lk termsO . . .
...

. . .

 , (60)

where we have omitted subscripts on individual random variables for simplicity, but it should be noted that each
random variable is i.i.d., including the summands in the above expressions. Thus,

Ad
ii ∼ γiiD+∑

k ̸=i
γik ∑

lk terms
O (61)

Ao
ii ∼ γiiO+∑

k ̸=i
γik ∑

lk terms
O. (62)

A similar calculation can be done to obtain

Ai j ∼ γi jO+ γi j

(
D+ ∑

l j−1 terms
O

)
+ ∑

k ̸=i, j
γik ∑

lk terms
O. (63)

From the same symmetry as in A, we can also argue that elements of Z can also be split into a similar block
structure, ZT = (ZT

1 ZT
2 . . .)T , with all λ 2

i elements of Zi drawn from an i.i.d distribution Zi. More specifically,
Z = GGTW T ζ/Nh. First note that W T ζ will be a random vector with each element constructed from the sum of Nh
i.i.d. normal product distributions multiplied by the scale of ζ , i.e., ε . Thus W T ζ/Nh is identically distributed to εO.
Left multiplying this vector with GGT we obtain in the ith subvector

Zi = ε

[
γiiO+∑

j ̸=i
γi j ∑

l j terms
O

]
, (64)
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where again we have omitted subscripts on individual random variables for simplicity.1165

Let the mean and standard deviation of Ad
ii, Ao

ii, Ai j and Zi be denoted as µAdii ,σAdii ; µAoii ,σAoii ; µAi j ,σAi j ; and
µZi ,σZi respectively. Since D ∼N (1,2/Nh) and O ∼N (0,1/Nh), we obtain

µAdii = γii (65)

σ
2
Adii

=

[
2γ

2
ii +∑

k ̸=i
lkγ

2
ik

]
/Nh (66)

µAoii = 0 (67)

σ
2
Aoii

=

[
γ

2
ii +∑

k ̸=i
lkγ

2
ik

]
/Nh (68)

µAi j = γi j (69)

σ
2
Ai j

=

[
γ

2
ii + γ

2
i j (2+(l j −1))+ ∑

k ̸=i, j
lkγ

2
ik

]
/Nh (70)

µZi = 0 (71)

σ
2
Zi
= ε

2

[
γ

2
ii +∑

j ̸=i
l jγ

2
i j

]
/Nh (72)

Next, we note the conditions on these blocks to make g(t + 1) = gµ , the condition necessary for gµ to be a
scaffold fixed point. Without loss of generality, we assume that gµ corresponds to the grid state such that each li
length subvector of gµ has the first element set to 1 and all others set to zero. The ith subvector of Agµ +Z will then
have the first element given by

Ad
ii +∑

j ̸=i
Ai j +Zi, (73)

and all other elements given by

Ao
ii +∑

j ̸=i
Ai j +Zi. (74)

For this module to be correctly reconstructed through the continuous attractor network dynamics, we require that the
first element of the subvector to be larger than the others. Thus, the probability of the correct reconstruction is given
by

P(g(t +1) = gµ) = P(Eq. (73) - Eq. (74) > 0). (75)

As seen earlier, each of these random variables are being drawn from a normal distribution (due to central limit
theorem in the limit of large Nh). In terms of the parameters of these normal distributions, Eq. (75) can be written as

P(g(t +1) = gµ) = P(N (µAdii −µAoii ,σ
2
Adii

+σ
2
Aoii

+2∑
j ̸=i

σ
2
Ai j

+2σ
2
Zi
)> 0). (76)

For ease of notation, we define

µAZ = µAdii −µAoii , (77)

σ
2
AZ = σ

2
Adii

+σ
2
Aoii

+2∑
j ̸=i

σ
2
Ai j

+2σ
2
Zi

(78)

(79)
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such that the right-hand side of Eq. (76) is equal to P(N (µAZ,σ
2
AZ > 0). This can then be computed as

P(l(t +1) = lµ) =
1
2

[
1+ erf

(
µAZ

σAZ
√

2

)]
. (80)

The above-derived expressions for the terms in µAZ and σAZ can be simplified to

µAZ = γii (81)

and

Nhσ
2
AZ = γ

2
ii(2M+1)+(2M+1)∑

k ̸=i
lkγ

2
ik +2∑

j ̸=i
γ

2
i j. (82)

Recall that γii = P/li and γi j = P/(lil j), for P = ∏i li. Thus, the ratio µ2
AZ/σ2

AZ simplifies to

µ2
AZ

σ2
AZ

=
Nh

2M+1+(2M+2)∑k ̸=i(1/lk)+2∑k ̸=i(1/l2
k )+2ε2[1+∑k ̸=i(1/lk)]

(83)

Inverting the obtained expression allows for computation of N∗
h ,

N∗
h = c

[
2M+1+(2M+2)∑

k ̸=i

1
lk
+2∑

k ̸=i

1
l2
k
+2ε

2

(
1+∑

k ̸=i

1
lk

)]
, (84)

where c = 2
[
erf−1(1−2P)

]2
and P is the threshold selected for accuracy of the recovered pattern. This allows1166

us to estimate the critical number of hippocampal cells (as a function of the number of grid cell modules, M, the1167

period of the modules li = λ 2
i ,and the input noise ε) beyond which the hippocampal memory scaffold stores all1168

grid-hippocampal states as fixed points.1169

If the number of grid cells far exceeds the number of modules (as would be expected81), then λk ≫ M and1170

thus lk ≫ M2 and the summands in Eq. (84) can all be ignored. This makes N∗
h asymptotically independent of the1171

grid periods, and is given by N∗
h ≈ c(2M+1+2ε2). This can be seen qualitatively in Fig. 2, where for a fixed M,1172

the critical number of hippocampal cells N∗
h approaches a constant with increasing Ng (and hence increasing lk).1173

