Abstract
The three-dimensional structure of a protein plays a fundamental role in determining its function and has an essential impact on understanding biological processes. Despite significant progress in protein structure prediction, such as AlphaFold2, challenges remain on those hard targets that Alphafold2 does not often perform well due to the complex folding of protein and a large number of possible conformations. Here we present a modified version of the AlphaFold2, called Distance-AF, which aims to improve the performance of AlphaFold2 by including distance constraints as input information. Distance-AF uses AlphaFold2’s predicted structure as a starting point and incorporates distance constraints between amino acids to adjust folding of the protein structure until it meets the constraints. Distance-AF can correct the domain orientation on challenging targets, leading to more accurate structures with a lower root mean square deviation (RMSD). The ability of Distance-AF is also useful in fitting protein structures into cryo-electron microscopy maps.
Competing Interest Statement
The authors have declared no competing interest.