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Abstract17

Prefrontal cortex (PFC) is known to modulate the visual system to favor goal-relevant18

information by accentuating task-relevant stimulus dimensions. Does the brain broadly19

re-configures itself to optimize performance by stretching visual representations along task-20

relevant dimensions? We considered a task that required monkeys to selectively attend21

on a trial-by-trial basis to one of two dimensions (color or motion direction) to make a22

decision. Except for V4 (color bound) and MT (motion bound), the brain radically re-23

configured itself to stretch representations along task-relevant dimensions in lateral PFC,24

frontal eye fields (FEF), lateral intraparietal cortex (LIP), and inferotemporal cortex (IT).25

Spike timing was crucial to this code. A deep learning model was trained on the same26

visual input and rewards as the monkeys. Despite lacking an explicit selective attention or27

other control mechanism, the model displayed task-relevant stretching as a consequence of28

error minimization, indicating that stretching is an adaptive strategy.29

Adaptive agents, whether biological or artificial, configure themselves for the learning and decision task30

at hand. For example, when searching for one’s car keys, one might focus on features consistent with31

the shape and metallic sheen of a key. Prefrontal cortex (PFC) modulates the visual system to favour32

goal-relevant information [1, 2]. Goal-directed attention can reconfigure the visual system to highlight33

task-relevant features and suppress irrelevant features [3]. Over longer time horizons, learning processes34

build internal representations that reflect these task pressures [4, 5] with vmPFC critical for determining35

which aspects of the current context are relevant [6]. Attention can be viewed as stretching representations36

along relevant dimensions [7, 8, 9], which is reflected both in behavior and brain response [5, 10, 11].37

Stretching accentuates differences along goal-relevant dimensions while minimizing differences along goal-38

irrelevant dimensions. For example, when searching for one’s car keys, objects varying in metallic sheen39

should become more dissimilar.40
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One possibility is that the brain radically re-configures itself across regions to optimize for the current41

task. Consistent with this possibility, effects of endogenous attention have been observed across the visual42

cortical hierarchy [12, 13, 14], including as early as V1 [15, 16]. Alternatively, some areas devoted to43

modality specific processing, such as the middle temporal cortex (MT) for movement direction and visual44

area V4 for object properties like color, may be invariant across task contexts.45

The ideal study to evaluate whether radical reconfiguration occurs would record from multiple brain sites46

while cueing the relevant dimension for a categorization decision on a trial-by-trial basis. We analyzed47

spiking data from a study[17] that met these criteria. On each trial, the rhesus monkeys viewed a cue that48

indicated whether color or direction of movement was the relevant dimension for the decision (Fig. 1a).49

Once cued, colored dots moved with 100% coherency in a given direction. The monkeys responded by50

moving their eyes left or right, depending on the value of relevant (either color or motion) stimulus51

dimension (Fig. 1c). Recording sites included lateral prefrontal cortex (PFC), frontal eye fields (FEF),52

lateral intraparietal cortex (LIP), inferotemporal cortex (IT), V4, and MT. Unlike previous fMRI studies53

[5, 11] that considered stretching along relevant dimensions during categorization decisions, monkey multi-54

unit spiking data affords the possibility of evaluating whether spike timing, over and above spiking rate,55

is a critical component of the neural code.56
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Fig. 1. Overview of the behavioral task and CNN-LSTM modeling. a, Monkeys
were shown images depicting the fixation point (0.5 s), cue (1 s), and stimulus (up to 3 s).
During each trial, monkeys held central fixation until they responded by making either a left or
right saccade. They were not to respond on ambiguous trials. These same images were shown
to the ANN model consisting of a pretrained CNN for visual processing and a stacked (i.e.,
multilayer) LSTM that learned how to appropriately respond given the task cue and stimulus.
Like the monkeys, the CNN-LSTM learned through trial-and-error to respond left (L), right
(R), or to withhold (N) a response on ambiguous trials. b, Spiking data were analyzed over
a 250 ms period (shown in purple) that began at stimulus onset. Analyses either considered
this time period as a whole or in 50 ms overlapping segments using a sliding window (shown in
green) that was 50 ms wide and moved in 10 ms steps. c There were 21 color-motion stimuli
constructed from the color and motion space. Five stimuli were ambiguous at the origin of the
color-motion space. The remaining 16 stimuli were evenly spread across the four quadrants. A
cross or quatrefoil cue indicated that motion was relevant to the decision. A circle or triangle cue
indicated the color was relevant. In both task contexts, the monkeys responded with a leftward
or rightward saccade. d, From the 16 non-ambiguous trials, we constructed 16x16 dissimilarity
matrices (i.e., RDMs) for data analyses. To determine the value of an entry in the RDM, the
spiking measures for two items would be compared using a particular distance function (e.g.,
ISI, Euclidean distance, etc.) and the value was stored in the row and column corresponding
to the two items. Likewise, RDMs were made for the ANN using the activity patterns from
LSTM’s hidden unit activations.

Considering goal-relevant stretching along a relevant dimension in non-human animals offers opportunities57

to examine how control systems themselves can be learned and configured absent language instruction.58

Non-human animals, like artificial neural networks (ANNs), are naive to these laboratory tasks and,59

unlike verbally instructed humans, have to learn how to allocate their attention through trial-and-error.60
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Nevertheless, non-human animals, including rats, can learn to selectively attend to relevant dimensions61

in related paradigms [18].62

While models of goal-directed attention contain dedicated control systems that selectively weight relevant63

dimensions [7, 9, 8, 19, 20], one possibility is that these control systems themselves can be learned by non-64

human animals and ANNs, enabling them to reconfigure themselves in response to task cues. According to65

this hypothesis, brains and ANNs are powerful statistical learning machines that build control structures66

that adaptively stretch learnt representations along relevant dimensions to facilitate task performance.67

In effect, these systems may build the cognitive machinery that is presupposed in previous work.68

To evaluate this possibility, we constructed a ANN consisting of a deep convolutional neural network69

(CNN) and a stacked long short-term memory (LSTM). The CNN was pretrained to perform object70

recognition on naturalistic images [21]. The CNN part of the ANN, akin to the monkeys’ visual system71