Moreover, if ε ≪ 1 and M ≫ 1, then N∗
h =O(M). This has been verified qualitatively in Fig. 2, where N∗

h increases1174

linearly with increasing number of modules M. Note that due to the simplifications necessary for this analytic1175

result, N∗
h obtained from Eq. (84) are not directly comparable to numerics in Fig. 2, however the above-mentioned1176

qualitative trends all seem to hold.1177

These results thus demonstrate a crucial property of the hippocampal memory scaffold network — it has1178

O(NgN∗
h ) =O(M ∑k λ 2

k )∼O(M2λ 2) synapses while having ∏k λ 2
k ∼ λ 2M fixed points. Thus, the number of fixed1179

points grows exponentially faster than the number of synapses in the network, resulting in the network being useful1180

as a memory scaffold as in MESH87.1181

C.2 Memory Scaffold has Maximally Sized Basins of Attraction1182

Due to the symmetries in grid code, we argue here that the memory scaffold in Vector-HaSH has no spurious fixed1183

points, and has convex, maximally sized basins of attraction that are equal in volume.1184

First, we note that as a result of the CAN dynamics in the grid layer (cf. Eq. (4)), the only possible grid states1185

are the ∏i Ki modular one-hot states. Correspondingly, the hippocampal states (determined by random projections of1186

the grid states) must then also be one of the ∏i Ki states, establishing that no spurious fixed points can arise.1187

Thus, the union of the basins about each of the predefined fixed points of the grid-hippocampal scaffold cover1188

the entire space RNh . Note next that each hµ are equivalent, i.e., there is no special µ since each gµ is equivalent up1189

to a module-preserving permutation of bits and hµ are determined by a random projection of gµ . Thus, RNh must be1190

partitioned into basins with equal volume that are maximally large (and hence are of the same volume as the Voronoi1191

cell about these fixed points).1192
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C.3 Convexity of Scaffold Basins1193

The existence of maximally sized equi-volumed basins around each predefined scaffold fixed point, as we have1194

shown, is not sufficient to guarantee robustness to noise. A large basin could in principle have some boundaries1195

that come arbitrarily close to the fixed points – such a situation holds for instance when a system is susceptible to1196

adversarial inputs, where a very small perturbation of the input leads to a very different classification as an output.1197

Noise robustness requires a second condition, that of basin convexity. Here we demonstrate that the obtained basins1198

are convex, and thus the large basins must result in basin boundaries that are well separated from the fixed points1199

themselves.1200

We are interested in the basins in the space RNh : the hippocampus receives sensory input from the sensory1201

layer, mediating the recall of scaffold states. Thus, noise robustness will hence be required there. The broad idea1202

of the proof is as follows: first, we demonstrate that perturbations in the hippocampal latent space are equivalent1203

to considering real-valued perturbations with small magnitudes in the grid-cell layer latent space. Then we show1204

that the continuous attractor dynamics on grid cells result in convex basins in the grid-cell space, which directly1205

translates to convex basins in the hippocampal space.1206

Consider a hippocampal population vector given by a small perturbation to a predefined hippocampal state fixed
point hµ , which we denote as h = hµ + ε . Let δ denote the magnitude of the perturbation ε . This hippocampal state
is projected onto the grid cells through Wgh to obtain ḡ before the continuous attractor dynamics, where

ḡ =Wghh =Wgh[hµ + ε] (85)

= ḡµ +Wghε. (86)

Note that Wghε will have a magnitude of approximately δ times the magnitude of ḡµ , and further, the nonzero1207

elements of ε are uncorrelated with hµ , and hence Wghε can be treated as an independent small real-valued1208

perturbation to ḡµ =Wghhµ .1209

If we can now show that the continuous attractor dynamics on grid cells has a convex basin, that would indicate1210

that all points near gµ map to gµ , and since points near hµ map to points near gµ , this would imply convexity of1211

basins in p-space.1212

The symmetry of the grid code implies that it will suffice to show that the basin about any one fixed point is1213

convex. Without loss of generality, we choose the fixed point gµ as the grid population vector with the first bit in1214

each module set to 1 and all other ∑i λ 2
i −M bits set to 0. Let x and y be two vectors within the continuous attractor1215

dynamics of gµ , i.e., CAN[x] =CAN[y] = gµ . Thus, for the kth module, xk;1 > xk,i and yk;1 > yk,i for i > 1. Adding1216

the two inequalities with coefficients a and (1−a), we obtain axk;1 +(1−a)yk,1 > axk;i +(1−a)yk,i for all i > 11217

for 0 ≤ a ≤ 1. Thus, continuous attractor dynamics (which enforce modular winner-take-all dynamics) map the kth
1218

module of ax+(1−a)y to the kth module of gµ . Since this holds for all k, thus CAN[ax+(1−a)y] = gµ . Hence,1219

for any two vectors x and y in the basin of gµ , all vectors on the line from x to y also lie in this basin. By definition,1220

this makes the basin of gµ , and as argued earlier this imposes convexity of basins in the hippocampal cell space.1221

C.4 Scaffold weights can be learned on a vanishing fraction of all states1222

As shown in Fig. 2, when the hippocampus-to-grid cell synaptic weights (Wgh) are learned on a small number of grid1223

states, the scaffold is able to generalize: all grid states become stable fixed points of the scaffold dynamics. Thus1224

an animal only needs to traverse small regions in space after which the grid-hippocampal scaffold is recurrently1225

stabilized for all other states. Here we show that in the large Nh limit, it will suffice to train on only M ×λ 2
max1226

patterns for stabilization of the complete scaffold, where λmax is the largest period of any grid module.1227

