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Abstract 

Differentiation of induced pluripotent stem cells (iPSC) towards different neuronal lineages 

has enabled diverse cellular models of human neurodevelopment and related disorders. 

However, in vitro differentiation is a variable process that frequently leads to 

heterogeneous cell populations that may confound disease-relevant phenotypes. To 

characterize the baseline and diversity of cortical neurodevelopment in vitro, we 

differentiated iPSC lines from multiple healthy donors to cortical neurons and profiled the 

transcriptomes of 60,000 single cells across three timepoints spanning 70 days. We 

compared the cell types observed in vitro to those seen in vivo and in organoid cultures 

to assess how well iPSC-derived cells recapitulate neurodevelopment in vivo. We found 

that over 60% of the cells resembled those seen in the fetal brain with high confidence, 

while 28% represented metabolically abnormal cell states and broader neuronal classes 

observed in organoids. Further, we used high-content imaging to quantify morphological 

phenotypes of the differentiating neurons across the same time points using Cell Painting. 

By modeling the relationship between image-based features and gene expression, we 

compared cell type- and donor-specific effects across the two modalities at single cell 

resolution. We found that while morphological features capture broader neuronal classes 

than scRNA-seq, they enhance our ability to quantify the biological processes that drive 

neuronal differentiation over time, such as mitochondrial function and cell cycle. Finally, 

we show that iPSC-derived cortical neurons are a relevant model for a range of brain-

related complex traits. Taken together, we provide a comprehensive molecular atlas of 

human cortical neuron development in vitro that introduces a relevant framework for 

disease modeling. 

Keywords: stem cells, iPSC, differentiation, neurodevelopment, cortical neurons, single-cell 

genomics, transcriptomics, cell painting, high-content imaging, disease modeling  
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Introduction 

Induced pluripotent stem cells (iPSCs) are a powerful tool to model human diseases and traits. In 

particular, iPSC-derived neurons and glia have revolutionized the study of brain-related disorders, 

which previously relied heavily on animal models and post-mortem tissue. However, iPSC-based 

differentiation systems are inherently variable1–3 and for any given protocol, the full spectrum of 

cell types generated in vitro is often not known. For example, in vitro conditions can give rise to 

cell types and states that are not seen in vivo4. To this end, single-cell RNA-sequencing (scRNA-

seq) technology has transformed the resolution at which iPSC-derived cell types can be 

characterized. A recent study integrated over 1.7 million cells from human neural organoids and 

characterized the cell types and states generated by 26 different protocols5. They found that a 

fraction of the in vitro neurons presented metabolic states that differed from their in vivo 

counterparts, linked to cell stress induced by the in vitro conditions. Further, while informative, 

gene expression levels alone do not comprehensively capture cellular function and the biological 

processes that ultimately drive disease pathophysiology in tissues, organs, and whole organisms, 

highlighting the need for complementary cellular readouts. 

In this study, we used scRNA-seq to characterize cell type heterogeneity in an established 2D 

cortical neuron differentiation system based on dual-SMAD inhibition, chosen for its reported 

ability to recapitulate the progression of neurodevelopment in vitro6,7. We collected transcriptomic 

data from >60,000 cells from four healthy donors across three time points corresponding to early 

progenitors (day 20), intermediate progenitors (day 40) and maturing cortical neurons (day 70) 

(Fig. 1a) and compared them to fetal cell types in vivo (Fig. 1b). To systematically explore cellular 

phenotypes beyond the transcriptome, we also assayed the differentiating neurons with Cell 

Painting (CP), a high-content, multiplexed image-based method to capture cellular morphology8,9 

(Fig. 1c). Cell Painting uses fluorescent dyes to label different basic organelles of the cell, such 

as the nucleus, mitochondria, and the endoplasmic reticulum (ER) from which hundreds of image-

based features can be derived, representing the morphological profile of each cell. In order to link 

transcriptomic features to cell-level morphological phenotypes, we analyzed the CP data at a 

single-cell resolution and, by leveraging a predictive model10, provide links between image 

features and gene expression levels in developing cortical neurons (Fig. 1d). 

We observed that even for a small number of iPSC lines, links between gene expression and 

morphological features recapitulate known cell biology, as previously reported11. We also found 

that donor-specific changes were recapitulated by both assays, and image-based features can 

offer insights on the dynamics of morphological readouts, as observed with changes in 

mitochondrial intensity over time. However, our results suggest that characterization of a 

heterogeneous system based on cellular morphology requires targeted development of the CP 

assay for the cell types of interest12, as well as larger sample sizes to generalize the results. 

Taken together, we present here a single-cell atlas of 2D cortical development that draws from 

both transcriptomics and cellular morphology measurements to establish a phenotypic baseline 

for subsequent disease modeling studies.  
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Results 

1. Characterizing cell type diversity of cortical neuron development in vitro 

We differentiated iPSCs from four donors towards cortical neuronal fate and characterized them 

at days 20, 40 and 70 of the differentiation using scRNA-seq and Cell Painting (Tables 1, S1-S4). 

