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Abstract

Anatomical MRI templates of the brain are essential to group-level anal-
yses and image processing pipelines, as they provide a reference space for
spatial normalisation. While it has become common for studies to acquire
multimodal MRI data, many templates are still limited to one type of modal-
ity, usually either scalar or tensor-based. Aligning each modality in isolation
does not take full advantage of the available complementary information,
such as strong contrast between tissue types in structural images, or axonal
organisation in the white matter in diffusion tensor images. Most existing
strategies for multimodal template construction either do not use all modal-
ities of interest to inform the template construction process, or do not use
them in a unified framework.

Here, we present multimodal, cross-sectional templates constructed from
UK Biobank data: the OMM-1 template, and age-dependent templates for
each year of life between 45 to 81. All templates are fully unbiased to rep-
resent the average shape of the populations they were constructed from,
and internally consistent through jointly informing the template construc-
tion process with T1, T2-FLAIR and DTI data. The OMM-1 template was
constructed with a multi-resolution, iterative approach using 240 individuals
in the 50-55 year age range. The age-dependent templates were estimated
using a Gaussian Process, which describes the change in average brain shape
with age in 37,330 individuals.

All templates show excellent contrast and alignment within and between
modalities. The global brain shape and size is not preconditioned on existing
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templates, although maximal possible compatibility with MNI-152 space was
maintained through rigid alignment. We showed benefits in registration ac-
curacy across two datasets (UK Biobank and HCP), when using the OMM-1
as the template compared with FSL’s MNI-152 template, and found that the
use of age-dependent templates further improved accuracy to a small but
detectable extent. All templates are publicly available and can be used as a
new reference space for uni- or multimodal spatial alignment.

Keywords: Multimodal, Template, Age-dependent, UK Biobank,
Registration

1. Introduction1

Anatomical magnetic resonance imaging (MRI) templates of the brain2

aim to provide representative models of average shape and voxel signal in-3

tensity of the populations from which they were constructed. They are es-4

sential for many different kind of neuroimaging analyses as they provide a5

common reference space for the spatial normalization of individual subjects6

using image registration methods. The resulting transformations and derived7

measures, such as Jacobian determinant maps, between each individual and8

a template, and the transformed images in template space, enable the study9

of intra- and inter-group variability or agreement, unbiased group compar-10

isons of within-subject longitudinal changes and atlas-based segmentation of11

regions of interest (ROIs) at subject level.12

Template construction methods aim to find an average intensity and av-13

erage shape template, i.e., the shape and intensity of the template should, on14

average, not be more like any one individual than any other (see section 2.3.215

for mathematical description). This is typically achieved through a series of16

steps to avoid bias in appearance or shape towards any single individual. The17

most commonly used method is based on an iterative framework (Guimond18

et al., 1998, 2000), which was later extended into a multi-resolution approach19

with a hierarchical processing structure (Grabner et al., 2006; Fonov et al.,20

2011). First, individual images are corrected for global (affine) misalignment21

using translation, rotation, scale and shear, which allows for the construction22

of an initial average affine template. Each individual is then iteratively non-23

linearly registered to the current template (starting with the affine template24

in the first iteration), followed by spatial unbiasing of the warps, and resam-25

pling of the subject images. Finally, the average across the resampled images26
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becomes the new template and serves as the reference space for the next it-27

eration. These steps are repeated until convergence, while warp resolution28

and image blurring are adjusted from coarse to fine.29

Existing templates are often described as uni- or multimodal based on30

the number of modalities they comprise. An overview of some of the most31

commonly used and some more recent templates can be found in Table 1. In32

contrast to one modality in unimodal templates, multimodal templates aim33

to provide volumes of different, but anatomically-corresponding, modalities.34

This notion of multimodality in most existing templates stems from the post35

hoc availability of multiple modalities in template space, but generally does36

not refer to the modalities used during the template construction process.37

Driving this process with complementary information from different modal-38

ities of interest is highly desirable since it can improve registration quality.39

For example, the axonal organisation derived from diffusion imaging data can40

add valuable information about the white matter, which would not be avail-41

able from T1-weighted (T1) images only. Some existing templating methods42

use one modality to drive the construction, e.g., T1, and then apply the same43

deformation fields to all modalities of interest, e.g., T2-weighted (T2) or dif-44

fusion tensor images (DTI) (Rohlfing et al., 2010; Fonov et al., 2011; Gupta45

et al., 2016). Others use modalities derived from the modality of interest,46

e.g., fractional anisotropy (FA) maps from DTI, to drive the construction47

and then transform the modality of interest (DTI) with the same transfor-48

mations (Zhang et al., 2011; Lv et al., 2022). Estimating deformation fields49

based on a subset of modalities or surrogates, and applying the same defor-50

mation fields to all other modalities is not optimal. This strategy can lead to51

unwanted biasing effects in the template, since not all modalities contribute52

to the estimation of the deformation fields that are used for resampling and53

spatial unbiasing. This might not have a large impact when using modalities54

with similar information content, for example, when estimating a warp based55

on T1 images and applying the same warp to T1 and T2 images. However,56

for modalities with different information content it could introduce a spa-57

tial bias. For example, estimating deformation fields based on structural or58

diffusion-derived scalar modalities, and applying them to diffusion tensors59

could lead to a bias in the location or orientation of the diffusion data.60

One fully-unbiased multimodal (FUMM) template was constructed from61

individuals in the adolescent brain and cognitive development (ABCD) study.62

For this template, eleven scalar modalities, including three structural modal-63

ities and eight dMRI-derived modalities but no DTI data were used as in-64

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.569378doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.569378
http://creativecommons.org/licenses/by/4.0/


Template Template modalities
and maps

#Subjects Mean age ± sd
(min-max)

Ref.

ICBM MNI305 T1 305 (66f/239m) 23.4 ± 4.1 (NA) (Evans et al.,
1993)

ICBM 152
linear

T1, T2, PD 152 (66f/86m) 25.02 ± 4.9 (18-44) (Mazziotta
et al., 1995)

ICBM 152 non-
linear 6th gen.

T1 152 (66f/86m) 25.02 ± 4.9 (18-44) (Grabner et al.,
2006)

ICBM 2009a T1, T2, PD,
T2 relaxometry
PVMs (GM, WM, CSF)

152 (66f/86m) 25.02 ± 4.9 (18-44) (Fonov et al.,
2011)

ICBM 2009b T1, T2, PD 152 (66f/86m) 25.02 ± 4.9 (18-44) (Fonov et al.,
2011)

ICBM 2009c T1, T2, PD
PVMs (GM, WM, CSF)

152 (NA) NA (Fonov et al.,
2011)

ICBM 152 ex-
tended nonlinear

T1, T2, PD 152 (66f/86m) 25.02 ± 4.9 (18-44) (Fonov et al.,
2011)

SRI24 T1, T2, PD,
FA, MD, LD,
mean DWI,
PVMs (GM, WM, CSF),
tissue labels, 2 CPMs

12 young (6f/6m)
12 elderly (6f/6m)

25.5 ± 4.34 (19-33)
77.7 ± 4.9 (67-84)

(Rohlfing et al.,
2010)

Enhanced ICBM
DT template

DTI,
PVMs (GM,WM,CSF)
based on FA/trace map

67 (40f/27m) f: 27.2 ± 5.4 (20-39)
m: 31.7 ± 5.6 (22-44)

(Zhang et al.,
2011)

Clinical DTI T1, DTI 48 (NA) NA (Gupta et al.,
2016)

FOD template FOD, T1, T2, MD, FA,
AFD, CX

50 (25f/25m) NA (22-35) (Lv et al.,
2022)

MINT ABCD
atlas

T1,
PVMs (GM, WM),
0th, 2nd order SHCs of
restricted FOD
0th order SHC of hin-
dered & free water
FODs

BL 11140 (5353f/5787m)
FU 7578 (3503f/4075m)

median: 9.9 (8.9-11)
median: 11.9 (10.6-13.8)

(Pecheva et al.,
2022)

TBI template T1, DTI TBI 12 (5f/7m)
HC 9 (3f/6m)