Similar to Sec. C.1, we make the grossly simplified assumption that the nonlinearities in the hippocampus can
be ignored. The grid cell state would then evolve as

g(t +1) = CAN[GGTW TWgµ/Nh], (87)

where again we add an 1/Nh scaling factor that renders the continuous attractor network dynamics unchanged. For1228

gµ to be a fixed point of the recurrent scaffold dynamics, we thus require that g(t +1) be equal to gµ . Unlike Sec.1229
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C.1, we assume here that G is the matrix constructed by appending grid cell population vectors over only the first1230

Npatts number of states (rather than over the entirety of scaffold states).1231

As argued earlier in Sec. C.1, for large Nh, the matrix W TW/Nh can be considered to be a random variable with
i.i.d N (1,2/Nh) random variables on the diagonal, and i.i.d N (0,1/Nh) entries on the off-diagonal. In the limit of
Nh → ∞, these distributions tend to Dirac delta distributions we can thus treat W TW/Nh as simply being an identity
matrix. Thus, in this limit, it suffices to examine the scaffold fixed points under the dynamics

g(t +1) = CAN[GGT gν ]. (88)

As earlier, we write GGT as a block matrix

GGT =

Γ11 Γ12 . . .
Γ21 Γ22 . . .

...
. . .

 , (89)

with each Γi j being a submatrix of size λ 2
i ×λ 2

j . We define a construct a sequence of patterns gµ as follows: let the1232

first pattern g1 be such that the first element in each λ 2
i subvector is set to one, and all other elements set to zero.1233

Then, each successive pattern shifts the active element by one, modulo the total number of elements in the subvector1234

λ 2
i . Mapped to real space, this corresponds to the sequence of locations shown in Fig. S12a (top left). As we will1235

now show, setting Wgh based on only M×λ 2
max grid patterns will suffice to stabilize all patterns.1236

Note that

GGT =
Npatts

∑
µ=1

gµ(gµ)T . (90)

Each µ term of this summation, gµ(gµ)T will be a matrix with exactly one ‘1’ in each block Γi j, at the location (µ1237

mod λ 2
i , µ mod λ 2

j ), and will be zero everywhere else.1238

For i ̸= j, the periods λi and λ j are coprime. In this case, we can see that if gµ and gν contribute a ‘1’ at the1239

same location (m,n) in Γi j then µ −ν must be a multiple of λ 2
i λ 2

j . This can be seen since m = µ mod λ 2
i , thus1240

µ = m mod λ 2
i . Similarly ν = m mod λ 2

i , implying that µ −ν = 0 mod λ 2
i . Similar reasoning leads to µ −ν = 01241

mod λ 2
j and thus µ − ν = 0 mod λ 2

i λ 2
j . Crucially, this means that if µ ̸= ν , then µ − ν must be at least λ 2

i λ 2
j ,1242

which is equal to the number of elements in Γi j.1243

Thus, if both µ and ν contribute a ‘1’ to (m,n) in Γi j, it must be that all other elements in Γi j have been1244

increased by 1 due to patterns between µ and ν . In essence, elements of Γi j increase sequentially through increasing1245

terms in the summation Eq. (90). Starting from all elements at zero before any learning, all patterns increase to 11246

one-at-a-time up to λ 2
i λ 2

j , all patterns increase up to 2 through the next λ 2
i λ 2

j patterns and so on. Crucially, at any1247

point during learning, the largest element of Γi j, which we denote maxΓi j, can differ from the smallest element of1248

Γi j, which we denote minΓi j, by at most 1.1249

Next, we observe that for Γii, the pattern µ contributes a ‘1’ at the location (µ mod λ 2
i , µ mod λ 2

i ). This leads1250

to two observations: first, that Γii will have nonzero entries only on its diagonal; second, the smallest element on the1251

diagonal will be ⌊Npatts/λ 2
i ⌋ and the largest element on the diagonal will be ⌈Npatts/λ 2

i ⌉.1252

Now, consider the matrix GGT constructed using Eq. (90), trained through the first Npatts patterns. We apply Eq.
(88) for a given gµ , for µ that need not be within {1 · · · ,Npatts}. Note gµ has a 1 at only one location per module.
Thus the ith subvector of GGT gµ can have values as small as ⌊Npatts/λ 2

i ⌋+∑ j ̸=i minΓi j at the index where gµ equals
1 in the ith module; and, it can have values as large as ∑ j ̸=i maxΓi j at the other entries. For this subvector to map to
gµ under the continuous attractor network dynamics, we thus require

⌊Npatts/λ
2
i ⌋+∑

j ̸=i
minΓi j > ∑

j ̸=i
maxΓi j. (91)
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Thus,

⌊Npatts/λ
2
i ⌋> ∑

j ̸=i
(maxΓi j −minΓi j) (92)

≥ M−1. (93)

Thus Npatts ≥ Mλ 2
i . Since the correct subvector needs to be recovered for all modules, thus Npatts ≥ Mλ 2

max for1253

stabilization of all grid states gµ in the large Nh limit.1254

Note that the proof above relies on the particular ordering of grid and hippocampal states described above. As1255

we demonstrate, this ordering is optimal, and no other ordering of grid states can result in ‘faster’ generalization to1256

all scaffold fixed points. To see this, note that we showed above that the particular ordering choice made ensures that1257

the largest and smallest elements of Γi j can differ by at most 1. Moreover, this difference of at most one resulted in1258

the generalization result proved above. Correspondingly, any other ordering that maintains this difference between1259

the largest and smallest elements of Γi j will also demonstrate generalization to all scaffold states at Npatts ≥ Mλ 2
max.1260

Faster generalization could only be possible if the elements of Γi j we all identical, leading to a difference of zero.1261