As a preliminary benchmarking of whether the three timepoints captured the expected cell types, 

we confirmed expression of canonical markers of neural progenitors (NESTIN), intermediate 

progenitors (EOMES) and neurons (TUJ1) via immunocytochemistry6 (Fig. 1d, S1a) (Tables S5-

6, Methods). We then leveraged scRNA-seq data to further classify the cell types of the 60,000 

cells present in our dataset. It has been established previously that in vitro generated neurons 

more closely resemble fetal rather than adult neuronal cell types13,14. We thus used the reference 

mapping approach (Methods) from the Seurat package15 to transfer cell type labels from a well-

annotated mid-gestation (gestational weeks 17-18) fetal reference16 onto our query dataset. With 

this approach, we annotated cells without being limited to a few canonical markers, aiming to 

better describe the dynamics of in vitro cortical differentiation. We identified 15 cell types produced 

across the three time points, capturing a large portion of the heterogeneity seen in developing 

neurons (Fig. 1b). These include various progenitor cell types (cycling progenitors, ventral and 

outer radial glia) as well as intermediate progenitors and maturing neuronal cells (deep layer and 

maturing upper layer excitatory neurons). As has been reported recently17, we also note the 

production of inhibitory neurons within our cortical system (MGE- and CGE-like interneurons). 

To further probe the extent to which in vitro differentiated cells resembled those produced in vivo, 

we correlated the expression profiles of query and reference cell types (Methods). Although our 

annotated cell types showed the highest correlation to the equivalent fetal cell types (mean 

R=0.50, off-diagonal mean R=0.05) (Fig. S1b), the specificity of the in vitro cell types to the fetal 

cell types improved (mean R=0.55, off-diagonal mean R=0.03) (Fig. S1c) after retaining only high-

confidence predictions18 (mapping scores >0.5). Approximately 40% of the cells fell below this 

threshold and remained unmapped. Further, the proportions of the annotated cell types varied as 

expected across time points, with progenitors being more abundant at the earliest stage and 

decreasing at day 40 and 70, whereas neuronal cells followed the opposite trend (Fig. 1f). We 

additionally detected donor-to-donor variation as is expected from iPSC-based models1,2, with two 

specific cell types showing differential abundance - pericytes and inhibitory neurons (Fig. 1f). 

2. Cell Painting for phenotyping developing neurons at the single-cell level 

Cellular organelles such as mitochondria and the ER are known to play an important role in 

neurodevelopment, specifically in meeting dynamic energetic and metabolic requirements19. 

Aiming to characterize the morphological features of developing neurons in vitro, we assayed six 

cell lines (n=4 donors) with Cell Painting at days 20, 40 and 70 of the differentiation, originating 

from the same samples used in day 20 of scRNA-seq (Methods). Image-based features such as 

fluorescence intensities, texture and cell shape measures obtained from each CP channel 

represent the overall morphological profile of the cell. These features were extracted into a matrix 

per single cell, and, after quality control and regularization (Methods), we obtained a feature 

matrix of 223 features from 54,415 cells. Well-to-well correlation indicated that differentiation day 

was, as expected, the major source of variation (Fig. S2a). The feature matrix was then analyzed 
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in a similar manner to scRNA-seq data. Thus, Leiden clusters projected on a Uniform Manifold 

Approximation and Projection (UMAP) (Fig. 2a) describe the main phenotypic states captured by 

Cell Painting.  

In light of the high modularity of CP features, we defined feature modules based on the correlation 

between CP features (Figs. 2b, S2b). Correlated features within the same module usually 

corresponded to multiple aspects of the same measurement, for example cell area and perimeter, 

or the average and minimum intensity of each channel. Interestingly, there was a global 

correlation between the channel comprising the cell membrane, Golgi apparatus, actin 

cytoskeleton and nucleoli (CGAN) and the ER channel. In contrast, some pairs of Cell Painting 

features were highly anticorrelated (Fig. S2b). In our study, this was observed between cell size 

and density, suggesting that smaller cells are more likely to be found in areas of higher density 

(Fig. S2c). Furthermore, a near-perfect negative correlation was detected between ‘Angular 

Second Moment' texture values and the intensity within each channel. This phenomenon 

suggests that these two measurements may represent inverse aspects of the same underlying 

characteristic. 

The distribution of feature values shows that despite the difference between timepoints, CP was 

able to capture a relative continuity across them. Clusters composed mainly of day 20 cells were 

characterized by high intensities for the mitochondria channel (Fig. 2b-c), and clusters with mainly 

day 40 cells by medium mitochondria intensity and high ER intensity. Interestingly, day 70 was 

the most heterogeneous timepoint with three distinct profiles: cells with a large area that were 

close to d40 cells in terms of features value (‘d70.bigCells’), cells with very low mitochondria 

intensity (‘d70.mitoNeg’) and cells that clustered with d20 cells (‘d70_20.mito’). 

To improve the interpretability of CP features and link them to gene expression, we modeled the 

relationship between Cell Painting and scRNA-seq. Similarly to Haghighi et al.10, we used the 

common experimental design between the two assays to train lasso regression models that can 

be used to predict the corresponding CP feature values of the scRNA-seq dataset (Methods). 

We then used the model coefficients matrix to perform a functional enrichment, using the median 

of gene coefficients per feature module as an input to Gene Set Enrichment Analysis (GSEA) 

(Fig. 2b, Supplementary Data 1)20,21. The analysis revealed a significant redundancy among the 

enriched terms observed, with a predominant focus on the proteasome, extracellular matrix, and 

mitochondrial respiration. This pattern underscores the tendency of Cell Painting to predominantly 

capture variation related to cell morphology rather than specific pathway regulation. In most 

cases, the enriched terms per module were closely linked to the module-associated features, 

increasing the confidence in our model. The enrichment of terms related to the ER membrane in 

a module composed of features associated with the ER channel is a notable example. 