35 ± 12.1 (21-59)
36.2 ± 8.8 (23-46)

(Avants et al.,
2008)

HCP atlas T1, T2, DTI 971 (520f/451m) NA (22-35) (Irfanoglu
et al., 2020)

MIITRA atlas T1, DTI 202 (101f/101m) 80.56 ± 8.14 (65.2-94.9) (Wu et al.,
2022)

Table 1: Overview of existing unimodal and multimodal templates. Modalities in bold
are used in the construction. PD...proton-density weighted, LD...longitudinal diffusivity,
DWI...diffusion-weighted imaging, PVMs...partial volume maps, CPMs...cortical parcella-
tion maps, SHC...spherical harmonics coefficient, AFD...apparent fibre density, CX...fibre
complexity, FOD...fibre orientation distribution, BL...baseline, FU...follow up
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put to the Multimodal Image Normalisation Tool (MINT) (Pecheva et al.,65

2022). Another FUMM templating strategy for scalar and tensor modalities66

was applied in the construction of the MIITRA template (Wu et al., 2022).67

The method alternates between registrations within each of the T1 and DTI68

modalities. In each iteration, deformation fields are estimated within one69

of the two modalities with a modality-specific registration method. The70

same transformations are applied to data from both modalities in all iter-71

ations except the last, where the DTI data undergoes one more transfor-72

mation that is not applied to the T1 images. A similar iterative approach,73

involving multiple repeated registrations with the two methods, is required74

when spatially normalising individuals to the MIITRA template. Since both75

modalities drive the template construction the resulting templates are fully76

unbiased. However, the use of two methods does not provide a unified and77

internally-consistent framework. To the best of our knowledge, the only two78

methods that can accommodate both scalar and tensor modalities, and, con-79

sequently, allow fully-unbiased and internally-consistent template construc-80

tion, are Symmetric Normalization for Multivariate Neuroanatomy (SyNMN)81

(Avants et al., 2008) and DR-TAMAS (Irfanoglu et al., 2016). SyNMN was82

applied in the construction of a combined T1 and DTI template to investi-83

gate traumatic brain injury (TBI) and later in the construction of a template84

from arterial spin labelling, T2-weighted-Fluid-attenuated inversion recovery85

(T2-FLAIR), DTI, functional MRI (fMRI), T1 and T2 data (Tustison et al.,86

2015). The SyNMN tool and templates are not publicly available at the time87

of writing. DR-TAMAS has been used for the construction of a DTI atlas88

(Irfanoglu et al., 2020) from the Human Connectome Project Young Adult89

(Van Essen et al., 2012) dataset (22 - 35 year age range). This DTI template90

also comprises T1 and T2 volumes, and all modalities were used to drive91

the registrations during the template construction process. The atlas was92

constructed from 971 individuals and has good levels of detail and contrast93

(although not quite as good as might be hoped for, given the quality of the94

data and the number of subjects).95

Most existing multimodal templates provide a single, cross-sectional av-96

erage of brain shape and intensity from the subjects in a cohort. However,97

arguably, a template should also be similar to a given population under98

investigation to reduce the amount of deformation required when aligning99

individuals to it. The main factor contributing to morphological variability100

in large datasets is the subjects’ age range. As datasets become larger in101

size and the subjects’ age range within datasets increases, it becomes more102
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difficult to capture the age-related increase in brain shape variability in a103

single template. Spatiotemporal, or age-dependent templates (ADTs), for104

sub-populations with smaller age ranges can provide more similar reference105

spaces. Several construction methods based on discrete bins (Fillmore et al.,106

2015), kernel regression (Davis et al., 2007; Serag et al., 2012) and neural107

network-based architectures (Dalca et al., 2019; Xia et al., 2019; Zhao et al.,108

2019; Wilms et al., 2020) have been described in the literature. However,109

these have been mainly used for unimodal ADT construction and, to the110

best of our knowledge, do not publicly provide multimodal templates with111

scalar and tensor modalities for general use.112

1.1. Summary of our work113

The main contributions of our work include the construction of a cross-114

sectional, internally consistent and fully-unbiased multimodal, whole-head115

template, the Oxford-MultiModal-1 (OMM-1), and the development of a116

modelling and prediction-based approach, which was applied in the construc-117

tion of multimodal, average-shape ADTs.118

The former was obtained from 240 UK Biobank (UKB) individuals (50-55119

years, 50% females) with the iterative approach described in (Fonov et al.,120

2011). First, we constructed an unbiased affine template, which was refined121

from coarse to fine by iterating through nonlinear registrations, and unbias-122

ing, warping and averaging steps. The ADTs were obtained by nonlinearly123

registering 37,330 UKB individuals (45-82 years) to OMM-1 and using the124

acquired deformation fields and corresponding individuals’ ages to model the125

change in average brain shape with age using a Gaussian Process (GP). Fi-126

nally, the trained model allowed us to predict and apply a mean deformation127

field for each year of age to derive age-dependent templates from the initial128

240 UKB individuals.129

The OMM-1 and its associated ADTs provide anatomically-corresponding130

scalar (T1 and T2-FLAIR) and tensor (DTI) volumes. These same modalities131

were used to drive the construction process by simultaneously informing the132

nonlinear registrations. These registrations were performed with FSL’s Mul-133

tiModal Registration Framework (MMORF) (Lange et al., 2020a,b), which134

estimates a single warp by optimizing over an arbitrary number of scalar135

and tensor input modalities. This ensures internal consistency by avoiding136

the need to use different registration methods for different modalities, and137

full-unbiasing of all volumes with respect to all modalities of interest. Our138

template construction pipeline provides a unified framework that can easily139
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be extended or adjusted to other scalar or tensor modalities of interest. Since140

the OMM-1 is unbiased with respect to the UKB subjects from which it was141

created, its size and shape differs from the most commonly used template, the142

MNI 152 (in its various revisions), as MNI 152 templates are not very close to143

representing the size of the average adult brain. However, the OMM-1 was144

rigidly (6 degrees of freedom) aligned to MNI space, and transformations145

between the two templates are provided, to aid compatibility when switch-146

ing between them. Finally, we have investigated the benefits of using our147

multimodal templating framework for spatial normalization in age-diverse148

populations of two datasets.149

2. Methods150

2.1. Data151

In this work we used scalar- and tensor-valued, non-defaced brain MRI152

data from UKB (Miller et al., 2016), one of the largest prospective epidemi-153

ological studies to date, which aims to acquire multimodal MR imaging data154

from 100,000 participants.155

Imaging data from three MRI modalities including T1, T2-FLAIR and156

DTI were used for template construction. T1 provides information about the157

basic anatomical structure of the brain and shows strong contrast between158

the main tissue classes (gray and white matter, and cerebrospinal fluid). It is159

acquired as part of most imaging studies and has become the core modality160

of choice for existing adult human templates. T2-FLAIR was included as161

a second structural modality due to its enhanced contrast of subcortical162

gray matter regions, such as the striatum, pallidum, substantia nigra, red163

nucleus and dentate nucleus, of the olfactory bulbs, but also between normal164

appearing white matter and white matter hyperintensities. Diffusion MRI165

provides information about the properties of the local tissue microstructure166

and white matter tract structure. It makes it possible to estimate a diffusion167

tensor for each voxel (Basser et al., 1994) that adds information about the168

axonal organisation and the preferred directions of diffusion. We decided169

to use non-defaced T1 and T2-FLAIR data to construct a template that is170

sharp and clear in both intra- and extracranial regions and, hence, may be171

useful for a variety of applications.172

All imaging data were collected at one of three UKB sites using identical173

3T Siemens Skyra scanners running VD13 and a standard Siemens 32-channel174
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Modality Voxel size,
Matrix

Key parameters

T1 1.0 × 1.0 × 1.0 mm,
208 × 256 × 256

3D MPRAGE, sagittal, R=2, TI/TR=880/2000 ms

T2-FLAIR 1.05 × 1.0 × 1.0 mm,
192 × 256 × 256

FLAIR, 3D SPACE, sagittal, R=2, PF 7/8, fat sat,
TI/TR=1800/5000 ms, elliptical

dMRI 2.0 × 2.0 × 2.0 mm,
104 × 104 × 72

MB=3, R=1, TE/TR=92/3600 ms, PF 6/8, fat sat,
b=0 s/mm2 (5× + 3× phase-encoding-reversed),
b=1000 s/mm2 (50×)
b=2000 s/mm2 (50×)