This is however impossible, since the sum of elements in Γi j is equal to Npatts, which is increasing in steps of 1 and1262

is thus not always divisible by the number of entries in Γi j, i.e., λ 2
i ×λ 2

j . Conversely, any other ordering, will result1263

in a potentially larger difference between the smallest and largest elements of Γi j, which (following Eq. 92) will1264

thus require a larger number of patterns to generalize to all scaffold states.1265

However, as noted in Fig. 2g, other contiguous orderings of grid states result in generalization upon learning an1266

approximately similar number (O(Mλ 2
max) ) of patterns.1267

D Theoretical Results on Heteroassociative Learning1268

Here we demonstrate that pseudoinverse learning first perfectly recovers the hippocampal states provided that1269

Ns > Npatts (in the noise-free case). Following the memory scaffold results proven earlier, reconstruction of the1270

correct hippocampal states then results in correct retrieval of the corresponding label layer states. Next, we prove1271

that for Npatts < Nh, the reconstructed feature layer states are also perfectly reconstructed, and for larger Npatts the1272

overlap of the stored and recovered patterns decays gracefully as described in the main text. We then prove that1273

given an ideal memory scaffold, heteroassociative Hebbian learning is also sufficient to obtain a memory scaffold1274

with the same qualitative properties, with only a smaller prefactor on the memory capacity.1275

D.1 Perfect Reconstruction of Hippocampal States Through Heteroassociative Pseudoinverse1276

Learning1277

The projection of the learned sensory inputs onto the hippocampus is given by WhsS = HS+S = HΛS, where1278

ΛS = S+S is an orthogonal projection operator onto the range of ST . If Ns ≥ Npatts, S has linearly independent1279

columns, and ΛS = I, the identity matrix. Thus, WhsS = H, i.e., cuing any memorized patterns results in accurate1280

reconstruction of the corresponding hippocampal scaffold state1281

However, to examine Vector-HaSH as an associative memory, it is necessary to examine to reconstruction of the1282

correct hippocampal scaffold state when cued with noisy or corrupted versions of the memorized patterns as well.1283

Following the results of SI Sec. C.3 and C.2, we see that the memory scaffold has maximally large convex basins of1284

attraction. Note that once Whs has been trained with pseuodo-inverse learning, the mapping from the sensory layer to1285

the hippocampal layer is simply a linear transformation, that maps stored sensory patterns to their corresponding1286

hippocampal scaffold states. Thus, the regions in sensory space that map to a given scaffold state must simply be a1287

lower-to-higher-dimensional linear transformation of convex basins in the scaffold space about the chosen state.1288

Hence, the basins of attraction for a given scaffold state must be convex regions in the sensory input state that1289

include the sensory pattern that has been associated with that scaffold state.1290
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D.2 Perfect Reconstruction of Nh Sensory States Through Heteroassociative Pseudoinverse Learn-1291

ing1292

To show that up to Npatts ≤ Nh sensory inputs can be perfectly reconstructed through Vector-HaSH, we require that1293

the matrix of fixed point hippocampal states H be strongly full rank. While we do not rigorously prove that H is full1294

rank, we provide intuitive justification for the same. First note that rank(WhgG) = rank(G) = NG −M+1136, which1295

does not need to be as large as Nh.1296

Applying a thresholded rectifying function, H = ReLU[WhgG−Θ], effectively acts as an independent random1297

perturbation to the elements of H. Assuming that these perturbations are truly random, H (and submatrices of H1298

formed by selecting varied numbers of fixed points) will become full rank. This is numerically verified in Fig. S10,1299

where the rank can be seen to be min(Npatts,Nh).1300

We can now show that the “knee” of the Vector-HaSH memory continuum must be at Nh, with Npatts ≤ Nh1301

sensory states being perfectly reconstructed.1302

The projection of the hippocampus states onto the sensory layer is given by WshH = SH+H = SΛH , where1303

ΛH = H+H is an orthogonal projection operator onto the range of HT . Since H is strongly full rank (as justified1304

above), thus for up to Npatts ≤ Nh, the projection operator ΛH will equal I, the identity matrix. Thus WshP = S.1305

D.3 Mutual information recalled in Vector-HaSH scales as 1/Npatts1306

Let s̄µ be the reconstruction of pattern sµ in the feature layer before the application of the sign nonlinearity in Eq.1307

(12), i.e., s̄µ =Wshhµ . Correspondingly, let S̄ be the matrix constructed with s̄µ as its columns, i.e., S̄iµ = s̄µ

i . In this1308

notation, we wish to prove that sµ · s̄µ/|sµ |2 = Nh/Npatts.1309

As earlier, S̄= SΛP. Since Npatts >Nh, rank(H) =Nh, and the projection operator ΛH is thus no longer an identity1310

operator. Instead, ΛH projects on to the Nh-dimensional hyperplane PH spanned by the rows of H. Notationally, let1311

s̄i be the vector corresponding to the ith row of S̄, and similarly, let si be the vector corresponding to the ith row of S.1312

In this notation, the vectors s̄i (i.e., the rows of S̄) are the vectors obtained by projecting si (i.e., the rows of S) onto1313

PH .1314

By construction si are Npatts-dimensional random vectors with no privileged direction. Thus, |si|2, the squared
magnitude along each dimension, will on average be equally divided across all dimensions. Hence, on average,
the component of si projected onto PH (i.e., s̄i) will have a squared magnitude of Nh|si|2/Npatts and thus |s̄i| =
|si|
√

Nh/Npatts. However, |s̄i| is also the cosine of the angle between si and the hyperplane PH , and hence averaged
over i,

si · s̄i = |si||s̄i|
√

Nh/Npatts = |si|2
√

Nh/Npatts. (94)

Note that ∑i(si · s̄i) = ∑µ(sµ · s̄µ), and ∑i |si|2 = ∑µ |sµ |2. Thus the above equation can be rewritten as