Interestingly, other general terms such as intensity of mitochondria were more linked to 

mitochondrial ribosomes than mitochondrial respiration or oxidative phosphorylation. A small pool 

of d20 cells (‘d20.nucNeg’) was particularly linked with mitosis. To further explore the possible 

link between CP and cell cycle, we predicted the cell cycle scores (G2M score, S score) in the 

CP dataset by using the predicted CP features matrix on scRNA-seq profiled cells and their 

annotated cell cycle scores (Methods). Using our regression model, ‘d20.nucNeg’ cells showed 

the highest median values for both G2M score and S score, and, coupled with their particular 
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morphology (Fig. 2d), suggests that CP is able to capture cycling cells at least at day 20.  

We also used the predicted CP feature matrix to assess the correlation between CP clusters and 

the cell types inferred from scRNA-seq (Fig. 2e). The low specificity of this correlation did not 

enable distinguishing individual cell types, as multiple cell types exhibited correlation with CP 

clusters. Conversely, multiple CP clusters correlated with a single cell type. Rather, a general 

pattern emerged distinguishing "neuronal" cell types from other cell types based on the 

relationship between specific groups of cell types and CP clusters. This pattern demonstrates the 

efficacy of Cell Painting in classifying these two broad categories of cells, yet it also highlights its 

limitations in differentiating between subclasses of neurons. 

3. Neurodevelopment in vitro follows known trajectories and recapitulates cell type 

heterogeneity seen in vivo 

Neurodevelopment in vivo is characterized by a tightly regulated developmental trajectory, from 

neural progenitors to radial glia and, via intermediate progenitors, to maturing neurons. By 

constructing the pseudotime trajectory of our differentiating cells across the three time points 

(Methods), we found that the developing cells in vitro follow a similar trajectory as seen in vivo 

(Fig. 3a). Additionally, by computing gene modules changing as a function of pseudotime with 

the Monocle3 toolkit, we identified gene sets linked to the development of individual cell types 

(Fig. S3a). These gene sets were enriched for many expected biological processes, such as 

‘nuclear division’ in PgG2M cells and ‘ribonucleoprotein complex biogenesis’ in PgS (Fig. S3b-f). 

The IP-associated module was tagged by terms such as ‘cell fate commitment’ and ‘channel 

activity’, indicative of the transitory role these cells play between progenitors and neurons. 

Neuronal modules were characterized by formation and regulation of synapses as well as ion 

channel activity, with the inhibitory neuron-associated module linked to GABA signaling.  

From the CP data we observed a distinct pattern of mitochondrial features across the UMAP, with 

mitochondrial intensity-related features more prominently associated with d20 cells and 

decreasing towards d70, whereas mitochondrial texture-associated features (angular second 

moment) followed the opposing trend (Fig. 3b). To associate this trend with specific cell types, 

we projected these CP features onto the scRNA-seq UMAP confirming that the trend is 

maintained; mitochondrial intensity is higher amongst progenitor cell types, whereas angular 

second moment is higher amongst mature/maturing neurons, representing uniform texture (Fig. 

3c). The notable exception is the region of the UMAP occupied by inhibitory neurons, specifically 

MGE-like interneurons, which instead have high mitochondrial intensity and low angular second 

moment. 

Given the cell-type specificity of mitochondrial CP features, we sought to determine whether we 

could detect changes in the transcription profile linked to mitochondrial metabolism. It has been 

reported previously that NPCs meet their energetic requirements primarily through glycolytic 

pathways, and the switch to neuronal fate is associated with a switch to dependency on oxidative 

phosphorylation (‘OxPhos’)22. Gene set variation analysis (GSVA) on pseudo-bulked cell types 

for both glycolysis and OxPhos (Methods) confirmed that most neuronal cell types had lower 

glycolytic dependency, with all excitatory cell types showing maximum activation for OxPhos 

except for ExDp1 (Fig. 3d). We further tested for enrichment of gene ontology (GO) terms 
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associated with mitochondria in the gene expression patterns per cell type, finding a clear link 

between the progenitor cell types and mitochondrial ribosomal subunits, whereas mature cell 

types were linked to mitochondrial membrane components, known to be linked to OxPhos (Fig. 

3e). These findings complement the trend observed from the functional enrichment of CP feature 

modules, where day 20 clusters were enriched in mitochondrial ribosome and mitosis, day 40 in 

transcriptional regulation, and day 70 in oxidative phosphorylation (Fig. 2b).  