[22, 23, 24, 25, 26], was assumed to be developed and stable prior to the study. Thus, its weights were72

fixed. The sequences of images forming a trial (e.g., the task cue and the moving dots; Fig. 1a) were fed73

into the CNN, whose outputs served as inputs to the LSTM [27]. The LSTM is a recurrent network that74

can process time series to make the left/right decision the monkeys did (see Supplementary Information75

for details). Like the monkeys, the LSTM part of ANN learned through trial-and-error from sequences76

of images, absent verbal instruction.77

Of course, the brain embodies constraints that ANNs do not. Brain regions may be limited to processing78

certain stimulus dimensions and may lack the flexibility to reconfigure. For example, in the present79

investigation, V4 and MT may remain bounded to processing color and motion, respectively. However,80

to the extent the brain can be viewed as an overparameterized statistical learning engine [28], the ANN81

and brain should converge. We predict this convergence will be realized by representations stretching82

along the goal-relevant stimulus dimension. Observing stretching in the ANN would provide a formal83

account of how control and top-down attentional mechanisms can arise from simply maximizing task84

performance, as opposed to relying on preordained mechanisms.85

To foreshadow the results, we observed stretching across all layers of the ANN’s LSTM and in the brain,86

except for areas V4 and MT, which were modality bound. We also used a cognitive model with a dedicated87

attention mechanism to assess stretching in the brain data, which corroborated these conclusions. Finally,88

we analyzed the similarity and fidelity of neural representations [29] and discovered that spike timing was89

critical to how the brain coded representations of the stimuli and task.90

Results91

Spike timing and neural representation. One initial question is which measure of neural similarity92

is most aligned with the neural recordings [29]. To answer this question, we assessed various measures of93

neural similarity to determine which one maximized representational similarity [30] with the experimenter-94

defined stimulus coordinates of color and motion. The high temporal resolution of the spike trains95

allowed us to consider whether dissimilarity measures that take into account spike timing, such as ISI [31]96

and SPIKE [32], offer advantages over rate-based measures, including Euclidean, cosine, and Pearson97

measures. ISI and SPIKE did surpass the non-timing measures (Fig. 2). To confirm the significance of98

the type of measure, we conducted a one-way ANOVA analysis encompassing all measures, F (4, 105) =99

143.06, p < .0001. In particular, ISI performed best and will be used throughout the remaining analyses100

in this contribution (see Bonferroni corrected t-tests in Extended data Tables 1, 2). ISI emphasizes the101

relative intervals between spikes, whereas SPIKE also incorporates the absolute timing of spikes which can102

be useful for evaluating synchrony between spike trains (see Methods and Supplementary Information).103

The advantage of spike timing measures over rate-based coding held across all recording sites (Extended104

Data Figs. 3 and 4).105
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Fig. 2. Spike timing measures best capture the experimenter intended coordinates.
We compared the Spearman rank correlation between dissimilarity matrices (i.e., RDMs) con-
structed from the monkey data for the 16 unambiguous items (see Fig 1d) with an RDM derived
from the experimenter-intended stimulus coordinates (see Fig 1c). Higher correlation indicates
better agreement. a, When motion was relevant, the timing measures ISI and SPIKE surpass
rate coding measures and best capture the experimenter-intended coordinates. b, The same
pattern was found when color was relevant to the monkey’s decision with ISI once again proving
best. The band around each dissimilarity measure depicts the 95% confidence intervals. Time
on the horizontal axis is measured from stimulus onset (see Fig 1b). c, d, The same pattern of
results holds when the entire 250 ms time period is analyzed as a whole.

Dimensional stretching found in both brain and model activity. One key question is whether106

the brain radically re-configures itself across regions to optimize for the current task, which in the present107

study would manifest as stretching along the relevant dimension (color or motion) on each trial. Like-108

wise, we consider whether the LSTM, simply by maximizing performance absent an explicit control or109

attentional mechanism, will adaptively stretch its representations.110

Stretching was assessed by considering item pairs that mismatched on one dimension and matched on111

the other. For example, we predict items mismatching on color and matching on motion should be112

more dissimilar when color is relevant than when motion is relevant. The dissimilarity of the 24 (i, j)113

item pairs that mismatch on color and match on motion is denoted Dc(i, j)
c when color is relevant and114

Dc(i, j)
m when motion is relevant. The 24 item pairs that mismatch on motion and match on color is115

denoted Dm(i, j)c and Dm(i, j)m for when color and motion are relevant, respectively. Stretching should116

be greatest when items mismatch on the relevant dimension.117

This prediction was confirmed both in the brain and LSTM activity (Fig. 3). Mismatches along a118

stimulus dimension were more consequential when that dimension was task relevant. In the monkey119

data, Dc(i, j)
c − Dc(i, j)

m and Dm(i, j)m − Dm(i, j)c were significantly different than 0, M = 0.0007,120

t(23) = −4.274, p < .0001 and M = 0.0007, t(23) = −4.132, p = 1.4e − 4, respectively. In the LSTM121

simulations, Dc(i, j)
c−Dc(i, j)

m and Dm(i, j)m−Dm(i, j)c were significant different than 0, M = 4.738,122

t(23) = −7.259, p < .0001 and M = 7.0694, t(23) = −9.887, p < .0001), respectively.123
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Fig. 3. Dimensional stretching occurs in both neural data and model representa-
tions. a, Dissimilarity between item pairs mismatching on motion or color is increased when
that dimension is task relevant. The density distributions of these dissimilarities also indicate
this task-modulation. b, Changes in dissimilarity over trial time (time 0 s is stimulus onset). For
stimulus pair (i, j), the underscore index indicates the dimension they mismatch, e.g., Dc(i, j)
indicates items i and j mismatch on color and match on motion. Item pairs that mismatch
on motion are more different in the motion-relevant context than in the color-relevant context.
Mirroring, item pairs that mismatch on color are more different in the color-relevant context
than in the motion-relevant context. c, d The CNN-LSTM model shows the same qualitative
pattern of performance – stimulus pairs that mismatch on the task relevant dimension were most
dissimilar.