⟨sµ · s̄µ⟩µ = ⟨|sµ |2⟩µ

√
Nh/Npatts, (95)

where ⟨⟩µ denotes an average over all patterns µ .1315

In the notation of Eq. 33, this gives m =
√

Nh/Npatts. In the limit of small m, note that log(1+m)≈ m, and the
right-hand side of Eq. 33 can simply be approximated in the asymptotic limit as

MI ≈ m2,

and thus mutual information scales as

MI ≈ Nh

Npatts
(96)

As a consequence of this result, note that since the mutual information is always positive and only smoothly1316

degrades 1 with increasing Npatts, thus the recovered state only gradually moves away from the true pattern in1317
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sensory space (cf. Fig. 3g). For random uncorrelated sensory patterns, the boundary of the Voronoi cell about a1318

memorized pattern corresponds to the boundary at which no information is being recovered specific to one particular1319

pattern. Thus, an always positive mutual information indicates that the recovered pattern always remains with the1320

Voronoi cell corresponding to the true pattern, i.e., the recovered pattern is always closer to the correct patterns as1321

compared to any other pattern.1322

D.4 Space- and time-complexity of memory in Vector-HaSH1323

We show in SI Sec. D.1 that the number of sensory cells can scale as fast or faster than the maximal scaffold capacity1324

O(KM). Thus, Ns ≫ Nh,Ng, and thus the number of synapses in the model, # synapses = 2Nh(Ns +Ng)+M ∗K2
1325

is dominated by 2Ns ∗Nh. Moreover, the number of hippocampal cells is asymptotically constant for large K at1326

a fixed M (Fig. 2d right, SI Fig. S2), and thus the number of synapses scales as O(Ns). Further, the number of1327

nodes, Ns +Nh +Ng also scales as O(Ns). Since the number of patterns perfectly reconstructed Nh is constant (with1328

respect to the asymptotic scaling of the number of synapses at a fixed M), the continuum in Vector-HaSH ranges1329

from storing O)(1) patterns with O(Ns) = O(# synapses) each, up to storing O(Ns) = O(scaffold size) patterns1330

with positive recovered information.1331

The memory storage requirement for Vector-HaSH is equal to the number of synapses in the model, which1332

as noted above scales as O(NsNh). This permits storage of Nh patterns perfectly, consisting of a total of NsNh1333

bits of information. Thus, as in Hopfield and Hopfield-like networks, the total information stored and recalled1334

in Vector-HaSH scales as the number of synapses. The time complexity for perfect recovery of all O(NsNh) =1335

O(# synapses) bits of information scales as O(NsN2
h ) = O((# synapses)3/2

√
Nh/Ns) ≤ O((# synapses)3/2). In1336

contrast, for Hopfield and Hopfield-like networks, the time complexity for recovery of O(# synapses) scales as1337

O((# synapses)3/2). Vector-HaSH thus has an asympototically faster time complexity than Hopfield-like networks1338

for recovery for the same number of total bits of information (when normalized by the number of synapses in the1339

model).1340

When the number of patterns stored is larger and scales with the number of sensory cells, cNs for 0 < c ≤ 1,1341

Vector-HaSH partially recovers the stored information (Fig. 3). In this regime, Vector-HaSH has additionally1342

improved time and space complexity as compared with the number of synapses: a space requirement of only1343

O(# synapses) and a time complexity of only O(cN2
s Nh) =O(c(# synapses)3/2

√
Ns/Nh) is needed to store an input1344

of O(c(# synapses)× (Ns/Nh)) bits of information.1345

The above scalings can also be reinterpreted in terms of the total information, I, stored in the networks (where1346

for perfect recovery I = NhNs = # synapses, and for partial recovery I = cN2
s = c× (# synapses)×Ns/Nh). For1347

perfect recovery the space complexity requirements scale as I, and time complexity scales as I3/2
√

Nh/Ns. For1348

partial recovery the space complexity scales as INh/(cNs), and time complexity scales as I3/2Nh/(Ns
√

c).1349

D.5 One-Step Heteroassociation Leads to a Memory Continuum even with Hebbian Learning1350

The memory continuum in Vector-HaSH is a result of the one-step heteroassociation from the hidden to the feature1351

layer, given a memory scaffold that perfectly recovers the hidden states. This holds irrespective of the nature of1352

heteroassociation (pseudoinverse learning or Hebbian learning).1353

Here we consider a simpler scenario where Wsh is trained through Hebbian learning and the hippocampal states1354

are assumed to be correctly reconstructed (corresponding to pseudoinverse learning from S to H).1355

We assume here that the sensory patterns being stored are random unbiased binary vectors drawn uniformly from
{−1,1}Ns . If the weights from the hippocampal cells to the sensory inputs, Wsh are trained using Hebbian learning:

Wsh = (1/Nh)∑
µ

sµ

i hµ

j . (97)

To evaluate the accuracy of a recovered sensory state through this weight matrix, we estimate the probability that the
ith bit of sν is recovered correctly. Since we assume in this simplified scenario that the hippocampal state pν has
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been correctly recovered:

si(t +1) = sgn

[
1

Nh

Nh

∑
j=1

Npatts

∑
µ=1

sµ

i hµ

j hν
j

]
,

= sgn

[
sν

i

(
1

Nh

Nh

∑
j=1

hν
j hν

j

)
+

1
Nh

∑
µ ̸=ν

∑
j

sµ

i hµ

j hν
j

]
.