4. Metabolic differences shape high versus low quality cells produced in vitro 

Although our in vitro differentiated cells recapitulated in vivo processes, the ‘unmapped’ cells still 

represented a non-negligible fraction (~40%) whose identity remained unexplained. Further, the 

unmapped cells were found to be present across the UMAP (Fig. 4a), likely indicating that cells 

did not fully resemble the fetal transcriptomes and/or were transitioning between cell types, rather 

than being a single missing or unannotated cell type. By assigning the highest scoring cell type 

label to each cell in the unmapped fraction of cells, we divided our dataset into high and low quality 

(HQ/LQ) cells for each annotated cell type (Methods). The LQ cells still expressed canonical 

markers of the cell type they were closest to, although at lower levels, except in the case of oRG 

and IPs (Fig. S4a). Additionally, LQ cells did not show consistent differences in pseudotime 

scores as compared to HQ cells of the same cell type (Fig. S4b), which would have been 

indicative of transitioning cell states. Given this, we assessed what transcriptomic features were 

driving their lower mapping scores. By comparing differential activation of developmentally 

relevant pathways between high- and low-quality cells per cell type, we identified those that 

differed (Fig. 4b). Importantly, although metabolic processes seemed to be implicated overall, we 

did not see consistent changes across all cell types, rather observing specific changes driving the 

LQ version of each cell type, such as DNA replication and glycolysis in progenitor cell types (vRG, 

oRG, IP). Also, we observed the highest steroid biosynthesis activation in mapped maturing 

excitatory neurons (ExM) compared to unmapped, but the opposite trend was observed within 

progenitors (PgS, PgG2M).  

Aberrant cellular metabolism has previously been reported in other in vitro systems, often 

highlighted in the oxidative phosphorylation and glycolytic pathways5,23. In cortical organoids, it 

has been seen that a fraction of cells does not recapitulate distinct fetal cellular identities4. 

Hypothesizing that our unmapped cells represented a similar fraction, we annotated our 

unmapped cells to cortical organoid cell types from Bhaduri et al. (2020)4 using the same label-

transfer method and threshold described above (Methods). Upon this, we found that more than 

50% of the previously unmapped cells could be attributed to ‘pan-radial glial’ or ‘pan-neuronal’ 

cell types across all three timepoints (Fig. 4c). These were described in the original publication 

as broad progenitor or neuronal cell classes that did not express features distinctive to any one 

fetal subtype.  

We compared the differentially activated pathways between cells of the closest cell types that 

passed this bottleneck of subtype acquisition to those that maintained a pan-cell identity. Similar 

to differences observed between high- and low-quality progenitor cell types, pan-radial glia 

differed in ribosome-associated pathways. Pan-neuronal cells, however (ExPanNeu-O), were 

characterized by features of both excitatory and inhibitory neurons, differing again metabolically 
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such as in oxidative phosphorylation or steroid biosynthesis. We identified modules of the top 

genes driving differentially activated pathways in these cell types and, by scoring these gene 

modules per single cell (Methods), assessed their distribution in multiple neuronal cell types (Fig. 

4d). We found that overall, pan-neuronal cells appear to be intermediate to either excitatory or 

inhibitory neuron specification, except for the ribosome pathway. 

Additionally, with the inclusion of the second step of annotation, we identified cell types that were 

initially missed, mainly astrocytes (Fig. 4c). While expected to be produced in this protocol, they 

were absent in our fetal reference, and thus, the first annotation step alone did not identify them. 

Our experimental workflow involved the use of two versions of the differentiation protocol 

(original/modified, see Methods), differing in enzyme usage for cell dissociation (see Table S2 

for details). To check for potential effects of the protocol on the generation of cell types, we used 

miloR24 to test for differential abundance of annotated cell types between the protocol versions. 

At day 40, we found that the astrocyte population (AstroHindb-O) was overrepresented in the 

modified version of the protocol (Fig. 4e). 

5. Donor-specific effects drive neuronal cell fate determination 

Inhibitory GABAergic interneurons play a key role in cortical circuits by balancing the 

excitatory/inhibitory activity and by regulating the formation of synapses. Abnormalities in 

interneuron development, function or migration have been associated with autism spectrum 

disorder25,26 and other neurodevelopmental disorders (NDDs)27,28. Of the mature neurons 

identified in our dataset (21%), nearly 40% were annotated as inhibitory interneurons of either 

caudal or medial ganglionic eminence (InCGE/InMGE).  

Although these have canonically been described to originate from brain regions outside of the 

cortex, in vitro studies have previously reported the generation of GABAergic neurons from 

cortical progenitors29,30. A recent study from Delgado et al. confirmed via clonal lineage tracing 

studies that a subpopulation of cortically born GABAergic neurons was transcriptionally similar to 

ventrally-derived cortical interneurons, but instead arose from cortical progenitors17. The InCGE 

cells from our dataset were characterized by expression of the DLX family of genes, as well as 

GAD2, DCX and MEIS2. InMGE cells expressed a subset of canonical markers such as SST, 

DCX, MEIS2 but, similar to Delgado et al., differed from true ganglionic eminence interneurons in 

lack of expression of LHX6 and NKX2.1 (Fig. S5a). This production of interneurons in our system 

is key to better recapitulate human fetal development considering the relevance of the inhibitory 

component in neural circuits. 

The clustering proximity of these interneurons with excitatory neuronal cell types prompted us to 

explore the pathways that differed between them. Previous studies both in mice31 and in vitro 

cultures30 have indicated the interplay of WNT and SHH signaling as a key player in maintaining 

the excitatory/inhibitory balance. However, GSVA analysis of KEGG genes associated with these 

pathways did not show a consistent upregulation of WNT signaling in all excitatory cell types, nor 

vice versa with Hedgehog signaling for inhibitory cell types (Fig. S5b-c). Instead, we found lower 

values of enrichment scores for oxidative phosphorylation pathway-associated genes in inhibitory 

than in excitatory neurons (Fig. 3d, also seen from GSEA, Fig. S5d). 
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Additionally, as noted earlier, MGE-like interneurons showed marked differences from the other 

neuronal cell types in CP-based mitochondrial features (Fig. 3c). A single donor (HEL61.2) 

presented an excess of this inhibitory neuronal subtype across time points (Fig. 5a). This same 

donor was overrepresented in the CP cluster ‘d20.endoRetNeg’, characterized by lowered 

intensity of the ER channel, and underrepresented in the ER-intense ‘d40.endoRet’ channel (Fig. 