Stretching across model layers and brain regions. To assess how the six brain regions and LSTM124

model layers are modulated by task, we applied a cognitive model adapted from the generalized context125

model [8]. The model fit assessed how much attention, wr (between 0 and 1), is dedicated to the task-126

relevant dimension with the irrelevant dimension weighted by 1−wr (see Methods). This cognitive model127

assumes the two-dimensional psychological space shown in Figure 1c and is useful for estimating the best128

fitting attention parameter wr, which characterizes representational stretching.129
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a

b

Fig. 4. Task-relevant attention allocation in brain regions and LSTMs layers. a,
The allocation of attention (estimated by fitting a cognitive model) across the six brain regions
is shown. MT prioritizes motion and V4 color regardless of the task context. b, Fitting the
cognitive model to LSTM representations revealed that more advanced layers devoted more
attention to the relevant stimulus dimension.

Figure 4a shows how brain regions representation spaces stretch along the relevant dimension, except130

for MT and V4. To assess these effects, we conducted permutation tests in which dimension considered131

relevant was shuffled (1000 times to construct the null distribution). For the PFC, FEF, LIP and IT, wr132

was significantly larger than expected in both tasks contexts, all p-values less than .01. However, MT133

is modality bounded and focuses on motion dimension in both task contexts, whereas V4 focuses solely134

on the color dimension. Accordingly, these two modality bound regions had higher wr values for their135

preferred dimension and lower wr for their non-preferred dimension as compared to the null distribution,136

all p-values less than .01. For the LSTM, apart from earliest layer (p = .33), all layers had wr values137

greater than expected by chance, all p-values less than .05 (see Extended Data Tables 3 and 4).138

LSTM re-configures itself based on the task goal unlike MT and V4. There is no straightforward139

layer-to-brain correspondence between LSTM layers and brain regions (Fig. 5). Whereas MT and V4140

appear dedicated to processing motion and color, respectively, LSTM layers freely reconfigure as a function141

of the task context. For example, V4 shows a decent correspondence with LSTM layers when color is142

relevant, whereas MT does when motion is relevant. Unlike some brain regions, the LSTM is more flexible143

and can fully reconfigure itself depending on the task.144
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Fig. 5. Alignment between brain region and LSTM layers. a, One hypothesis, supported
by our previous analyses, is that recording sites, with the exception of MT (motion fixated) and
V4 (color fixated), should align equally well with LSTM activity in the motion and color tasks.
b, Alignment, as measured by the Spearman correlation of the RDMs (Fig. 1d) for brain and
model activity, is shown. Most brain regions generally aligned across model layers and tasks.
IT was generally misaligned. In contrast, MT better aligned in the motion task, whereas V4
better aligned in the color task. Consistent with previous analyses, MT and V4 do not seem to
reconfigure as a function of task.

Discussion145

We considered whether the brain re-configures itself to optimize for the current task. For example, do146

neural representations of stimuli stretch along dimensions relevant to the task? We analyzed data from147

a task that, depending on a visual cue at the beginning of each trial, required monkeys to selectively148

attend to one of two stimulus dimensions to make a decision. We found support for the hypothesis149

that the brain radically re-configures itself to optimize performance by accentuating differences along150

task-relevant dimensions. An ANN that was trained on the same visual information as the monkeys also151

displayed task-relevant stretching as a consequence of trying to reduce error, indicating that stretching152

is an adaptive strategy that can arise in systems that aim to optimize performance.153

Stretching was established in the monkey data by analyses that compared stimulus pairs matching or154

mismatching on a relevant dimension. Pairs that mismatched on a relevant dimension were more dissimilar155

than those that mismatched on an irrelevant dimension (Fig. 3). We also evaluated stretching by using156

a model-based approach in which a cognitive model with a selective attention parameter was fit to the157

neural data (Fig. 4). Stretching was found at all recording sites, except for V4 and MT, which were158

bound to processing color and direction information, respectively.159

One way ANN activity diverged from the brain data is that the ANN’s LSTM layers freely reconfigured160

themselves as a function of the task context. In other words, unlike the brain, the ANN was not modality161

bound. Accordingly, there was no straightforward relationship between brain regions and LSTM layers.162

For example, when color was relevant, V4 and network activity correlated, whereas when motion was163

relevant, MT and network activity correlated (see Fig. 5).164

Finally, although not a primary hypothesis, the monkey spiking data afforded the possibility of evaluating165

whether spike timing or rate-based measures better characterize the neural code. Spike timing did appear166

relevant to how the brain represented stimulus information (see Fig. 2). These findings suggest a roll for167

spike timing that should be further explored, including in computational models. While our ANN was168

a recurrent network that processed the sequences of images forming a trial through time, the activity of169

each of its units was a scalar akin to rate-based coding. New models will need to developed to assess170

hypothesis concerning the functional role of spike-timing information in decision making.171
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One strength of the modeling approach is that the ANN was applied to the same image sequences forming172

a trial as those the monkeys experienced. Rather than attempt to incorporate biological constraints, we173

treated the model as a general-purpose statistical machine and observed how it tailored itself to the task.174

Under this approach, convergences between the ANN and the monkeys may reflect general information175

processing principles, whereas divergences may reflect unique properties of biological systems.176

We found that the ANN performed as if it had a cognitive control mechanism that reconfigured network177

layers based on the task cue, stretching representations along task-relevant dimensions. In contrast,178

cognitive models, like the model we used in our analyses (Fig. 4), have dedicated attentional mechanisms.179

The ANN results suggest that general-purpose learning systems can learn to control themselves absent180

purpose-built control circuits. In terms of divergences, we found that, unlike V4 and MT, the ANN181

was not modality bound by layer. This result suggests that there is a benefit or constraint in biological182

systems for localized processing of perceptual streams or dimensions.183

Although this is just one study and model, we believe this modeling approach could complement other184

approaches in the literature, such as approaches that aim to test a priori hypotheses regarding correspon-185

dences between brain regions and model layers as is commonly done in the object recognition literature186