Table 2: UK Biobank brain MRI acquisition parameters for T1, T2-FLAIR and dMRI from
(Miller et al., 2016). R=in-plane acceleration factor, MB=multiband factor, PF=partial
Fourier

receive head coil. A brief overview of the parameters used to acquire T1, T2-175

FLAIR and dMRI can be found in Table 2. For a detailed description of the176

acquisition protocol in the UKB brain imaging study we refer the reader to177

(Miller et al., 2016).178

The OMM-1 was constructed from 240 individuals uniformly and ran-179

domly sampled from the 50-55 year age range (40 individuals per year, 50%180

female). The size of the sample was informed by previous investigations on181

the Human Connectome Project dataset, where Yang et al. (Yang et al.,182

2020) have shown that sample sizes larger than 200 individuals are associ-183

ated with only small changes to the final templates. We selected individuals184

from the younger end of the UKB age range that provided sufficient data for185

uniform sampling. This minimises the appearance of ageing-related features186

and, therefore, maximises the utility of the template when applied to studies187

involving younger subjects.188

All UKB images went through the manual and automated quality control189

(QC) pipeline described in (Alfaro-Almagro et al., 2018). Although badly190

corrupted images are excluded by this pipeline, several additional criteria191

for subjects to be considered in our random sample were defined. These re-192

quirements included the availability of all three modalities, less than 0.5% of193

the total brain volume containing white matter hyperintensities, and small194

alignment discrepancies. Alignment discrepancy measurements had been cal-195

culated as the correlation ratio between registered within-subject modalities196

by the QC pipeline and are available as QC imaging-derived phenotypes197

(IDPs) for all three modalities. Extreme scores are potential indicators for198
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poor alignment, or the presence of artefacts or outliers. In particular, we used199

IDPs that describe the discrepancies between an individual’s T1 structural200

image and the MNI 152 6th gen. (Grabner et al., 2006) after nonlinear align-201

ment, and between the T2-FLAIR and the corresponding T1 image, and the202

dMRI and the corresponding T1 image after linear alignment. Thresholds203

of 0.5 for the T1 and T2-FLAIR and 0.6 for the dMRI discrepancies were204

applied, to allow for a large enough sample of subjects from the selected age205

groups.206

For the construction of the age-dependent templates, images from 37,330207

(age 45-82 years) individuals, which had T1, T2-FLAIR and dMRI data, were208

used. Given this large sample, the image quality at the individual level is209

expected to have less impact on the final average templates for age modelling210

compared to the smaller sample used for the OMM-1. Therefore, no further211

selection criteria were applied.212

2.2. Data preprocessing213

We used both minimally processed and preprocessed UKB imaging data.214

The T1, T2-FLAIR and dMRI volumes of the former are gradient-distortion215

corrected, and the T1 and T2-FLAIR volumes are not defaced, i.e., they216

include parts of the neck, nose and mouth. The latter had been prepro-217

cessed with the standard pipeline described in (Alfaro-Almagro et al., 2018),218

which, in addition to gradient-distortion correction, includes defacing, crop-219

ping, brain extraction through atlas-based mask propagation, and intensity220

inhomogeneity correction of T1 and T2-FLAIR images. Brain-extracted T2-221

FLAIR and dMRI images are rigidly co-registered to the corresponding indi-222

vidual’s T1 reference space using the B0s as the moving image and boundary-223

based registration (Greve and Fischl, 2009) as the cost function in FSL’s224

FLIRT (Jenkinson and Smith, 2001). dMRI data are corrected for suscepti-225

bility and eddy current distortion, as well as head motion, using FSL’s topup226

(Andersson et al., 2003) and eddy (Andersson and Sotiropoulos, 2016; An-227

dersson et al., 2016) before fitting the diffusion tensors (Basser et al., 1994)228

on the b=1000 images (50 directions) with FSL’s DTIFIT1. This standard229

preprocessing pipeline was extended for the template construction pipeline.230

The binary brain masks in individual dMRI spaces were slightly reduced in231

1Only the b=1000 shell is used for tensor fitting due to the violation of the Gaussian
diffusion assumption underlying the diffusion tensor model at higher b-values (or when
combining b-values), which would require Kurtosis for correct modelling.
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size by smoothing with an un-normalised mean filter (3 x 3 x 3 kernel size, to232

create a smooth transition between brain and background), thresholding at233

0.9, and eroding by one voxel. These masks were used to reduce the impact234

of noisy DTI voxels at the border of, and outside the brain during nonlinear235

registrations. Bias fields created with FSL’s FAST were transformed from236

each individual’s reference spaces to their non-defaced T1 and T2-FLAIR237

native spaces and used to correct for intensity inhomogeneity in the brain.238

High intensity values of the scalp in T1 images were smoothly-clamped with239

a custom function (see Appendix A) to avoid negative effects on the non-240

linear registrations during template construction. We did not perform any241

resampling with the transformations estimated between modalities to avoid242

the accumulation of interpolation errors.243

In the rest of this manuscript, we will use the following notation: the set
of N subjects, where each individual n has data from three modalities M is
defined as

R =
{
Rn = {Rm

n }m∈{T1,T2-FLAIR, DTI}

}
n=1...N

. (1)

2.3. Template construction244

Our multimodal template and age-dependent template construction pipeline245

consists of three main parts.246

First, an unbiased affine template was constructed by correcting for global247

(affine) misalignment between individuals (Fig. 1A, Section 2.3.1), which was248

then rigidly aligned to MNI space (Grabner et al., 2006).249

Second, this affine template was used to initialise a nonlinear, hierarchical,250

multi-resolution templating approach (Fonov et al., 2011), which iterated251

through registration, unbiasing, transformation, and averaging steps (Fig.252

1B, Section 2.3.2). The final nonlinear template, the OMM-1, represents the253

average shape and intensity of the 240 individuals on which it is based.254

Third, the OMM-1 was used as a template to spatially normalise 37,330255

individuals from the UKB imaging cohort, resulting in one deformation field256

for each subject (Fig. 1C, Section 2.3.3). A Gaussian process (GP) was257

used to model the morphological differences captured by these deformation258

fields as a function of age. After fitting the model, a mean deformation field259

was predicted for every year of age between 45-81, and used to generate the260

corresponding age-dependent template (ADT). In the following sections we261

will discuss each of these steps in detail.262
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Figure 1: Scalar and tensor-based modalities from 240 UKB individuals were used to
construct (A) the unbiased affine template by correcting for global misalignment and (B)
the final nonlinear OMM-1 template by iterating through the hierarchical optimization
approach. (C) Age-dependent templates were derived from the predictions of a Gaussian
process model trained on ages, and warps to OMM-1 space from 37,330 UKB individuals.

