Abstract
How do people model the world’s dynamics to guide mental simulation and evaluate choices? One prominent approach, the Successor Representation (SR), takes advantage of temporal abstraction of future states: by aggregating trajectory predictions over multiple timesteps, the brain can avoid the costs of iterative, multi-step mental simulation. Human behavior broadly shows signatures of such temporal abstraction, but finer-grained characterization of individuals’ strategies and their dynamic adjustment remains an open question. We developed a novel task to measure SR usage during dynamic, trial-by-trial learning. Using this approach, we find that participants exhibit a mix of SR and model-based learning strategies that varies across individuals. Further, by dynamically manipulating the task contingencies within-subject to favor or disfavor temporal abstraction, we observe evidence of resource-rational reliance on the SR, which decreases when future states are less predictable. Our work adds to a growing body of research showing that the brain arbitrates between approximate decision strategies. The current study extends these ideas from simple habits into usage of more sophisticated approximate predictive models, and demonstrates that individuals dynamically adapt these in response to the predictability of their environment.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
Significant revision to simplify modeling and add additional robustness checks. Main results and analyses redone in terms of a mixture-of-agents model rather than linear RL (now a separate section). Additional nuisance regressors added to model-agnostic analysis to improve heuristic applicability. Model recovery added to supplement.