[22, 23, 24, 25, 26, 33]. Our approach may prove useful in other domains, including the meta-learning187

challenge of “learning to learn”. In particular, one interesting question is whether the implicit control188

structures the ANN developed for the present task would provide a useful starting point for mastering189

new tasks that involve selective attention. There might be a great deal to learn about the brain by190

considering the computational challenges it faces.191
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Methods200

Experiment and simulation description. In this work, we aim to model monkey brain learning on201

a flexible visuomotor decision-making task with our CNN-LSTM architecture. In the original experi-202

ment [17], two rhesus (one male and one female) monkeys were shown a series of stimuli videos and203

learned to categorize the color or the orientation of stimuli dots based on cues they saw. Recordings were204

performed using three stereotactically positioned recording chambers, which covered the frontal cortex205

(FEF and PFC), parietal cortex (LIP), and occipitotemporal cortex (IT, MT and V4). There were 21206

color-motion stimuli (5 stimuli on or near the category boundary and 16 stimuli evenly spread across the207

four quadrants) from 7 possible colors and 7 possible motion directions (Fig. 1c). On each trial, monkeys208

saw one stimulus (dot pattern), that is, all dots with the same color moved 100% coherency in the same209

direction. Depending on the task cued at the beginning of each trial, the monkeys categorized either210

the color (red vs. green) or motion direction (up vs. down) of the stimulus and reported their percept211

with a left or right saccade. We did our best to replicate the training procedure as faithfully as possible212

by tasking our model with the same categorization problems, using identical fixation, cue and stimulus213

images (dot pattern) and training our model in a trial-by-trial fashion. We detail how experiments were214
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performed while highlighting and justifying the necessary adjustments we have made in Supplementary215

Information.216

To model the learning process and relate the neural data of trained monkeys, we employ training trials217

and test trials into our model and predict responses. We have a total of 6720 trials covering 4 cues, 2218

speeds, 21 color-motion stimuli with 40 random stimulus dots’ initial positions (4× 2× 21× 40 = 6720)219

and the training/test trial is 3 : 1 (i.e., 5040 training trials and 1680 test trials involved 30 and 10 random220

initial positions, respectively). Notice that although these trials use the same color-motion stimulus (dot221

pattern), the dots’ initial position in each trial is random, exactly as the original experiment. Matched222

with the original experiment, we include ambiguous trials of five boundary stimuli in our training and223

test but excluding them from all data analyses, that is we only consider 16 color-motion stimuli in our224

analyses. We use L (left) to represent the categorization of stimuli with upward motion in the motion225

task or stimuli made of greenish dots in the color task as the same class. Likewise, we use R (right)226

to represent the categorization of stimuli with downward motion in the motion task or stimuli made of227

reddish dots in the color task as the other class. We use N (no response) to represent ambiguous trials228

in training ANN like monkeys did.229

CNN-LSTM architecture. We tailor a CNN-LSTM framework containing a deep convolutional neural230

network (CNN) and a stacked long short-term memory neural network (multilayer LSTM). The overall231

learning task of our model is to categorize the same set of stimuli (a left or right saccade based on either232

motion or color and no response if ambiguous trials), which is identical to the training procedure as233

monkeys did. The CNN front-end is used to simulate the monkey visual system and the stacked LSTM234

is to simulate multiple brain regions such as MT, V4 which might be involved in the learning task.235

Formally, we denote the CNN front-end as f which in our case is a pre-trained VGG-16 up to the pre-236

softmax layer. Given a trial of n stimuli, Ti, f transforms raw images into representations Q ∈ Rn×d,237

where d is the size of the pre-softmax layer,238

f(Ti) = Q. (1)

We then denote the stacked LSTM as g which transforms the visual representations Q into H ∈ Rd×h,239

following240

g(Q) = H (2)

where h represents the number of LSTM cells in each layer. Finally, to transform LSTM representations

into the decision response, we apply two linear transformations W1 ∈ Rh×ht and W2 ∈ Rht×m, mapping

H to P ∈ Rn×m where each row of P being a probability distribution over the m classes that the original

experiment was trained to classify,

(HiW1)W2 = Pi.

In our simulations, we employ 270 images in each trial (n = 270), extract 1000 high-level features from241

VGG-16 to represent each stimulus image (d = 1000), feed these features into 6-layer stacked LSTM242

with 1000 cells (h = 1000) and adopt linear transforms of 256 units (ht = 256) and 3 units (L, R and N,243

m = 3). The number of layers stacked in LSTM is a hyperparameter. We adopt 6-layer stacked for the244

reason that we expect the number of 6 could give us a good chance to match brain regions and better245

examine whether each LSTM layer can learn representations at different levels of abstraction.246

Training and model evaluation. In training our deep neural network, a common cross-entropy loss

function is used for optimization, estimated using the maximum likelihood method:

L = −
N∑
i=1

yi log (pi)
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where label y0 = 1 if monkey had a leftward saccade and y1 = 1 if monkey had a rightward saccade else247

y2 = 1. The five stimuli on the boundary corresponded to y2 = 1 regardless of the cue shape. The Adam248

optimizer is used with the default learning rate of 1e − 5. We use a batch size of 1 (i.e., trial-by-trial249

learning) to match the training procedure of the monkeys. All the simulations are implemented using250

PyTorch [34].251

To evaluate the categorization accuracy of our model, we use micro-averaged F1 score metric. The micro-252

averaged F1 score pools per-sample classifications across classes to compute the micro-averaged precision253

(P) and recall (R) by counting the total true positives, false negatives, and false positives, and then a254

harmonic class of P and R, as follows255

F1 = 2
P ×R

P +R
(3)

ranges between 0 and 1. The closer it is to 1, the better the model. Our model achieves the F1 score of256

98% at least in multiple sampling frames (Supplemental Fig. S2).257

Representational similarity analysis. In order to relate our artificial deep neural network to the brain,258

we utilize representational similarity analysis (RSA), an experimental and analytical framework, relating259

representations in the brain and our model by computing and comparing representational dissimilarity260

matrices (RDMs) that characterize the information encoded in a given brain or model. Each 16 × 16261