(98)

Here we have separated the pattern ν from all the other patterns. Next, we multiply the second term on the1356

right-hand side by a factor f ν
i f ν

i = 1, and pull f ν
i out of the argument of the sign-function since f ν

i =±1.1357

si(t +1) = sν
i sgn

[
1+

1
Nh

∑
µ ̸=ν

∑
j

sµ

i sν
i hµ

j hν
j

]
= sν

i sgn[1−aiν ], (99)

where

aiν =− 1
Nh

∑
µ ̸=ν

∑
j

sµ

i sν
i hµ

j hν
j (100)

Successful recovery of the ith bit of sν will occur if si(t + 1) = sν
i , which holds provided that aiν > 1. The1358

probability of an error in a given randomly chosen bit can thus be calculated as the probabilty that aiν > 1.1359

Since the sensory states were assumed to have been drawn uniformly from {−1,1}Ns , we can treat the product1360

sµ

i sν
i as being +1 or −1 with equal probability. We assume that the distribution of hippocampal cell activity has mean1361

µp and variance σ2
p . Further, assuming that hµ

j and hν
j can be treated as independent random variables, the product1362

hµ

j hν
j would then have mean µ̃ = µ2

h and variance σ̃2 = σ4
h +2σ2

h µ2
h . Accounting for the random sign introduced1363

by sµ

i sν
i , the summand in Eq. (100) can then be treated as a random variable X with mean µ̃ and variance σ̃2 with1364

probability 0.5, and mean −µ̃ and variance σ̃2 with probability 0.5. For large Nh and Npatts, we are summing over a1365

large number of random variables — thus due to the Central Limit theorem, the precise details of the distribution1366

will not matter, apart from an estimate of its mean and variance. By symmetry, the mean of X will be zero. This1367

variance can be calculated to be σ̃2 + µ̃2.1368

Summing over (Npatts −1)Nh ≈ NpattsNh terms in Eq. (100), evaluated through central limit theorem, thus gives
a normal distribution, with zero mean, and variance (σ̃2 + µ̃2)NpattsNh. This gives

aiν ∼N
(

0,σ2 =
Npatts

Nh
(σ̃2 + µ̃

2)

)
, (101)

with

σ̃
2 = σ

4
p +2σ

2
p µ

2
p, (102)

µ̃ = µ
2
p. (103)

(104)

The probability of error in the activity state of neuron i is therefore given by:

Perror =
1√

2πσ

∫
∞

1
e

−x2

2σ2 dx =
1
2

[
1− erf

(√
Nh

2Npatts(σ̃2 + µ̃2)

)]
. (105)

Thus the probability of error increases with the ratio Npatts/Nh. The mutual information between the stored and1369

recovered Sensory States is then:1370
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MIperinbit = 1+Perror logPerror +(1−Perror) log(1−Perror). (106)

Since erf(x) ≈ x and log(1+ x) ≈ x for small x, in the limit of a large Npatts the above expression can be
approximated to

MIperinbit ≈
Nh

2Npatts(σ̃2 + µ̃2)
∝

Nh

Npatts
. (107)

This asymptotic scaling is verified in Fig. S61371

D.6 Pseudoinverse learning of mappings from sensory states to velocities and memory palace1372

items1373

Similar to pseudoinverse learning done from hippocampal cells to sensory cells, an exactly equivalent mathematical1374

theory applies for pseudoinverse learning from sensory cells to the one-hot representation of velocities associated1375

with each sensory state in 6 (see Methods for details of the learned velocity representations). In particular, as seen1376

in Sec. D.2, pseudoinverse learning of a matrix Wyx that maps from a layer X of dimensionality Nx to a layer Y of1377

dimensionality Ny is successful in exact recovery of all patterns in layer Y when learning up to rank(X) patterns. In1378

the case that rank(X) = Nx, as is the case when learning mappings from S to P and vice-versa (Sec. D.1, D.2), the1379

number of learned patterns that can be perfectly reconstucted is simply Nx.1380

Thus, learning mappings from sensory cells to either velocity representations or memory palace task items1381

will be exactly successful for up to Ns velocities of memory palace items provided that the mappings are being1382

learned from patterns that form a full rank matrix. However, as seen in Fig. 6, mappings must be learned from1383

the reconstructed sensory states rater than the ground truth sensory states, since with increasing number of stored1384

patterns the reconstructed states deviate from the ground truth states.1385

Thus, even if the sensory states form a full rank matrix, for successful mappings, it will be necessary that the1386

rank of the recovered sensory states must be Ns. Following the results presented in Sec. D.3, it would appear1387

that the the recovered sensory patterns would form a matrix of rank Nh, the dimensionality of the hyperplane PH .1388

However, this would only be the case if the recovered sensory states were obtained directly from WshH wihtout any1389

additional nonlinearity. For the case of binary sensory states, the recovered sensory patterns are given by sgn[WshH].1390

This sign nonlinearity in effect behaves like a small random perturbation to each of the Ns bits of WshH, rendering1391

the reconstructed sensory states to be full rank (assuming that the ground-truth sensory states matrix is full rank).1392

Thus, reconstruction of velocity mappings and memory palace task items (or indeed any other readout from sensory1393

the sensory cells) will be successful for up to Ns patterns, provided that the mappings are being learned from the1394

reconstructed sensory states (rather than the ground truth sensory states).1395
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3 grid modules 5 grid modules 7 grid modules

=

Vector-HASH

MESH

a b

dc e

Figure S1. Theoretical capacity results in Vector-HaSH relative to MESH. The number of scaffold fixed points
increases exponentially in the number of modules (a), and faster than a power law, but slower than exponentially in
the number of synapses (b). The number of synapses with increasing number of modules were estimated based on a
number of hippocampal cells extrapolated from Fig. 2f. The number of fixed points increases as a power law with
the number of grid cells at a fixed number of modules, with the power law exponent increasing with the number of
modules.