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.569378doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.569378
http://creativecommons.org/licenses/by/4.0/


2.3.1. Affine template construction263

An initial affine template was constructed from the preprocessed, brain-264

extracted RT1 images. One subject was randomly selected as a reference265

space and the remaining subjects were affinely registered to this reference266

with 12 degrees of freedom (DOF). To avoid the introduction of a bias towards267

the brain geometry of the reference individual, the transformation from each268

individual’s space to the mid-space of all subjects was calculated using FSL’s269

midtrans function. We performed preliminary tests with different subjects270

as an initial reference, and confirmed that we did not find any difference271

in the final results. Brain-extracted RT1 images were resampled into this272

unbiased space by applying the corresponding transformations to them. The273

first affine template was created by calculating voxel-wise the median over274

the resampled images, which provides a sharper group average compared275

with taking the mean at this early stage (Fig. 1A) and was found to improve276

registration performance in the subsequent iterations.277

This initial template was rigidly (6 DOF) aligned to the space of the278

asymmetric version of the nonlinear 6th gen. ICBM 152 template (MNI 152)279

(Grabner et al., 2006) included in FSL, to maximise similarity between the280

spaces while avoiding shearing and scaling effects. The final set of linear281

transformations An =
{
AT0→RT1

n
, AT0→RT2-FLAIR

n
, AT0→RDTI

n

}
for each individ-282

ual were created by concatenating the corresponding rigid transformation283

from each modality’s native space to T1 reference space, the affine transfor-284

mation from the T1 reference space to the unbiased template space, and the285

rigid transformation to the space of the new template T0. Non-defaced images286

were transformed from their native spaces to T0 by applying the correspond-287

ing concatenated transformations using spline interpolation. Additionally,288

T1 and DTI brain masks were resampled with the same transformations289

using trilinear interpolation.290

The voxel-wise median of the resampled images for each of the modalities291

provided the final affine template with three volumes T0 =
{
TT1
0 , TT2-FLAIR

0 , TDTI
0

}
.292

Similarly, mean T1 and DTI brain masks were created from the transformed293

masks in template space.294

2.3.2. Nonlinear template construction295

As we have stated previously, it is desirable that a template not be biased296

towards any particular individual (or subset of individuals) in the population297

from which it is constructed. By biased, we mean that the template should298

not, on average, be more like any one subject than any other. There are299
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two ways in which a template might appear more similar to an individual:300

in its shape, and in its appearance - where appearance refers to the voxel301

intensities. Consequently, a template may exhibit either a shape bias, an302

appearance bias, or both, unless care is taken to avoid this.303

Shape (spatial) bias can be avoided by ensuring that, following registra-304

tion to the template, the average displacement from the template to each305

individual is minimised across the population. Appearance (intensity) bias306

can be avoided by ensuring that, following registration to the template, the307

average image dissimilarity metric used to drive the registration is minimised308

across the population. Dissimilarity metrics commonly used by registrations309

methods include mean squared difference, cross-correlation and mutual in-310

formation.311

Fonov et al. (2011) formalised this concept as finding the template T312

that simultaneously minimises Equations 2 and 3, which address spatial and313

intensity bias respectively. The former (Eq. 2) minimises the magnitude of314

the nonlinear deformations ΦT→Rn required to warp the template T to each315

subject Rn, and the latter (Eq. 3) minimises the mean squared intensity316

difference between the template T and each warped subject ΦT→Rn(T ). Note317

that Equation 3 is specific to our case where MMORF optimises an image318

dissimilarity metric that is a version of the sum of squared-differences, and319

would differ if, for example, cross-correlation was used instead.320

argmin
T

[
N∑

n=1

|ΦT→Rn|
2

]
(2)

argmin
T

[
N∑

n=1

(T − ΦT→Rn(T ))
2

]
(3)

In practice, these two steps are interleaved at each of multiple iterations.321

In iteration k, Equation 2 is minimised by “undoing” (inverting and applying)322

the average across all nonlinear deformations ΦTk→Rn required to warp the323

template Tk to each subject Rn, and Equation 3 is minimised by simple324

voxelwise averaging of the warped intensities ΦTk→Rn(Tk) across all subjects.325

Given this understanding of unbiasing at each stage/iteration of the tem-326

plate construction pipeline, the optimal, unbiased, nonlinear OMM-1 tem-327

plate T was constructed by iterating over the following three steps (Fig. 1B).328

1. Deformation fields ΦTk→Rn are estimated by nonlinearly registering329

each individual to the template from the previous iteration Tk−1, with330
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the affine template T0 being used as reference space for the first itera-331

tion. Registrations were performed with MMORF (Lange et al., 2020a)332

and were informed with both scalar modalities (T1, T2-FLAIR) and333

the tensor-valued modality (DTI) from individual and reference space.334

MMORF optimizes the following total cost function335

CTOT = λT1CT1 + λT2−FLAIRCT2−FLAIR + λDTICDTI + λREGCREG (4)

with all modalities contributing equally in the optimisation procedure336

(i.e., λT1 = λT2−FLAIR = λDTI = 1). The mean squared error is337

calculated between scalar images and the mean squared Frobenius norm338

is used as a cost function for tensors.339

Registrations were initialised with the corresponding linear transforma-340

tions An estimated during the construction of the affine template. Note341

that non-brain-extracted individual images and templates were used for342

the scalar channels, which poses additional challenges. Inclusion of the343

skull can negatively affect registration quality in nearby cortical regions,344

and the face and neck have larger anatomical and positional variability345

compared to the brain. To reduce the potential impact of extracranial346

tissue on the deformations close to the brain, and improve registration347

quality in the face and neck, different levels of relative regularisation348

were imposed on intra- and extracranial regions. This was achieved349

through modulation of the T1 brain mask in template space. Larger350

weights were given to regions inside the brain, i.e., reducing the relative351

level of regularisation to allow for more aggressive deformations, and352

smaller weights were given to regions outside the brain, i.e., increasing353

the relative level of regularisation to constrain the deformations. The354

intra-to-extracranial weight ratio was approximately 8-to-1. Similarly,355

a weighted average DTI mask with smoothly decreasing weights at the356

edge of brain tissue in reference space and eroded DTI brain masks in357

individuals’ native spaces were used to reduce the potential negative358

effect of poor/noisy tensor fitting around brain boundaries that are of-359

ten seen in DTI. No masks were required for T2-FLAIR since tissue360

outside the brain already appears dark and does not strongly drive the361

registration relative to brain tissue.362

2. The average deformation field ΦTk
was calculated with363

ΦTk
=

1

N

N∑
i=1

ΦTk→Rn (5)
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and used to spatially unbias the template. This unbiasing step was per-364

formed by composing its inverse Φ
−1

Tk
with each individual deformation365

field and the corresponding rigid and affine transformations:366

Φ̃Tk→Rm
n
= Φ

−1

Tk
◦ ΦTk→Rm

n
◦ AT0→Rm

n
(6)

Individuals’ modalities in their respective native spaces were resam-367

pled to the new unbiased template space in one step by applying368

Φ̃Tk→Rm
n
with spline interpolation. Tensors were reoriented with FSL’s369

vecreg tool, which uses the preservation of principal directions algo-370

rithm (Alexander et al., 2001). T1 and DTI brain masks were resam-371

pled with trilinear interpolation using the same transformations.372

3. New mean masks and a new template Tk were created in unbiased space373

by taking the average over the resampled images for each modality.374

This new unbiased template with its three volumes served as a reference375

space in the next iteration k + 1.376

We performed a total of K = 18 iterations, allowing for coarse to fine im-377

provements, with three iterations at each of six hierarchical levels. A large378

grid spacing of 32 mm and a blurring kernel of 8 mm FWHM was used for379

the MMORF registrations (step 1) in the three iterations at the first hierar-380

chical level. These parameter values were halved for each level, down to 1381

mm and 0.25 mm (respectively) at the last hierarchical level. An overview382

of the MMORF registration parameters can be found in Appendix B.383

2.3.3. Age-dependent template construction384

UKB individuals S = {Sj}j=1...J (J = 37, 330) from the 45-82 year age385

range were first affinely and then nonlinearly registered to OMM-1. Similar386

to the previous nonlinear registrations, we used MMORF with all three MRI387

modalities (Fig. 1C) and the registration parameters in Appendix B. The388

estimated set of deformation fields Ψ =
{
ΨTK→Sj

}
j=1...J

in OMM-1 space was389

used to model the average change in morphology with age using Gaussian390

process (GP) regression (Rasmussen and Williams, 2005), i.e. the objective391

can be stated as finding the function that best models the change in brain392

morphology as captured by the deformation fields given the subjects’ ages393

x. The trained GP allowed the prediction of a mean output deformation394

field Ψ̃ in OMM-1 space for any (observed or unobserved) age x∗. Note that395

here we did not model differences in overall brain size and, consequently, the396
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nonlinear deformation fields without their affine transformation components397

were used.398

Gaussian processes generalize the concept of Gaussian probability distri-399

butions from stochastic variables to stochastic functions, and can be written400

as f(x) ∼ GP (m(x), k(x,x′)) or y = f(x) + ϵ with additive independent401

Gaussian noise ϵ. The GP is specified by its prior mean function m(x),402

which is usually set to zero, and covariance function k(x,x′), whose form403

has to be manually chosen. Conceptually these can be seen as continuous404

generalisations of the mean vector and covariance matrix used to describe405

multivariate normal distributions of random variables. The joint distribu-406

tion of the observed training input and output pair (x, y) and unobserved407

pair (x∗, y∗) can be written as408 [
y
y∗

]
∼ N (0,

[
K(x,x) + σ2

nI k(x, x∗)
k(x∗,x) k(x∗, x∗)