RDM in this study contains distances/dissimilarities for pairwise stimuli. The distance indicates how262

dissimilar those two stimuli are in the monkey brain or how dissimilar those two model representations263

are in the model.264

Candidate neural dissimilarity measures. There are many possible measures to calculate the dis-265

tance/dissimilarity between two or more task-relevant and stimuli-relevant spike trains in neural data.266

In this study, we consider candidate measures, such as rate coding, inter-spike interval (ISI) distance and267

SPIKE distance. Rate coding considers spike count within a time bin and represents each stimulus as a268

neural firing rate vector which consists of spike count across neurons whereas ISI and SPIKE distance269

take spike timing into account. ISI emphasizes the relative intervals between spikes while SPIKE also270

incorporates the absolute timing of spikes which can be useful for evaluating synchrony between spike271

trains. Pairwise-stimuli ISI/SPIKE distance is calculated by temporal averaging over a period of trial272

time. Specifically, rate coding explicitly constructs representation vector for individual stimulus before273

constructing the RDM using Euclidean distance, cosine distance or Pearson correlation, and the other274

two measures construct pairwise statistics towards RDM directly. More detailed information of candidate275

neural dissimilarity measures, please see Supplementary Information.276

When processing neural data, we extract the spike trains of isolated neurons detected under electrodes.277

Regardless of which candidate measure we use, each element in task-relevant RDMs is the averaged278

distance (dissimilarity) from spike trains (in the time bins) across task-relevant trials and monkeys using279

a python toolbox PySpike [35] implemented ISI-distance and SPIKE-distance for the numerical analysis280

of spike train dissimilarity.281

Measure evaluation. To identify the best neural dissimilarity measure to analyze neural data, we282

opt for a RSA-based approach where we correlate RDMs derived from candidate neural dissimilarity283

measures to a static reference matrix of stimuli. This reference matrix reflects experimenter’s intended284

relationship between stimuli and we assume that the best measure should be the one that yields the285

highest Spearman’s rank correlation to the reference matrix. To construct such a reference matrix E, we286

represent each stimulus using experimenter-indented coordinates and compute pairwise dissimilarities.287

16 color-motion stimuli are distributed in four quadrants of a coordinate system where each stimulus has288

a unique x-y coordinate. For example, bottom-left item in the coordinate system is denoted as (1, 1) and289

the top-right item is denoted as (4, 4) in Fig. 1c. For any two stimuli a and b with coordinates (ax, ay)290
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and (bx, by), we compute their distance/dissimilarity E(a, b) as291

E(a, b) = 1− e−
√

|ax−bx|2+|ay−by|2 . (4)

We derive such an experimenters-intended-based RDM, E, by calculating the exponential distance of the292

coordinates of pairwise color-motion stimuli. Note that being subtracted by 1 and the exponential function293

have no effect on the calculation of Spearman rank correlation. Although experimenter-intended-based294

RDM provides a fixed reference in both motion and color contexts, it inherently incorporated task-relevant295

distinctions in how it organized information based on stimuli coordinates.296

RDM based on model representations. To derive task-relevant RDMs from model representations297

in the deep neural network, we fill the entries by taking the averaged distance (dissimilarity) between298

hidden states in the LSTM across task-relevant trials. Although we employ Euclidean distance to calculate299

dissimilarities, the results were not affected by using Cosine distance (Extended Data Fig. 5).300

LSTM time estimated. Given that the stacked LSTM processes stimulus images in a sequential301

manner, our model contains hidden states that evolve dynamically over trial time (i.e., stimulus images).302

By capturing the hidden states from processing the first image (fixation) to the last image (moving colored303

stimulus), we can derive n task-relevant RDMs from trials, where n is the number of stimulus images.304

To relate with sliding windows, we use LSTM time estimated by the frames of images. By selecting 60305

frames per second, each image is displayed for 1/60 of a second, allowing the input of each image to be306

considered as a time stamp (Extended Data Fig. 1).307

Dimensional stretching. In two categorization tasks, dimensional stretching refers to the expansion308

of the perceived psychological difference beyond the physical difference between stimuli. In our study,309

attentional effects refer to how the monkeys allocate attention to relevant dimension in response to their310

saccade response in task-relevant context. We evaluate dimensional stretching through model-free and311

model-fit approaches to gain insight into how the monkey brain reconfigured along motion-relevant and312

color-relevant dimensions in task-relevant context.313

Dimensional stretching: a model-free approach. The model-free approach evaluates dimensional314

stretching without assuming an underlying psychological space. Simply, we compare the dissimilarity315

between item pairs mismatch on one dimension and match on the other under two task contexts.316

We denote the dissimilarity between item pairs (i, j) as Dm(i, j) and Dc(i, j) that mismatch on motion317

and mismatch on color, respectively, for instance, in Fig. 1c, stimuli in the bottom-left corner (pink318

and upward) and stimuli in the top-left corner (green and upward) mismatch on color and match on319

motion. For N(i, j) = 24 pairs under motion-relevant context (i.e., (i, j)m) and color-relevant context320

(i.e., (i, j)c), we perform two-tailed paired t-test to show the difference of pairs that in different tasks,321

e.g., Dc(i, j)
c −Dc(i, j)

m and Dm(i, j)m −Dm(i, j)c.322

Dimensional stretching: a cognitive model. The model-fit approach aims to explicitly model the323

psychological space itself, which assumes attentional effects exist and finds the best-fit attention for task-324

relevant context. We use a cognitive model that hypothesizes attention weights towards task-relevant325

and task-irrelevant dimension, then derive an attentional RDM, AE. Specifically, we assign the stimulus326

coordinates and for pairwise stimuli item a and b, the distance/dissimilarity in the task content, for327

example, the horizontal dimension is the task-relevant dimension, is calculated as328

AE(a, b) = 1− e−c∗
√

(wr∗|ax−bx|2+(1−wr)∗|ay−by|2) (5)

where c is constant, wr represents the attention weight in the dimension relevant to the task and wr >=329