5b), pointing towards donor-specific ER effects potentially linked to inhibitory cell fate. 

Interestingly, we also observed an effect of lowered ribosome-associated genes in gene 

expression data - the two donors accounting for 80% of inhibitory cell types at days 40 and 70 

showed an overall decrease in the KEGG ribosome pathway at these timepoints (Fig. 5c). 

Complementarily, a GSVA of mitochondria-associated GO terms across our in vitro cell types 

(Fig. 3e) revealed an overall depletion of mitochondrial ribosome associated genes in inhibitory 

neurons compared to other cell types, as has been previously reported32. 

In order to elucidate which genes are responsible for the bifurcation between the excitatory and 

inhibitory fate in our in vitro differentiation, we focused on the branch point along the pseudotime 

trajectory that either produces inhibitory interneurons or IPs, which in turn give rise to excitatory 

neurons. Within this branch point, we identified modules of genes that were differentially 

expressed as a function of the pseudotime (Methods). As expected, the module marking the 

inhibitory branch (Module 12, Fig. S5e) consisted of TFs known to drive interneuron fate such as 

the DLX family of genes, which was overexpressed in the donor HEL61.2 in d40 progenitors (Fig. 

5d). In donors producing inhibitory neurons, expression of the DLX family increased with 

pseudotime, peaking at interneuron production. Concordantly, the expression of genes driving 

the differential activation of the KEGG ribosome pathway (RPL39 and RPL19) also decreased in 

donors producing inhibitory neurons (Fig. 5e). Altogether, our data is indicative of lowered 

ribosomal activity and mitochondrial differences between excitatory and inhibitory neurons 

overall. 

6. In vitro derived cell types capture heritability of brain-related traits 

Finally, to evaluate the relevance of our in vitro cortical neurons for disease modeling, we used 

stratified linkage disequilibrium (LD) score regression33 to quantify how much heritability of 

common diseases and other traits is enriched within genes that are markers of the cell types 

generated in vitro. We analyzed GWAS summary statistics from a set of 79 common traits 

including 12 brain-related phenotypes (Table S7, Fig. S6a-b) (Methods). There was a clear 

enrichment of significant brain-related associations when accounting for all tests (Fisher Test, 

p=9.617·10-13). Comparison of traits captured by in vitro cell types (Fig. 6a) to those captured by 

GTEx tissues34 (Fig. 6b) shows that iPSC-derived neurons are relevant for multiple brain-related 

traits that are associated with the cortex/frontal cortex. Additionally, they provide increased 

specificity over the tissue-level in many cases, as illustrated for bipolar disorder35 with enrichment 

in both excitatory and inhibitory neuronal subtypes. We further captured certain traits missed in 

GTEx tissue such as risk tolerance in deep layer excitatory and MGE-like inhibitory neurons, as 

predicted by Karlsson Linnér, et al.36. Similarly, we found a strong association between 

depression and excitatory deep layer neurons, as well as maturing excitatory neurons37. We also 

observed a high enrichment of educational attainment-associated genes in InMGE neurons, 

concordant with reports of the role of inhibitory neurons in learning and memory27. These findings 
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highlight the importance of generating both excitatory and inhibitory neuronal cells within our in 

vitro model. 

In addition to brain-related complex traits, iPSC-derived neuronal models are widely used to 

model rare NDDs, given their ability to recapitulate cell lineages from very early developmental 

time points and their transcription similarity to fetal, rather than adult cell types. To identify which 

of our cell types expressed genes associated with NDDs, we evaluated the cell type-specific 

expression on brain-specific developmental disorder genes from the Deciphering Developmental 

Disorders (DDD) study38. Interestingly, we observed that while approximately 45% of all high-

confidence, brain-related DDD genes (n=719) exhibit their highest expression levels in mature 

neuronal cell types, progenitor cell types also captured another ~30% of genes associated with 

developmental delay (Fig. S6c). Focusing on a subset of DDD genes (n=72) known for their high 

intolerance to loss-of-function mutations (Methods) highlighted the presence of both neuron-

specific (e.g., BCL11A) and progenitor-specific genes (PAX6 and KIF11) (Fig. 6c). This 

underscores the importance of using temporal models of neurodevelopment in the context of 

disease research. 

Discussion 

Transcriptomic data has been hugely informative for human disease genetics studies, providing 

solid links between genetic variants and transcriptomic features via identification of quantitative 

trait loci in diverse tissues, cell types, and conditions39–41. iPS cells have expanded the range of 

cell types and lineages available to mapping studies1,2,39, and made cellular modeling experiments 

feasible in many traits that affect previously inaccessible cell types. However, since gene 

expression changes do not always lead to changes in cellular function42, there is a pressing need 

to move ‘beyond the transcriptome’ and start linking genetic variants to cell-level phenotypes. This 

requires well-characterized cellular models and scalable functional assays. To this end, we 

describe here a comprehensive characterization of iPSC-derived cortical neurons from a widely 

used protocol where we combined single cell transcriptomics with image-based readouts of 

cellular morphology. Our study represents a proof-of-concept, where we piloted Cell Painting in a 

heterogeneous, dynamic system - cortical neurodevelopment - and explored how the joint 

analysis of imaging and gene expression-based profiles of single cells can contribute to identifying 

new cellular phenotypes. 