]
) (7)

where I is the identity matrix and σn describes the variance of the noise,409

with larger σn resulting in a smoother function. K(x,x) is a J ×J matrix of410

covariances between all training inputs, k(x, x∗) and k(x∗,x) are vectors of411

covariances between training and query inputs, and k(x∗, x∗) is the variance412

of the query input.413

As will become more apparent from Equations 10-11, the calculation of414

K(x,x) + σ2
nI becomes increasingly computationally challenging with larger415

J . To reduce the computational burden, the training input and output416

data were stratified along the age axis into half-yearly bins. Additionally,417

each bin was split into two sub-bins, where each individual within an age418

bin was randomly assigned to one of the corresponding sub-bins. This in-419

troduction of some variability within each bin was done to better condi-420

tion the estimation of the hyperparameters by making the estimates less421

correlated. This aggregation considerably reduced the size of the training422

dataset from the initial J = 37, 330 data points to L = 148 (2 sub-bins ×423

74 half-yearly mean age bins x) and corresponding mean deformation fields424

y as respective input and output for ages 45-81 years.425

The noise term in Equation 7 assumes that the noise is constant for every426

data point. This assumption would hold if every sub-bin was assigned the427

same number of individuals. However, when stratifying over age, the sub-bin428

averages were taken over different numbers of individuals because of the non-429

uniform age distribution in the initial dataset—with fewer individuals for the430
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youngest and oldest age groups. Assuming noise to be constant for all sub-431

bins would introduce a bias. To account for this non-uniformity, the identity432

matrix I in Equation 7 was replaced with a weight matrix W containing 1
pl

433

in the diagonal, where pl is the number of individuals assigned to age bin434

ℓ. This down-weighs the noise variance for, and increases the confidence in,435

bins pooled from a larger number of individuals, and vice versa. The joint436

distribution from Equation 7 becomes437 [
y
y∗

]
∼ N (0,

[
K(x,x) + σ2

nW k(x, x∗)
k(x∗,x) k(x∗, x∗)

]
) (8)

The choice of covariance function and its associated hyperparameters is438

important since it defines the properties of the functions generated during439

inference. Here, a squared exponential kernel was used, which has strong440

smoothness assumptions, and is therefore in line with the expected smooth441

changes in the brain with age. The kernel for calculating the covariance442

between two ages x and x′ can be written as443

k(x, x′) = σ2
f exp

(
−(x− x′)2

2ℓ2

)
(9)

where σf is a scaling factor, and ℓ is the length scale. Intuitively, a larger σf444

increases both the magnitude and the variability of the fitted function, and445

a larger length scale ℓ increases the dispersion and covariance between more446

distant ages, leading to a smoother function, which is less influenced by noise447

and overfitting.448

The hyperparameters σf , σn and ℓ can be estimated by maximizing the449

marginal likelihood given by450

log p(y|σn, σf , ℓ) = −1

2
yT(K+ σ2

nW)−1y − 1

2
log|K+ σ2

nW| (10)

where y is a matrix containing the vectorized deformation fields in the rows,451

and K is the covariance matrix where element Kij is the covariance between452

two ages xi and xj. The Nelder-Mead simplex method has shown robust453

estimates when minimizing the negated function, which was optimized over454

all voxels to estimate the set of hyperparameters.455

Using the estimated hyperparameters, the predictive mean can be calcu-456

lated with457

y∗ = k(x∗,x)(K(x,x) + σ2
nW)−1y. (11)
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where the output y∗ is the mean deformation field Ψx∗ for the corresponding458

age x∗. One deformation field was predicted for each year in the age range459

45-81. The inverse of this deformation was concatenated with the initial 240460

subjects’ linear and nonlinear transformations such that461

ΨTx∗→Rm
n
= Ψ

−1

x∗ ◦ Φ̃Tk→Rm
n

(12)

before resampling the corresponding modalities to age-specific template space462

in one step. Averaging over each of the resampled modalities provided the463

corresponding ADT Tx∗ .464

2.4. Validation and applications465

Convergence of the OMM-1 template construction process was assessed466

with three metrics including the root mean squared (RMS) difference, the467

root mean squared percentage (RMSP) difference, and Pearson’s correlation468

(PC) between consecutive iterations of average warps and T1, T2-FLAIR and469

DTI volumes. The Frobenius norm (FN) between consecutive iterations was470

additionally calculated for DTI volumes. Metrics based on the average warps471

show the improvement with respect to the first objective function of finding472

the average shape template, while metrics based on the T1, T2-FLAIR and473

DTI volumes show changes with respect to the second objective function of474

finding the average intensity template.475

Our ADTs were visually assessed and the prediction-derived 81-year ADT476

was compared to two directly-estimated templates with the same age. The477

first of these two templates was constructed by registering all 101 UKB indi-478

viduals in the 80-81 year range (mean age of 80.44 years) to OMM-1 space.479

The estimated deformation fields were spatially unbiased and applied to the480

corresponding images, which allowed the construction of a directly-estimated481

ADT-81. As a second template for comparison we used the existing older482

adult MIITRA template (mean age of 80.56 years) (Wu et al., 2022).483

Age-related differences were assessed with the distortion given by average484

Jacobian determinant maps. One map was derived for each corresponding485

GP-predicted deformation field. Volume differences in the subcortical struc-486

tures were quantified by summing over corresponding ROIs in the Jacobian487

determinant maps. The ROI masks were created by warping FSL FIRST488

(Patenaude et al., 2011) segmentation masks from individuals to OMM-1489

space before averaging and binarizing them with a threshold of 0.5.490

Finally, we investigated whether there is an advantage in registering in-491

dividuals to the standard OMM-1 template via an age-matched ADT over492
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registering them directly to the standard OMM-1. These results were also493

compared to registering directly to the MNI 152 template. 148 held-out UKB494

test subjects (50% female) were uniformly sampled from the 45-81 age range495

and registered to (1) the OMM-1 directly, (2) the GP-derived ADT corre-496

sponding to the individual’s age, and (3) the MNI 152 directly. FSL FLIRT497

(Jenkinson and Smith, 2001) was used for all affine registrations followed498

by MMORF (Lange et al., 2020a) for all nonlinear registrations. Registra-499

tion parameters were identical for (1) and (2) with T1, T2-FLAIR and DTI500

driving the nonlinear registrations, and T1-only driving the nonlinear reg-501

istration for (3). DKT atlas ROIs (Desikan et al., 2006) had been created502

for each individual with FreeSurfer (Fischl et al., 2004) as part of the UKB503

preprocessing pipeline. These ROIs were transformed from individuals’ na-504

tive spaces to generic template space using the direct warp to OMM-1 as505

estimated in (1), the composed warp from individual to ADT and from ADT506

to OMM-1 for (2), and the direct warp to MNI 152 in (3) using trilinear507

interpolation. The Dice similarity coefficient for each transformed binarized508

ROI was calculated for every possible pairing of subjects for each of the three509

approaches. We repeated the same tests with 100 out-of-sample individuals510

and their corresponding Destrieux atlas Freesurfer ROIs (Destrieux et al.,511

2010) from the Human Connectome Project (HCP) (Van Essen et al., 2013)512

using T1-only, T1-only with brain extraction, and T1 and DTI modalities513

for registrations in (1) and (2). Due to the younger age range in the HCP,514

we used the youngest 45-year ADT as a reference space for all registrations515

in (2).516

3. Results517

3.1. OMM-1518

The template after the last iteration of each hierarchical level is shown519

in Figure 2A. Qualitatively, a gradual increase in contrast and sharpness is520

noticeable in all three modalities with more rapid change over the early it-521

erations and less change in the later iterations. Quantitative measurements522

of convergence towards the average intensity and average shape are shown523

in Figure 2B. The change in intensities and the change in average warps524

between consecutive iterations show a similar pattern with all metrics. A525

sharp increase in difference occurs after switching to a finer registration level526