0. We find best-fit parameters wr to the task-relevant dimension by maximizing the Spearman rank330
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correlation between attentional matrix AE and representation-based RDM with the grid search,331

wr = max Spearman(AE,RDM) (6)

where all stimuli items are fit at once to provide one estimate of stretching along the dimension of color332

and motion. Based on the cognitive model, we can explore how attention weights change depending on333

the task cued.334

Quantification and statistical analysis. In general, we assume that data were normally distributed335

but this is not formally tested. We conduct a one-way ANOVA analysis to validate the significance of the336

type of measure, and employ a two-tailed paired t-test with Bonferroni correction for pairwise comparisons337

to demonstrate that ISI outperforms other measures. In order to evaluate adaptive stretching, we utilize338

a two-tailed paired t-test and calculate the p-value to establish statistical significance. We perform339

1000 permutation tests by shuffling task labels to assess how extreme the attention weight is in that340

distribution is compared to the null distribution. All statistical tests are described in the main text.341

Levels of statistical significance are indicated as follows: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001, ∗∗∗∗p < .0001.342
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Simulating trials

In the original experiment [1], two rhesus monkeys, one female (Paula) and one male (Rex), were
trained to perform two categorization tasks. Monkeys learned to categorize stimuli into different
classes indicated by the task cue. The cued task was color in half the trials and motion in the
other half. Specifically, monkeys were shown a sequence of animated movies that are made of a
fixation point (0.5 s), a cue (1 s), and stimulus (up to 3 s) in each trial. The cue reflects whether
stimuli should be categorized by its motion or color. There are four types of cues, namely the
cross, the quatrefoil, the circle and the triangle cue. The cross and the quatrefoil indicate that
stimuli categorization should be made based on motion and the circle and the triangle indicate
stimuli categorization should be made based on color. After cueing, the cue disappeared and the
stimulus will be presented at the center of the fixation spot. Monkeys were free to respond any
time up to 3 s after stimulus onset. During learning, neuronal activity was recorded in six regions
of the brain across a maximum of 108 electrodes simultaneously. Images of the fixation point
and cue are static in movies, while stimulus images are moving, made of 400 moving dots with
one out of 21 color-motion combinations and one out of 2 dot’s speed. There are 21 color-motion
stimuli from 7 possible colors and 7 possible motion directions (Fig. 1c). For correct responses to
categorization, monkeys were rewarded with apple juice. There are 16 color-motion stimuli not
near the category boundary but 5 ambiguous stimuli items on or near the category boundary.
Monkeys were always rewarded for not giving any responses in ambiguous trials (stimuli on the
category boundary). These ambiguous trials were excluded for calculating the animals’ percent
correct performance in the original experiment.

To train our deep learning model, we construct identical fixation and cue images to the ones in
the original experiment and stimulus images with the same stimuli patterns (stimulus diameter,
dot diameter, number of dots and dot speed). Since images of the fixation point and cue are
static, we repeat the same image to simulate the movies shown to monkeys, while the stimuli
dots are moving, thus we choose a frequency of 60 frames per second to make it look continuous,
that is a total of 270 images with 30 images of the fixation point, 60 images of cue and 180
images of stimuli in each trial. (The sampling frequency has no impact on model accuracy,
please see Supplemental Figure S2).

Stimulus image details

We construct 128×128 pixels RGB images. In the fixation point image, the distance between the
fixation point and either of the grey dots is equal to 1/4 of the horizontal length of the image.
This ratio is kept constant for the rest of the image types. We import the monochrome cue
images and changed the cue color to grey, the background color to black, adding the three dots
also appearing in the fixation point image. Stimuli are colored dynamic random dot patterns
with 100% motion coherence presented centrally on the fixation spot (stimulus diameter: 3.2;
dot diameter: 0.08; number of dots: 400; dot speed: 1.67 /s or 10 /s for half of the recording
trials, respectively). All colors are defined in the CIE L*a*b* space and had the same luminance
and saturation.
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Measures of spike trains dissimilarity

In this work, we consider candidate neural dissimilarity measures, such as rate coding, ISI dis-
tance and SPIKE distance. Rate coding utilizes a simple scheme where total spike counts alone
carry information. Measures such as ISI distance and SPIKE distance focus on the temporal
profiles of brain activity. ISI distance measures relative spike timing to see whether rhythms
and patterns match, while SPIKE distance also incorporates the absolute timing of spikes which
can be useful for evaluating synchrony between spike trains.
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Figure S1: The illustration of spike trains dissimilarity measures. Rate coding (the first row)
represents a stimulus as the total number of spikes across neurons. ISI distance (the second row)
compares two stimuli based on the relative spike interval vxISI and vyISI while SPIKE distance
(the third row) compares two stimuli, not only based on the inter-spike interval but also on the
absolute spike timing (e.g., ∆tP,∆tF, xP and xF).

Rate coding represents stimulus as neural firing rate across neurons in brain regions or lobes
over a period of time. It is assumed that a time bin with higher firing rate represents more
information. To construct rate-coding-based RDM, we first represent each stimulus as a 1D
vector whose entries are the number of spikes across neurons/electrodes. We then compute
pairwise distance/similarity between 16 stimuli using a range of distance/similarity measures
including Euclidean, Cosine distance and Pearson correlation which fill the entries of a RDM.

ISI distance and SPIKE distance directly calculate the distances between stimuli pairs from
spike trains. With differences which we will note below, both measures can be defined as the
temporal average of the respective time profile

DX =

∫ T

t=0
|X(t)|dt, X = I,K (S1)

where I denotes ISI distance function and K denotes SPIKE distance function.

For each spike train u ∈ {x, y}, at each time instant (Supplemental Figure S1), the time of the
previous spike is

tuP(t) = max ( tui | tui ≤ t)

and the time of the following spike is

tuF(t) = min ( tui | tui > t)
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as well as the interspike interval is

vuISI(t) = tuF(t)− tuP(t)

ISI distance focuses on the relative firing rate pattern based on the instantaneous interspike
intervals [2]. The ISI distance between spike trains x and y at time instant t is calculated as

I(t) =


vxISI(t)

vyISI(t)
− 1 if vxISI(t) ≤ vyISI(t)

−
(
vyISI(t)

vxISI(t)
− 1

)
else

.