A common challenge in modeling cortical neurodevelopment in vitro, regardless of the applied 

protocol, lies in determining whether the cell types generated accurately mirror the transcriptional 

signatures and developmental trajectories observed in vivo. Previous studies in organoids linked 

in vitro-specific cell states to aberrant oxidative or glycolytic stress4,23. These alterations in energy-

associated pathways are frequently linked to the limitations of the culture media to provide 

essential nutrients to cells, especially within the necrotic cores of organoids23. In a recent study5, 

transcriptomic differences between cells from human neural organoids (comprising 26 protocols) 

and developing human brain (first-trimester)43 were associated with the upregulation of canonical 

glycolysis and mitochondrial ATP synthesis-coupled electron transport in organoids. Notably, 

canonical glycolysis was adopted as a proxy for cell stress given its association with expression 

differences observed between organoid and primary cells. Similarly, we observed that our low-
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quality cells showed distinct metabolic and energetic states compared to high-quality cells of the 

same type. For instance, pathway activation scores differed in glycolysis among progenitors, and 

in steroids biosynthesis among excitatory neurons. A fraction of these low-quality cells could 

indeed be linked to an exclusive organoid identity, most of them being either pan-neuronal or pan-

radial glial. Mis-annotating these low-quality cells could potentially bias downstream findings if not 

accounted for.  

While scRNA-seq alone allowed us to classify a diverse array of cell types produced, the dynamic 

nature of developing neurons involves alterations beyond the transcriptome such as in cellular 

size, shape, and complexity. Cell Painting, with its capacity for large-scale and unbiased 

screening of cellular morphological phenotypes, proves highly suitable for characterizing an in 

vitro system where phenotypes are not known a priori.  Furthermore, the application of this assay 

throughout the developmental trajectory offered insights on the dynamics of morphological 

readouts, as observed with mitochondrial channel intensity (Fig. 3b-c). Analyzing CP readouts 

presented its own challenges: instead of averaging CP features by well post cell-segmentation, 

as is often done, we analyzed CP readouts at a single cell level, enabling us to capture 

morphological heterogeneity, although at the cost of increased noise44. Although lower seeding 

density in culture may improve the accuracy of segmentation, we have previously observed that 

the viability of developing neurons is compromised in sparser culture conditions. 

Given the proof-of-concept nature of this study, the sample size limits our ability to generalize our 

findings beyond our differentiation. Despite this, donor-specific variation boosted the capacity of 

the model to link variation in gene expression to CP features. Previous studies have attempted to 

link gene expression and cell morphology assuming shared biological information between the 

two, and have found that changes in image-based features are associated with a subset of genes, 

often related to the cellular components and organelles stained in the assay10,11. The 

generalizability of the CP assay45 means that such direct links to cellular components are 

reproducible in different cell lines, such as human osteosarcoma U2OS cell lines used in previous 

studies versus our neuronal model. For example, we identified functional terms linked to CP 

features that recapitulate known or expected biology, such as those linked to ER, supporting our 

model’s performance. However, beyond this, morphology-to-gene expression links are likely to 

be highly cell type-specific, making it difficult to compare findings from U2OS to neuronal cells. 

To enhance the interpretability of novel associations between features and potential biological 

function, we applied a linear model rather than a black-box machine learning approach, as in 

previous cross-modality CP-based approaches46. In the future, developing new techniques which 

systematically link CP readouts with cellular transcriptomes from the same individual cell would 

offer a ground truth for model validation. 

In general, a multi-modal perspective of any system offers insights that may not be visible from 

any one assay alone. Here, CP revealed donor-specific ER changes corresponding to observed 

ribosomal transcriptomic differences in inhibitory versus excitatory neurons. Although these two 

cell types transcriptionally cluster together, the CP cluster marked by the lowest ribosomal 

association, which likely contains low-ribosome inhibitory neurons, groups amongst progenitors. 

We thus hypothesize that these observed ribosomal/ER-linked differences could reflect 

differences in maturity between excitatory and inhibitory neurons. Understanding how interneuron 
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production is altered at the level of both gene expression and cellular processes is key to uncover 

the mechanisms implicated in NDDs, as suggested by recent findings implicating the ER and 

cytoskeleton in interneuron development and migration28. Further, the production of inhibitory cell 

types in our in vitro system highlights the importance of a human-specific model to recapitulate 

fetal development, since inhibitory neurons are not known to be produced in the cortex of other 

model organisms such as mice17. 

Overall, based on our observations, single cell transcriptomics remains a far more in-depth tool 

for cell type characterization than CP. Indeed, only larger supertypes of cells (progenitors versus 

neurons) were resolved with the CP assay, potentially due to the generic nature of the dyes being 

utilized. Replacing generic dyes with those specifically targeting neurons could improve cell type 

granularity12, as could increasing image magnification for enhanced resolution of individual 

organelles. This could help us to better understand low quality cell types within CP data, currently 

not addressed in our study due to the model limitations. Linked to this, it is also uncertain whether 

the 384-well format of the CP assay, as compared to 35mm dishes used for scRNA-seq, impacts 

cell type production. 