before stabilising in the following iterations at the same level. These can be527

seen as sharp spikes in the differences measured with RMS, RMSP and FN,528
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Figure 2: (A) Rows show the three template modalities: T1, T2-FLAIR and DTI (vi-
sualised using a principal diffusion direction colour-coded FA map where AP=Green,
LR=Red, IS=Blue). The improvement in contrast and alignment after the final itera-
tion of each hierarchical level is noticeable for each of the three modalities as the size of
the blurring kernel and the grid spacing are reduced from coarse to fine. (B) Convergence
measured with several metrics — root mean squared (RMS), root mean squared percent-
age (RMSP), Pearson correlation (PC) and Frobenius norm (FN) — shows the difference
between template intensities for each modality and between average warps of consecutive
iterations. A sharp difference can be observed with all metrics after switching to a new
hierarchical level, which is followed by an improvement in the following iterations at the
same level. These fluctuations stabilise towards the last iterations indicating convergence.
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and sharp drops with PC. These fluctuations become smaller in the later529

iterations, which indicates convergence.530

531

Figure 3: Two different sets of slices (A) and (B) through the modalities of the final
OMM-1 template: T1, T2-FLAIR, DTI (visualised using a principal diffusion direction
colour-coded FA map where AP=Green, LR=Red, IS=Blue), DTI overlaid on T2-FLAIR,
and the corresponding slice in the 3D T1 volume. Scalar T1 and T2-FLAIR volumes
exhibit very good contrast. The DTI volume shows excellent sharpness and orientational
consistency. Alignment between scalar and tensor modalities is exceptional as can be seen
in the overlay of DTI and T2-FLAIR. Facial features such as the ears, nose and eyes show
a high level of detail. Coronal and axial slices show the right hemisphere on the left and
vice versa. Zoomed-in views of four ROIs in (C) highlight the excellent alignment across
all 240 participants. The medial medullary lamina - separating internal from external
globus pallidus - is clearly visible in the axial view of the T1 volume. On the T2-FLAIR
volume a clear separation of the subthalamic nucleus and substantia nigra can be seen in
the coronal view, as well as the dentate nucleus in the cerebellum and the olfactory bulbs
are clearly visible.

Two different sets of slices of the final OMM-1 template are shown in532

Figure 3. The T1 and T2-FLAIR volumes are visually sharp with excel-533

lent contrast. In the DTI volume, white matter fibre tracts appear clear534
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and bright, and both isotropic and anisotropic regions are very well aligned.535

This is especially noticeable in the cerebellum and the brainstem tracts.536

All volumes, scalar, and DTI, show very good alignment, as judged by eye.537

This indicates that there are no systematic, rigid registration errors between538

modalities. Our strategy estimates a single warp from and applies it to all539

modalities in individual spaces, which ensures correct cross-modality align-540

ment in template space (assuming that modalities in individual spaces are541

correctly aligned). Extracerebral structures, such as the sinuses are clearly542

visible in the T2-FLAIR volume, as well as the olfactory tract and the ol-543

factory bulbs. Subcortical GM structures are sharply defined, with comple-544

mentary contrast provided by the T1 and T2-FLAIR modalities. (Fig. 3B).545

546

3.2. Age-dependent templates547

The prediction-based ADTs for selected ages in steps of five years are548

illustrated in Figure 4A. The scalar and tensor volumes show consistently549

high quality of both contrast and crispness, and good alignment between550

modalities. Expected age-related differences, such as increases in ventricle551

sizes and sulcal widening, are visible in the templates, while the overall shape552

of anatomical brain structures and the folding pattern remains stable across553

all ages. This is confirmed when looking at the Jacobian determinant maps,554

where the largest differences occur in the ventricles. Cortical GM thinning555

is noticeable in the insular cortex and the inferior frontal gyrus.556

Age-related differences in volume can also be directly derived from the557

templates as exemplified in subcortical structures in Figure 4B, where an age-558

related loss in volume is noticeable for all structures. A small unexpected559

increase in the hippocampus and amygdala volumes was found before age 52.560

We further investigated whether this increase is caused by an artefact of the561

modelling or the data by comparing measurements from the GP-estimated562

48 year Jacobian determinant map with those derived from the average Ja-563

cobian determinant map of all 45-50 year old individuals. We found that our564

model underestimated the relative volume by approximately 1.5% for the565

hippocampus and 1.1 % for the amygdala in this age range, which will be566

partly caused by the smaller number of individuals in this age range, leading567

to larger uncertainty in the GP estimates. A similar pattern in the hip-568

pocampus was observed outside the main data range in (Janahi et al., 2022),569

where GPs were directly applied to volume measurements. However, for the570

hippocampus, similar trajectories in volume difference due to the data have571
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Figure 4: (A) The increase in ventricle size and sulcal widening can be observed across all
modalities in this subset of age-dependent templates (right hemisphere on the left). The
expansion seen in ventricles and sulci and the thinning of GM are visible in the correspond-
ing log-Jacobian maps with dark values indicating contraction and bright values expansion
of the main OMM-1 template. The log-|J | intensity range is set to log(0.5)− log(2.0). (B)
Volume measurements directly derived from the templates show characteristic age-related
differences in subcortical structures. Absolute volumes are given on the left y-axis and
percent volume in comparison to OMM-1 on the right y-axis.
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been reported in the majority subgroup of the study population in (Fraser572

et al., 2021).573

The increase in volume seen in the caudate from 72 years is an artefact574

caused by the segmentation masks, where the increasingly large ventricles575

start bleeding into the caudate ROI at older ages.576

577

Figure 5 visually illustrates the age-related differences between the OMM-578

1 and the 81 year ADTs. It also highlights the high similarity between the579

directly-estimated ADT, the GP-estimated ADT, and the MIITRA template580

(Wu et al., 2022). Note that the GP-estimated ADT was derived by trans-581

forming the original 240 OMM-1 individuals from the 50-55 year age range582

through a GP-predicted warp, while the directly-estimated ADT was derived583

by transforming and averaging individuals with a mean age of 80.44 years.584

MIITRA was created through an iterative process from a cohort with a mean585

age of 80.56 years. While the general shape of all three templates is very586

similar, there are some differences. The directly-estimated ADT has slightly587

larger ventricles than both the GP-estimated ADT and MIITRA. It is also588

slightly blurrier in cortical areas compared to the GP-estimated ADT. Our589

GP-estimated ADT shows improved sharpness in subcortical areas, while590

MIITRA shows improved sharpness in cortical areas such as the occipital591

lobe. The striped appearance of the striatum is visible in the MIITRA, but592

not in the OMM-1 template.593

The MNI 152 is provided as a commonly-used reference template and594

highlights the large difference in scale compared to the OMM-1, ADT and595

MIITRA templates. The cerebral volume of the OMM-1 is approximately596

1,419,081 mm3, which is more than 465 ml less than the 1,884,594 mm3 of597

the MNI 152 and much more similar to the median and mean volumes of598

1,433,335 mm3 and 1,440,417 mm3, respectively, in the entire UKB.599

600
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Figure 5: Visual comparison of the T1 volumes of the MNI 152, OMM-1, 81-year ADT
directly estimated from 81 year old UKB individuals in OMM-1 space, 81-year ADT
estimated with the GP, and MIITRA template (rigidly aligned) (Wu et al., 2022). The
MNI 152 is provided as a reference and highlights the large global scale differences in MNI
templates. Age-related difference between the OMM-1 and the two versions of the ADT-
81 are well noticeable. The GP-estimated ADT-81 shows high similarity in overall shape
and appearance, and age-related features such as ventricle size and sulcal widening, with
both the directly-estimated ADT-81 and MIITRA. The GP-estimated ADT was derived
from the GP-transformed, original 240 OMM-1 individuals (50-55 year age range). The
directly-estimated ADT and MIITRA were derived from older adults with mean ages of
80.44 years and 80.56 years respectively.
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UKB
ADT:     T1, T2-FLAIR, DTI 
OMM1: T1, T2-FLAIR, DTI

OMM1: T1, T2-FLAIR, DTI 
MNI:     T1

Cortical

ROIs

Subcortical

ROIs

Figure 6: UK Biobank: relative differences between Dice coefficients obtained by warp-
ing the same masks with transformations estimated when directly registering to OMM-
1 (OMM1), indirectly registering to OMM-1 via the individual’s corresponding age-
dependent template (ADT), and registering to MNI 152. Each dot indicates one ROI
and the green line shows the average percentage difference over all ROIs. On average
ADTs slightly outperform OMM-1 and OMM-1 outperforms MNI by a larger margin.