For spike trains which are identical or have constant and equal interspike intervals with phase
shift, the ISI distance reaches 0. ISI distance approaches -1 or 1 if the first or the second spike
train is much faster than the other. We derive ISI-distance-based RDM consisting of ISI distance
between 16 stimuli by temporal averaging over the absolute values |I(t)| in the time bin using
Eq. S1.

SPIKE distance builds upon the properties of the ISI distance with a specific focus on absolute
spike timing [3], which accounts for both firing rate differences as well as precise spike time
differences.

The SPIKE distance profile is calculated in two steps: first, a spike time difference is calculated
for each spike and then for each time instant the relevant spike time differences are selected,
weighted, and normalized. Specifically, for two spike trains x and y, each time instant is sur-
rounded by four spikes: the preceding spike from x spike train txP, the following spike from x
spike train txF, the preceding spike from y spike train tyP and the following spike from y spike
train tyF. Each of these spikes can be identified with a spike time difference to the nearest spike
in the other spike train, for example, the instantaneous differences of previous and following
spike times are denoted as

∆txP(t) = min
i
(|txP(t)− tyi |),

and analogously for ∆txF, ∆tyP and ∆tyF (Supplemental Figure S1). For spike train u ∈ {x, y},
the intervals from the time instant under consideration to the previous and the following spikes
is

xuP(t) = t− tuP(t) and xuF(t) = tuF(t)− t.

The local weighting for the spike time differences of the spike train u ∈ {x, y} is

Ku(t) =
∆t

(u)
P (t)x

(u)
F (t) + ∆t

(u)
F (t)x

(u)
P (t)

vuISI(t)

which weights the spike time differences for each spike train according to the relative distance of
the corner spike from the time instant under consideration. In the last step, the two contributions
of the two spike trains are locally weighted by their instantaneous interspike intervals, and then
the SPIKE distance between the spike trains x and y at time instant t is calculated as

K(t) =
Kx(t)v

y
ISI(t) +Ky(t)v

x
ISI(t)

2
〈
v
(u)
ISI (t)

〉2

u
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which ranges from 0 to 1. A value of 0 indicates identical spike trains and 1 indicates maximal
dissimilarity. Similarly, we derive SPIKE-distance-based RDM consisting of SPIKE distance
between 16 stimuli by temporal averaging over the absolute values |K(t)| in the time bin using
Eq. S1.

5

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2023. ; https://doi.org/10.1101/2023.12.01.569615doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.01.569615
http://creativecommons.org/licenses/by/4.0/


Supplemental Figures and Tables

Figure S2: Model performance in different sampling frequency. F1 score is applied
here. Each dot represents one chosen sampling frequency (i.e., frames per second) for stimulus
images, and the performance score is averaged over task-relevant trails at default learning rate.
The original experiment reported accuracy of 94% and 89% for the motion and color tasks in
the monkey brain, respectively. In contrast, our CNN-LSTM model achieves a higher accuracy
of 98% at least.
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Table S1: The type of measure matters in region PFC (F (4, 105) = 81.98, p < .0001). Two-
tailed t-test performed with Bonferroni correction α = 0.05/n = 0.0125 (n = 4) in pairwise
comparison.

t-test ISI

SPIKE t(21) = 4.25; p = .00012

Euclidean(roi) t(21) = 12.89; p<.0001

Cosine(roi) t(21) = 11.83; p<.0001

Pearson(roi) t(21) = 11.83; p<.0001

Table S2: The type of measure matters in region FEF (F (4, 105) = 260.1, p < .0001). Two-
tailed t-test performed with Bonferroni correction α = 0.05/n = 0.0125 (n = 4) in pairwise
comparison.

t-test ISI

SPIKE t(21) = 3.53; p = .0010

Euclidean(roi) t(21) = 26.49; p<.0001

Cosine(roi) t(21) = 21.84; p<.0001

Pearson(roi) t(21) = 21.84; p<.0001

Table S3: The type of measure matters in region LIP (F (4, 105) = 29.98, p < .0001). Two-
tailed t-test performed with Bonferroni correction α = 0.05/n = 0.0125 (n = 4) in pairwise
comparison.

t-test ISI

SPIKE t(21) = 6.45; p<.0001

Euclidean(roi) t(21) = 5.77; p<.0001

Cosine(roi) t(21) = 9.16; p<.0001

Pearson(roi) t(21) = 8.73; p<.0001

Table S4: The type of measure matters in region IT (F (4, 105) = 31.69, p < .0001). Two-
tailed t-test performed with Bonferroni correction α = 0.05/n = 0.0125 (n = 4) in pairwise
comparison.

t-test ISI

SPIKE t(21) = 14.09; p<.0001

Euclidean(roi) t(21) = -1.09; p=.2804

Cosine(roi) t(21) = 6.12; p<.0001

Pearson(roi) t(21) = 5.28; p<.0001
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Table S5: The type of measure matters in region MT (F (4, 105) = 84.66, p < .0001). Two-
tailed t-test performed with Bonferroni correction α = 0.05/n = 0.0125 (n = 4) in pairwise
comparison.

t-test ISI

SPIKE t(21) = -0.54; p=.5947

Euclidean(roi) t(21) = 8.27; p<.0001

Cosine(roi) t(21) = 13.65; p<.0001

Pearson(roi) t(21) = 13.19; p<.0001

Table S6: The type of measure matters in region V4 (F (4, 105) = 21.62, p < .0001). Two-
tailed t-test performed with Bonferroni correction α = 0.05/n = 0.0125 (n = 4) in pairwise
comparison.

t-test ISI

SPIKE t(21) = -2.54; p=.0139

Euclidean(roi) t(21) = 4.23; p=.00012

Cosine(roi) t(21) = 4.53; p<.0001

Pearson(roi) t(21) = 4.32; p<.0001

Table S7: The type of measure matters in frontal lobe (F (4, 105) = 225.5, p < .0001). Two-
tailed t-test performed with Bonferroni correction α = 0.05/n = 0.0125 (n = 4) in pairwise
comparison.