Ng 

N
h*

num. of modules = 2

num. of modules = 3

Figure S2. Critical number of hippocampal cells necessary to support all scaffold fixed points is
asymptotically independent of the number of grid cells For a given number of modules, the critical number of
hippocampal cells, N∗

h increases slowly with the number of grid cells, but then asymptotically approaches a constant,
as expected from the theoretical results in Sec. C.1.
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λ = {2,3,5}

λ = {3,4,5}

λ = {4,5,7}

λ = {2,3,5,7}

Figure S3. Scaffold constructed with bi-directional learning between grid states and sparse hippocampal
states has low capacity As seen in Fig. 2f inset, construction of random sparse hippocampal states with
bidirectional learning between grid and hippocampal states results in a scaffold that exibhits catastrophic forgetting.
We calculate the capacity of the network as the largest number of trained patterns such that all trained patterns are
stored as fixed points. Note that this capacity is limited by the number of hippocampal cells, as might be expected
from Hopfield like capacity bounds.
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Figure S4. Learning generalization approaches theoretical expectations with increasing Nh The number of
generated fixed points approaches the maximal scaffold capacity for a very small number of learned patterns (see
also Fig. 2f). As the number of hippocampal cells increases, the number of learning patterns necessary for complete
generalization approaches the theoretical expectaion of M×Kmax, as proved in SI Sec. C.4.
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a b

start end

Figure S5. Minimum learning region for generalization of fixed point dynamics at all grid patterns As seen
in Figs. 2f, S4 all the exponentially many scaffold states are stabilized after learning from only a small number of
grid patterns. Here we show visually the minimum learning region that results in complete generalization to all
scaffold fixed points. (a) shows the minimal learning region for the fastest possible generalization to all scaffold
states (see SI Sec. C.4 for an analytic proof), (b) shows the smallest region needed for a path that spans a
two-dimensional contiguous region, generated by a spiraling outward path. Both (a) and (b) are shown
corresponding to a scaffold size of 44100, generated with λ = {2,3,5,7}. As argued in SI Sec. C.4, the minimum
learning area as a fraction for complete generalization approaches zero with increasing scaffold sizes.
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Figure S6. Hebbian learning between sensory layer and scaffold also produces memory continuum A
memory continuum is obtained in Vector-HaSH even if the weights between the sensory and hippocampal layers are
bi-directionally trained using Hebbian learning (instead of pseudoinverse learning, as in Fig. 3. This continuum is
also asymptotically proportional to the theoretical bound on memory capacity (forest green dashed line indicative of
slope of theoretical upper bound, vertical and horizontal position of dashed line is arbitrary). However, the
proportionality constant is lower, with the gradual degradation of information recall occurring well before Nh.
Vector-HaSH parameters identical to Fig. 3c with λ = {3,4,5}.
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Figure S7. Effect of varying Ns on memory continuum As shown in SI Sec. D.1, the number of sensory cells
determines the number of scaffold states that can be exactly recovered through the sensory-to-hippocampal weights.
For Ns less than the total number of scaffold states, the obtained memory continuum is distorted towards the tail for
larger than Ns patterns stored. For all Ns larger than or equal to the number of scaffold states, the memory continuum
is identical, corresponding to the results shown in Fig. 3.
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Figure S8. Basin structure for recovery of sensory hippocampal and grid states varies with number of stored
patterns While the scaffold has a large number of well-strucutred basins (cf. Fig. 2, SI Sec. C.1), the basins for
sensory recovery are additionally governed by the heteroassociative leanring between the sensory states and the
scaffold. As a result, the basin sizes reduce with increasingly large number of stored patterns, due to overcrowding
of the number of stored states within the sensory-to-hippocampal weights. The grid periods were set to
λ = {3,4,5}, with Nh = 400, resulting in a maximal scaffold capacity of 3600 patterns, with perfect sensory
recovery up to 400 patterns. For more than 400 stored patterns, p(correct) refers to the probability of exact recovery
of grid and hippocampal states, and probability of reliable recovery of the sensory state (which is not exact due to
being in the memory continuum regime, Fig. 3.
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Figure S9. Vector-HaSH outperforms Autoencoders, particularly when recovering from noisy cues Left
When cued with ground-truth memorized sensory patterns, Vector-HaSH recovers a gradually degraded amount of
information per pattern (cf. Fig. 3), unlike the memory cliff shown by tailbiting Autoencoders trained as associative
memories86. Naively however, it appears that this memory cliff is absent in a single step (i.e., non-tailbiting) of the
Autoencoder. However, we see in Right that single-step Autoencoders are not associative memories, since they are
unable to reconstruct memories from corrupted cues. Here grid periods were set to λ = {3,4,5}, with Nh = 400.
Stored sensory cues were random binary {−1,1} patterns, and noisy cues were generated by flipping 10% of bits
from a given memorized sensory pattern.
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Figure S10. hippocampal states form a strongly full rank matrix Rank of the Nh ×Npatts hippocampal states
matrix for varying number of patterns Npatts for two different random permutations of the ordering of hippocampal
states shown in black and grey. For up to Npatts ≤ Nh the rank of the matrix is Npatts (as indicated by the red y = x
line), and is there after Nh for larger numbers of patterns.
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Figure S11. Activation threshold applied in the hippocampal layer dictates nature of memory continuum (a)
distribution of pre-nonlinearity inputs to the hippocampal layer from grid cells. Any actication threshold above the
largest value (∼ 7.5) results in zero hippocampal activity, and any threshold below the smallest value (∼−7.5)
results in a purely linear hippocampal layer. (b) A linear hippocampal layer (corresponding to thresholds in the grey
region) results in a HPC states matrix of rank equal to the rank of the grid cell states matrix (which equals
Ng −M+1 as shown in Ref.136), whereas a range of thresholds (shown in green) result in a full rank HPC states
matrix. (c)Top: The rank of the Nh ×Npatts submatrix of hippocampal states constructed over the first Npatts. Here
the hippocampal states have been ordered according to the optimal order that leads to fastest scaffold learning
generalization (Sec. C.4). Bottom: Rank versus Npatts for the particular values of thresholds considered in panel (d).
At a threshold of 0.5 (the value used in almost all simulations in the main text, see Methods for more details) we see
that the hpc states matrix is strongly full rank. Moreover, as seen in Fig. S10, this matrix is strongly full rank
independent of the ordering of the scaffold states. At the lowest threshold value, corresponding to a linear
hippocampal layer, the matrix appears to be rank ordered. However, for a linear hippocampal layer the rank ordering
of the matrix is dependent on the ordering of the scaffold states, as examined in Fig. S12. (d) Information recovered
per input bit as a function of the number of patterns stored in the network (similar to Fig. 3d) for varying threshold
values on a linear scale (top) and a logarithmic scale (bottom). The strongly full rank matrix (identical the the
λ = {3,4,5} curve in Fig. 3d) and the rank ordered matrix both demonstrate perfect recovery up to a knee; all
values of thresholds result in a smooth decay of recovered information that is asymptotically proportional to a
theoretically expected bound that scales inversely with the number of stored patterns
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Figure S12. Linear hippocampal layer generates memory continuum only for specific ordering of scaffold
states during learning (a) Three examples of potential ordering of scaffold states that could be considered: top left
the discontinuous path that leads to fastest scaffold learning generalization (Sec. C.4) shown for λ = {3,4,5}; top
right a continuous spiral path; bottom a continuous ‘hairpin’ path. (b) The hpc states submatrix is rank ordered
along the optimal path, and approximately rank ordered for the continuous path. The hairpin path however is
significantly deviated from a rank ordered matrix. (c) Information recovered per input bit as a function of the
number of patterns stored in the network (similar to Fig. 3d). The rank ordered matrix demonstrates perfect
recoverey up to a knee at the rank of the grid states matrix; this is also closely approximated by the spiral ordered
matrix. A hairpin ordering however results in poor information recovery even at a small number of patterns. In all
cases, the asymptotic decay of information is inversely proportional to the number of patterns, as would be expected
from theoretical information bounds.
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Figure S13. Mean activity in hippocampal layer can be used for novelty detection The mean activity in the
hippocampal layer for familiar patterns presents a narrow distribution. The mean hippocampal activity for novel
patterns is strongly dependent on the number of stored patterns. The narrowness of the familar pattern distribution
allows for discrimination thresholds to be placed on either side (at two standard deviations away from the mean) to
result in classification accuracy as shown in Fig. 3i