3.3. Application to spatial normalisation601

Relative differences in aggregated pairwise dice coefficients for each ROI602

on UKB data are shown in Figure 6. On average over all ROIs spatial align-603

ment to the corresponding ADT slightly outperforms alignment to OMM-1604

by 0.64% in cortical and 0.42% in subcortical ROIs. Alignment to OMM-1605

outperforms MNI 152 by a larger margin of 12.48% in cortical and 4.36%606

in subcortical ROIs. ADTs compared to OMM-1, and OMM-1 compared to607

MNI 152 achieve significantly larger Dice overlaps in 49 and 51 out of 63 cor-608

tical ROIs respectively. ADTs compared to OMM-1, and OMM-1 compared609
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HCP
ADT:     T1, T2-FLAIR, DTI 
OMM1: T1, T2-FLAIR, DTI

OMM1: T1, T2-FLAIR, DTI 
MNI:     T1

OMM1: T1 
MNI:     T1

OMM1: T1 brain-extracted 
MNI:     T1 brain-extracted

Cortical

ROIs

Subcortical

ROIs

Figure 7: HCP: relative differences between Dice coefficients obtained by warping the same
masks with transformations estimated when directly registering to OMM-1 (T1, DTI),
indirectly registering to OMM-1 via the individual’s corresponding ADT, and registering
to MNI 152. Additionally, registrations based on T1-only and brain-extraction T1-only
were compared for OMM-1 and MNI 152. Each dot indicates one ROI and the green line
shows the average percentage difference over all ROIs.

to MNI 152 achieve significantly larger Dice overlaps in 22 and 23 out of 32610

subcortical ROIs respectively.611

612

Similar results can be replicated in an out-of-sample (non-UKB) cohort613

from the HCP (Fig. 7) where the 45 year ADT outperforms OMM-1 on av-614

erage by 0.66% in cortical ROIs and 0.35% in subcortical ROIs. Multimodal615

registration to OMM-1 outperforms single-modal T1 registration to MNI by616

3.31% and 1.77% respectively. Using only T1 for the registration to OMM-1617

performs equally well as registration to MNI for cortical ROIs and 0.54%618

better for subcortical ROIs. Using preprocessed, brain-extracted images and619

templates for T1-based registrations showed a large improvement of OMM-1620

over MNI 152 for both cortical and subcortical ROIs.621

4. Discussion622

We have presented the construction of the OMM-1, a fully-unbiased,623

internally-consistent, multimodal template of the brain including parts of624
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the neck and face, averaging across 240 UKB individuals in the 50-55 year625

age range. GP regression was used to model deformation fields with age after626

registering 37,330 UKB individuals to OMM-1, and allowed the prediction of627

an average warp for each year of age in the corresponding 45-81 age range.628

These warp predictions were used to resample the original 240 OMM-1 sub-629

jects and create one multimodal ADT for each year of age. Test subjects630

from the UKB and HCP were registered to the OMM-1 directly, the ADT631

corresponding to the age of the individual, and MNI 152 to compare their632

performance in spatial normalisation tasks.633

OMM-1 and ADTs consist of T1, T2-FLAIR and DTI volumes, and the634

same modalities were used to jointly inform the template construction pro-635

cess through the use of MMORF for all nonlinear registrations. The scalar636

volumes of all templates provide excellent contrast and exceptional anatom-637

ical detail, and the DTI volume appears sharp in isotropic and anisotropic638

regions. Our strategy inherently provides optimal cross-modality alignment639

between template volumes since all modalities are resampled through the640

same warps.641

The OMM-1 is rigidly (6 DOF) aligned to MNI 152 space to provide a642

basic level of comparability, while avoiding scaling effects, to preserve the643

average brain size and shape of the UKB population. The scaling factor (Ja-644

cobian determinant of the affine transformation) between the OMM-1 and645

MNI 152 indicates an approximately 1.33 times larger cerebral volume of the646

MNI 152, which is also visually noticeable in Figure 5. Although this differ-647

ence in scale might not have a large observable impact when used for spatial648

normalisation, it is not optimal as it will require additional unnecessary dis-649

tortion for the majority of subjects. However, we recognise that considerable650

effort has been put into the development of atlases and analysis of studies in651

MNI space, and we therefore provide a deformation field that maps between652

MNI and OMM-1 space to allow these to be used with, or adapted for, our653

new template.654

The GP model was used to create ADTs in steps of one year between ages655

45 and 81, but allows for the construction of ADTs on a continuous scale656

within this age range. We did not test the prediction of templates outside657

this age range, since the GP model fit becomes increasingly uncertain when658

extrapolating.659

Visual inspection (Figure 5) shows that our GP-estimated ADT-81 is660

highly similar in appearance to an ADT directly estimated from 81-year UKB661

individuals. It also has highly similar shape- and age-related features with662
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respect to ventricle size, cortical folding and global shape and size compared663

to the MIITRA template, which was directly constructed from an older adult664

cohort. The slightly larger ventricles of the directly-estimated ADT will likely665

be caused by the smaller age range (80.0-81.0 years) of the subjects used in666

its construction. This is in stark contrast to 65.2-94.9 years for MIITRA667

and the weighted contributions according to the GP hyperparameters for the668

GP-estimated ADT.669

The GP-estimated ADT shows improved sharpness in subcortical areas,670

while MIITRA shows improved sharpness in cortical areas, especially in the671

occipital lobe. Improvements in the MIITRA template in these areas are672

likely due to their weighted averaging approach, where intensities more sim-673

ilar to the median intensity across subjects at a voxel location receive higher674

weights. Notably, the striped appearance of the striatum is visible in the675

MIITRA, but not in the OMM-1. We have identified two reasonable causes676

for this. The first is that the regularisation metric used by MMORF to677

generate OMM-1, compared to that used by ANTs/DR-TAMAS to gener-678

ate MIITRA, will more strongly penalise the deformations required to align679

the stripes across individuals. Since MMORF optimises the structural and680

DTI alignment simultaneously, the deformations required to align the stripes681

would negatively impact the alignment of the tensors in that region (partic-682

ularly in terms of orientation alignment). This is supported by experiments683

(not shown) where we generated templates using only the T1 channel, and684

in which the stripes were partly visible (but still not to the extent seen in685

MIITRA). The second is that there does not appear to be a clear biological in-686

dication on the consistency of the stripes (= pontes grisei caudatolentiformes687

alternating with white matter forming the internal capsule) in number or ex-688

act location across individuals. Consequently, we do not believe that this689

negatively affects the use of OMM-1 as a registration target, even for older690

subjects.691

We found that using the GP approach over simpler methods (such as ker-692

nel regression or the direct estimation of a template for each year) produced693

ADTs where morphology not affected by ageing (e.g., the folding pattern of694

the cortex) remained far more stable as a function of time. Our GP-based695

approach is also much more time-efficient compared to the repeated, direct696

construction of templates for specific ages. The most time-intensive tasks697

have to be performed only once, i.e., the iterative construction of a template698

(OMM-1) and the training of the GP. The estimated hyperparameters can699

then be re-used for the prediction of new templates thereafter.700
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The loss of subcortical volume in Figure 4 is mostly in line with results701

previously reported in the literature (Walhovd et al., 2005; Vinke et al., 2018;702