t-test ISI

SPIKE t(21) = 5.27; p<.0001

Euclidean(lobe) t(21) = 21.46; p<.0001

Cosine(lobe) t(21) = 19.17; p<.0001

Pearson(lobe) t(21) = 19.66; p<.0001

Table S8: The type of measure matters in parietal lobe (F (4, 105) = 16.08, p < .0001). Two-
tailed t-test performed with Bonferroni correction α = 0.05/n = 0.0125 (n = 4) in pairwise
comparison.

t-test ISI

SPIKE t(21) = 3.62; p=.0008

Euclidean(lobe) t(21) = 5.84; p<.0001

Cosine(lobe) t(21) = 6.12; p<.0001

Pearson(lobe) t(21) = 5.44; p<.0001
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Table S9: The type of measure matters in temporal lobe (F (4, 105) = 20.58, p < .0001). Two-
tailed t-test performed with Bonferroni correction α = 0.05/n = 0.0125 (n = 4) in pairwise
comparison.

t-test ISI

SPIKE t(21) = -1.14; p=.2609

Euclidean(lobe) t(21) = 5.93; p<.0001

Cosine(lobe) t(21) = 6.17; p<.0001

Pearson(lobe) t(21) = 5.09; p<.0001
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Model (Extended Data Figs. 1)
Result I extended data (Extended Data Figs. 2, 3, 4)
Stats for Result I (Extended Data Tables 1, 2)
Result II extended data (Extended Data Fig. 5)
Stats for Result III (Extended Data Tables 3, 4)
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Extended Data Fig. 1. CNN-LSTM model In our artificial neural network (ANN), a pre-
trained VGG-16 that maps each two-dimensional image (input) to a pre-softmax tensor of size
1000 (output). The output of the CNN, concatenated with pre-softmax logits, serves as an input
to a six-layer stacked LSTM. To transform LSTM representations into the decision response, we
apply two fully connected (FC) linear transformations, one with 256 units and the other with 3
units (L, R and no response). Each stimulus image is a time stamp, denoted as LSTM time.

Extended Data Table 1. Two-tailed t-test with Bonferroni correction α = 0.05/n = 0.0125
(n = 4) was conducted to show that the ISI measure performed best (50 ms) in pairwise com-
parisons.

t-test ISI

SPIKE t(21) = 4.43; p<.0001

Euclidean t(21) = 14.69; p<.0001

Cosine t(21) = 15.03; p<.0001

Pearson t(21) = 15.13; p<.0001
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Motion task

Color task

Extended Data Fig. 2. Spike timing measures best capture the experimenter in-
tended coordinates. We compared the Spearman rank correlation between dissimilarity ma-
trices (i.e., RDMs) constructed from the monkey data for the 16 unambiguous items with an
RDM derived from the experimenter-intended stimulus coordinates. A 20 ms sliding window
is used and moved in 10 ms steps. A one-way ANOVA analysis is conducted to show the sig-
nificance of different types of measures, F (4, 105) = 124.67, p < .0001. ISI measure surpasses
other measures and best captures the experimenter-intended coordinates. A 50 ms time window
is shown in the main text, indicating the length of time window chosen does not affect the
advantage of timing measures in assessing spike trains in such categorization tasks. Time on the
horizontal axis is measured from stimulus onset.

Extended Data Table 2. Two-tailed t-test with Bonferroni correction α = 0.05/n = 0.0125
(n = 4) was conducted to show that the ISI measure performed best (20 ms) in pairwise com-
parisons.

t-test ISI

SPIKE t(21) = 5.80; p<.0001

Euclidean t(21) = 13.00; p<.0001

Cosine t(21) = 14.72; p<.0001

Pearson t(21) = 14.16; p<.0001
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Color taskMotion task

Extended Data Fig. 3. Spike timing matters in each individual brain region. We com-
pared the Spearman rank correlation between dissimilarity matrices (i.e., RDMs) constructed
from the monkey data in each individual brain region for the 16 unambiguous items with an
RDM derived from the experimenter-intended stimulus coordinates. A 50 ms sliding window
is used here. Spike timing measures best capture the experimenter intended coordinates in six
brain regions.
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Color taskMotion task

Extended Data Fig. 4. Spike timing matters in each individual lobe. We compared
the Spearman rank correlation between dissimilarity matrices (i.e., RDMs) constructed from the
monkey data in each individual lobe for the 16 unambiguous items with an RDM derived from
the experimenter-intended stimulus coordinates. 50 ms sliding window is chosen here. Spike
timing measures best capture the experimenter intended coordinates in three lobes (frontal,
parietal and temporal).
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Extended Data Fig. 5. Dimensional stretching occurs in model representations
with cosine distance. a, Dissimilarity between item pairs mismatching on motion or color is
increased when that dimension is task relevant. The density distributions of these dissimilarities
also indicate this task-modulation. b, Changes in dissimilarity over LSTM time with 60 frames
per second in model representations. Stimuli pairs that mismatch on task-relevant dimension
become more different in task-relevant context than task-irrelevant context, and dimensional
stretching was significantly different than 0 (Dc(i, j)

c −Dc(i, j)
m: M = 0.4909, t(23) = −8.541,

p < .0001; Dm(i, j)m −Dm(i, j)c: M = 0.4481, t(23) = −9.178, p < .0001).

Extended Data Table 3. Permutation test statistics on attentional effects in six brain regions.
We performed 1000 times to assess how extreme it is according to the null distributions built
up by shuffling task labels.

Region Permutation test (motion task) Permutation test (color task)

PFC rank=1 , p =.0020 rank=1 , p=.0020

FEF rank=2 , p=.0040 rank=1 , p=.0020

LIP rank=2, p=.0040 rank=1, p=.0020

IT rank=1, p=.0020 rank=2, p=.0040

MT rank=1, p=.0020 rank=1001, p=.0020

V4 rank=1000, p=.0040 rank=2, p= .0040

Extended Data Table 4. Permutation test on attentional effects in LSTM multilayers. We
performed 1000 times to assess how extreme it is according to the null distributions built up by
permuting task labels.

Layer Permutation test

1 rank=164, p=.3277

2 rank=8, p=.0160

3 rank=5, p=.0100

4 rank=3, p=.0060

5 rank=1, p=.0020

6 rank=1, p=.0020
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