Finally, we show that our in vitro model is relevant to several brain-related traits associated with 

the cortex, capturing more traits than GTEx brain tissues34, as expected from the better resolution 

with cell type-specific expression. In our results, InMGE neurons stand out by capturing the 

highest number of traits (n=4), with educational attainment being the most significant association. 

This underscores the vital role of interneurons in maintaining the balance between excitation and 

inhibition in neural circuits during development, with perturbations of this system having potential 

implications for processes like learning and memory27. Furthermore, we observed distinct 

temporal and cell-type specific expression of genes associated with developmental disorders in 

the brain, emphasizing the need to incorporate temporal models in neurodevelopment for disease 

modeling.  

In conclusion, by performing an in-depth characterization study, we have identified which 

phenotypes can be captured by combining single cell transcriptomics and cell morphology in in 

vitro neuronal systems. This is the first step towards optimization of such a framework that can 

be extended to genetic or drug perturbation screens47,48, as the CP assay has been vastly adopted 

for, or for profiling natural genetic variation44. 

Materials and Methods 

Human iPSC culture  

The human iPSC lines HEL11.4, HEL47.2, HEL61.1, HEL61.2, HEL62.4 and HEL82.6 used in 

this study were acquired from the Biomedicum Stem Cell Centre (University of Helsinki, Finland) 

(Table 1, S1). The cells were grown on vitronectin in Essential 8 and Essential 8 Flex media 

(Table S5) at 37°C/5% CO2. iPSC maintenance in culture was performed according to HipSci 

guidelines: https://www.culturecollections.org.uk/media/109442/general-guidelines-for-handling-

hipsci-ipscs.pdf). Cells were clump-passaged in ratios ranging from 1:4 to 1:8 using 0.5 mM EDTA 

diluted in DPBS-/-. Y-27632 (10 µM) was used for better cell survival at thawing. Cells were tested 

for mycoplasma with the MycoAlert kit, and all lines tested negative after thawing both during iPS 
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cell culture and neural differentiation.  

Cortical neuron differentiation 

The iPSC lines were differentiated into cortical progenitors and neurons using an established 

differentiation protocol6 with minor modifications (hereafter referred to as ‘original’) and a modified 

version from day 11 post-induction (Table S2).  

For neural inductions, 2-3 80% confluent plates of iPS cells were detached using 0.5 mM EDTA 

and were plated on a Matrigel plate (1:100 in DMEM/F12) in E8 medium supplemented with Y-

27632 (10 µM). Dual-SMAD inhibition was initiated the following day using Neural Maintenance 

Medium (NMM) supplemented with SB431542 (10 µM) and LDN-193189 (200 nM) (Table S5). 

On day 11 post-induction, cells were split in clumps in 1:2 ratio onto laminin-coated dishes using 

either mechanical dissociation by gentle scraping (modified) or using Dispase (original). The 

following day, the media was changed to NMM containing bFGF (0.2 µg/ml) for four days. After 

expansion, cells were split (1:2) with EDTA only in the modified protocol. Alternatively, a few 

replicates (techRep column, Table S2) for days 40 and 70 were dissociated with Dispase as per 

the original protocol. 

At day 17, the plates to be assayed at day 20 (modified protocol) were split 1:2 as small clumps 

(using 0.5 μM EDTA) onto laminin-coated plates for scRNA-seq analysis. Additionally, cells were 

plated in 1:6 ratio on 24-well plates with coverslips for immunocytochemistry and in 1:120 ratio on 

384-well plates for Cell Painting. Cells assayed at days 40 and 70 were split as described in Table 

S2.  

All cells were frozen down at day 28 or 29 and thawed as per the original protocol. Cells were 

frozen down in 1:1 ratio and were plated onto laminin-coated plates at thawing. Final plating for 

days 40 and 70 was done at day 35 when cells were passaged with Accutase. Cells were plated 

for scRNA-seq (1.5 million cells/35mm dish), immunocytochemistry (75-300,000 cells/24-well 

plate) and Cell Painting (5,000 cells/384-well plate) onto poly-L-ornithine and laminin-coated 

plates. Poly-L-ornithine solution was diluted to 0.01% with sterile water, coated overnight at +4°C 

after which the wells were washed 3 times with sterile water. Laminin was diluted in DPBS-/- and 

the plates were incubated at 37°C for 4h. 

scRNA-seq samples profiled at days 20, 40 and 70 were not taken from the same continuous 

differentiation. Days 40 and 70 were sampled from one round of differentiation, containing 4 

donors (HEL61.2, HEL11.4, HEL62.4, HEL82.6) and with technical replicates as specified in 

Table S3. An additional round of differentiation was run to profile Cell Painting samples in all three 

time points, and in addition, day 20 scRNA-seq samples were obtained from this batch. These 

samples were only differentiated using the modified version of the protocol. This time point 

incorporated two additional iPSC lines, HEL61.1 (clone of HEL61.2) and HEL47.2 (derived from 

the same donor as HEL11.4, but generated from different parental fibroblasts), requiring the 

barcoding technology of CellPlex to demultiplex donor identity. For this time point, two 

independent inductions were replicated one week apart (batchRep column, Table S3).  
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Cell preparation for single cell RNA sequencing 

Developing cortical neurons were analyzed for experiments on days 20, 40 and 70 post neural 

induction. The cells were prepared for scRNA-seq as follows: The wells were washed up to three 

times with DPBS-/- after which they were incubated in Accutase for 5 min at 37°C. Cells were 

dissociated into a single cell suspension by pipetting and added into 5 ml of 0.04% BSA in DPBS-

/-. Cells were centrifuged at 180 RCF for 5 min and supernatant was removed. Cells were 

resuspended in 0.04% BSA and centrifuged twice more. Final resuspension of cells was done in 

100 µl of 0.04% BSA after which the cells were filtered through 40 µm FlowMe filters, followed by 

counting and estimation of the cell viability using Trypan Blue.  