num sensory cells

recall-d
rive

n tra
nsiti

ons

sensory-driven transitions

re
ca

ll 
se

q 
le

ng
th

0
0

2

2

1

1

3

3

a b c

d

theory

x103

x103

actual transition

input 50 500 800
recall

transitions trained 
from stored state

transitions trained 
from recalled state

reconst. sensory velocity trans

vgrid 

hippocampus

sensory

ŝ

Figure S14. Sensory driven transitions must be reconstructed from recalled states (a) Architecture for sensory
based reconstruction of next-step transitions for sequence learning, Fig. 6a, bottom. (b) As the number of stored
patterns increases, the recalled sensory state gradually degrades; as a result, reconstruction from mapping trained on
ground truth sensory states can lead to inaccuracies. (c) More quantitatively, transitions trained on recalled sensory
states result in sequence reconstruction of length up to the number of sensory cells (theory in SI Sec. D.6), whereas
transitions trained on ground truth sensory states has a lower sequence capacity.
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Figure S15. Reconstruction error in each layer of Vector-HaSH when tested for MTT by reinforcing the
model weights for a subset of repeated patterns. Left: Results when only Wsh weights are reinforced, assuming
pre-trained scaffold weights Wgh. Right: Results when all of the learnable weights in Vector-HaSH Whs, Wsh and Wgh
are reinforced. Note that Whs reinforcement mathematically doesn’t change Whs as describe in Sec. 1.
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a b

Figure S16. Analysis method for route encoding results in Fig. 7b. (a) Left: Trajectory population vectors
(PVs) were compared to route-PVs and matched according to highest cosine similarity score. Elements of the matrix
show the percentage number of each trajectory matched to each of the four route-PVs. Right: Matches were also
made using shuffled data, where each trajectory was randomly assigned to one of the four routes, thus shuffling the
route identity of the trajectories. The matrix elements here show the same as a except that this data is for one
representative shuffle (10000 were conducted in total). (b) Distribution of percentage correct matches for trajectory
PV of Route 3 to its route-PV for all 10000 shuffles.
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Figure S17. Vector-HaSH reproduces directional place fields on an 8-arm radial maze. (a) An 8-arm radial
maze apparatus similar to the experiment113. (b) Inbound (towards the center) and outbound (away from the center)
trajectories on the 8-arm radial maze represented separately in the grid coding space. (c) Fields of a representative
hippocampalcell on inbound trajectories (left) and outbound trajectories (right) (d) Directionality index of place
cells from Vector-HaSH showing that majority of the cells have directional fields. (e) Directionality index of place
cells from the experimental data113.
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Figure S18. Splitter cells. (a) Fields of three representative hippocampal cells on the Right-Turn and Left-Turn
trials. (b) The central stem of the continuous alternation task apparatus is divded into 4 equal regions for data
analysis following the analysis conducted on the experimental data110. (c) Mean activation of the three hippocampal
cells shown in (a) computed for each of the four regions defined in (b). The cells show different activity patterns as
Vector-HaSH traverses the central stem on Left-Turn and Right-Turn trials.
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Figure S19. Vector-HaSH predicts directional grid fields. Directionality index of grid cells showing that in
Vector-HaSH majority of the grid cells have directional fields in one dimensional environments (environment in
(a)112), and on directed routes in two dimensional environments (environments in b,c113).
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