Nobis et al., 2019; Wang et al., 2019). The increase in hippocampus and703

amygdala volumes for the younger ages was unexpected and appears to be704

related to the smaller number of individuals available in this age range. This705

is similar to the results obtained by Janahi et al. (Janahi et al., 2022), where706

a GP was applied to extracted volume measurements. In comparison to707

direct measurements from the data, our model-derived ADTs underestimate708

the volume by approximately 1.1 % to 1.5 % for this age range. However, it709

should be noted that a similar increase in hippocampus volume for this age710

range has previously been reported (Fraser et al., 2021).711

The increase in caudate volume seen from age 72 was caused by the712

increasing size of the ventricles at older ages bleeding into the caudate ROI. In713

addition to absolute estimated volumes, we show relative volumes normalized714

by the volumes estimated in generic OMM-1 space. These ratios change at715

different rates for different ROIs as would be expected. The volume change716

of the amygdala is a slight outlier in that it does not reach 100%. The717

reason for both of these deviations is the higher warp resolution of 1 mm718

used for the registrations in the construction of the OMM-1, compared to719

2 mm for the GP-estimated ADTs. Increasing the warp resolution to 1720

mm would produce more fine-grained average warps that might mitigate this721

effect. However, given the increasingly large size of the dataset and the722

corresponding number of required nonlinear registrations, 2 mm was found723

to be a reasonable compromise, and is comparable to, or better than, the724

standard settings of other registration methods.725

The presence of pathologies such as white matter hyperintensities or mi-726

crobleeds at older ages have an impact on registration and subsequently on727

segmentation accuracy in ADTs. Images of individuals in the 50-55 year age728

range provide enhanced tissue contrast, more detail in anatomical structures,729

and less pathologies than images from older individuals. This enhanced qual-730

ity was the main motivation behind choosing 240 younger subjects for the731

construction of the OMM-1, and is an advantage when using the templates732

for spatial normalization, which is generally the main use case for population-733

based templates. Common age-related pathologies not present in these 240734

individuals will also not be present in ADTs, whose image intensities are735

all derived from the the same 240 individuals. Similarly, DTI volumes of736

the ADTs will show expected differences in shape but not in the derived FA737

and MD maps. However, despite the use of these 240 younger individuals738
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for the GP-estimated ADTs, appearance did not show substantial differences739

compared to the directly-estimated ADT-81 (from 80-81 year old UKB indi-740

viduals) and the older-adult MIITRA template.741

On average, alignment to OMM-1 via registration to an individual’s age-742

corresponding ADT shows slightly better spatial normalization performance743

than registering directly to OMM-1 in both UKB and HCP test subjects.744

Although the MNI 152 template is outside the age range of the UKB, it is745

commonly used for adult studies of all ages and, as such, it was included in our746

comparison. The use of OMM-1 and ADTs as template spaces outperformed747

MNI 152 on both UKB and HCP test subjects for the majority of ROIs. The748

performance of MNI 152 was similar to T1-only registration to OMM-1 when749

the skull was included. This can be explained by the large scalp signal present750

in the UKB T1 images and, consequently, also in OMM-1 and ADTs that751

does not match the characteristics of HCP data. The sharp improvement of752

T1-only registrations when used with a brain mask can be observed in Figure753

7. Hence, we recommend the use of a brain mask for the T1 template volume754

when used as registration reference in uni- and multimodal registrations. It755

is also recommended to use a mask for DTI to avoid any potential impact of756

noisy tensors outside the brain. We supply such masks in template space as757

part of our OMM-1 release.758

Whether or not the benefits of slightly improved registration outweigh759

the added complexity of using ADTs will likely depend on the specifics of a760

particular study. In many cases it may be sufficient to simply use the OMM-1761

directly. However, should the use of an ADT be preferred (e.g., the 80 year762

ADT for an older population study), then our template provides a natural763

way to compare results with those from other studies using the generic OMM-764

1, as well as making atlases defined in generic OMM-1 space available in any765

ADT. In addition to age, a new GP model could also be conditioned on other766

attributes such as sex. To get high confidence predictions, this approach767

requires datasets with sufficiently well-represented sub-populations with the768

attribute of interest.769

Our multimodal templating strategy provides a framework for integrat-770

ing complemental information from scalar- and tensor-valued modalities with771

MMORF in a fully-unbiased and internally-consistent way. The use of our772

templates in combination with MMORF can largely improve accuracy in773

spatial normalisation tasks and the availability of spatially corresponding in-774

formation from anatomical images such as T1 and T2-FLAIR and diffusion775

tensors from dMRI will greatly benefit the interpretation of results in tem-776
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plate space. OMM-1 and all pre-constructed ADTs, the code for template777

construction, and MMORF and the MMORF config files used for the non-778

linear registrations can be publicly accessed via (Arthofer et al., 2023). Our779

template construction pipeline is not limited to these specific modalities and780

can be readily applied to other modalities and datasets of interest. In the781

future we hope to further extend the field of view of the OMM-1 to include782

the whole neck and face, which could add further benefits for MEG and EEG783

studies.784
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Appendix A. Dealing with high intensity values801

Clamping of high scalp intensities was achieved with a custom sigmoid802

clamping function803

f(x) =


0 if x ≤ 0

x if 0 < x ≤ k

k/(2 ∗ (1 + exp(−8 ∗ (x− k)/k))) + 0.75 ∗ k if x > k

(A.1)

where x is a voxel’s intensity and k the mean WM intensity.804
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Appendix B. MMORF registration parameters805

Table Appendix B contains the MMORF registration parameters used806

for the construction of the OMM-1 and age-dependent templates. The main807

difference is in the maximum warp resolution which is 1 mm for the former808

and 2 mm for the latter. The choice of reducing the warp resolution from809

1 mm to 2 mm was mainly motivated by savings in runtime, while still810

maintaining a high level of detail.811
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OMM-1 Age-dependent templates

; general

warp res init

warp scaling

lambda reg

hires

optimiser max it lowres

optimiser max it hires

32

1 1 2 2 2 2 2

4.0e5 3.7e-1 3.1e-1 2.6e-1 2.2e-1 1.8e-1 1.5e-1
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5
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; whole head T1

use implicit mask

use mask ref scalar

use mask mov scalar

fwhm ref scalar

fwhm mov scalar

lambda scalar

estimate bias

bias res init

lambda bias reg

0

1 1 1 1 1 1 1

0 0 0 0 0 0 0

8.0 8.0 4.0 2.0 1.0 0.5 0.25

8.0 8.0 4.0 2.0 1.0 0.5 0.25

1 1 1 1 1 1 1

1
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1 1 1 1 1 1

1
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; whole head FLAIR

use implicit mask

use mask ref scalar

use mask mov scalar

fwhm ref scalar

fwhm mov scalar

lambda scalar

estimate bias

bias res init

lambda bias reg

0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

8.0 8.0 4.0 2.0 1.0 0.5 0.25

8.0 8.0 4.0 2.0 1.0 0.5 0.25

1 1 1 1 1 1 1

1

32

1e9 1e9 1e9 1e9 1e9 1e9 1e9

0

0 0 0 0 0 0

0 0 0 0 0 0

8.0 8.0 4.0 2.0 1.0 0.5

8.0 8.0 4.0 2.0 1.0 0.5

1 1 1 1 1 1

1

32

1e9 1e9 1e9 1e9 1e9 1e9

; DTI

use mask ref tensor

use mask mov tensor

fwhm ref tensor

fwhm mov tensor

lambda tensor

1 1 1 1 1 1 1

1 1 1 1 1 1 1

8.0 8.0 4.0 2.0 1.0 0.5 0.25

8.0 8.0 4.0 2.0 1.0 0.5 0.25

1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

8.0 8.0 4.0 2.0 1.0 0.5

8.0 8.0 4.0 2.0 1.0 0.5

1 1 1 1 1 1

Table B.3: MMORF parameters used for the registrations when constructing the OMM-1
and age-dependent templates. Given the large number of individuals used in the age-
dependent template modelling and the large associated computational requirements the
highest warp resolution was set to 2 mm, in contrast to 1 mm used for the OMM-1.
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