Single-cell RNA-sequencing library chemistry and sequencing 

Single-cell gene expression was profiled from the three time points using 10x Genomics 

Chromium Single Cell 3’ Gene Expression technology. Only at day 20, Cell Multiplexing 

technology platform (3’ CellPlex Kit) was used to demultiplex the identity of clonal cell lines. For 

all the time points, 10x libraries were generated using the Chromium Next GEM Single Cell 3' 

Gene Expression version 3.1 Dual Index chemistry. The sample libraries were sequenced on 

Illumina NovaSeq 6000 system using read lengths: 28bp (Read 1), 10bp (i7 Index), 10bp (i5 

Index) and 90bp (Read 2) (Table S4). 

Genotyping 

To allow for donor demultiplexing during downstream analysis, iPSC lines were genotyped using 

SNP arrays. For this, cells were pelleted in DPBS-/- and DNA was extracted using Nucleospin 

DNA columns. Genotyping was performed on Illumina Global Screening Array with added 

GSAFIN SNPs specific for the Finnish population.  

Immunocytochemistry and image acquisition 

Cells were washed three times with DPBS+/+, fixed with 4% paraformaldehyde for 15 min 

followed by three DPBS washes. Cells were then permeabilized in 0.2% Triton X-100/DPBS for 

15 min at RT (Table S5). Coverslips were washed three times in PBST (0.1% Tween-20) followed 

by blocking at RT with 5% BSA/PBST for two hours. Cells were incubated in primary antibody in 

5% BSA/PBST overnight at 4°C (Table S6). Following overnight incubation, coverslips were 

washed with PBST for 15 min three times, followed by incubation in secondary antibody in 5% 

BSA/PBST for one hour. The cells were finally washed three times with DPBS for 10 min and 

coverslips were plated on glass slides with mounting media containing DAPI. Fixation for lines 

HEL62.4 and HEL82.6 was performed on day 55 rather than day 70 due to neuron detachment 

from the coverslips. 

Imaging for day 20 ICC was performed using a Zeiss Axio Observer.Z1. The objective used was 

a Plan-Apochromat NA 0.8 at 20x magnification. Samples were imaged with HXP 120V light 

source with the 45 Texas Red, 38HE GFP and 49 DAPI wavelength fluorescence filters. Images 

were acquired using an Axiocam 506. For days 40 and 70, imaging was performed using a Zeiss 

Axio Imager 1 with the same objective and light source. Fluorescence filters used were 64HE 
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mPLum, 38HE GFP and 49 DAPI. Images were acquired using a Hamamatsu Orca Flash 4.0 LT 

B&W. 

Cell Painting assay and image acquisition 

Cells were phenotyped using Phenovue Cell Painting Kit for 384-well plates following kit 

guidelines based on9. Cells were plated on day 17 (for day 20) or day 35 (for days 40 and 70) on 

PhenoPlate 384-well microplates and incubated in 37°C at 5% CO2 until assay time points at days 

20, 40 and 70. Staining solution 1 was added for live labeling of mitochondria (PhenoVue 641 

Mitochondrial Stain) and incubated in the dark for 30 min at 37°C. Cells were fixed with 3.2% PFA 

for 20 min at room temperature, and then were washed and incubated with 0.1% Triton X-100 

followed by HBSS washes. Finally, staining solution 2 was added to the cells to label nuclei 

(PhenoVue Hoechst 33342 Nuclear Stain), ER (PhenoVue Fluor 488 - Concanavalin A), Golgi 

apparatus (PhenoVue Fluor 555 - WGA), nucleic acid (PhenoVue 512 Nucleic Acid Stain) and 

cytoskeleton (PhenoVue Fluor 568 - Phalloidin) and washed again with HBSS prior to imaging. 

The cells were imaged with PerkinElmer Opera Phenix High Content Screening System using the 

Harmony Software v4.9. The imaging was done using the 40x NA 1.1 water immersion object and 

with the following lasers: 405 nm (emission window 435-480 nm), 488 nm (500-550 nm), 561 nm 

(570-630 nm), and 640 nm (650-760 nm), resulting in Golgi apparatus, nucleic acid and 

cytoskeletal dyes being captured in the same channel (CGAN). Images were captured using the 

Andor Zyla sCMOS camera (2160 x 2160 pixels; 6.5 μm pixel size). For each well, 28 fields on 3 

planes were acquired. Amongst images taken from multiple planes (n=3), the z-stack with the 

highest intensity per channel was selected for analysis. 

scRNA-seq data pre-processing and dimensional reduction 

Raw data processing and analysis were performed using 10x Genomics Cell Ranger v6.1.2 

pipelines “cellranger mkfastq” to produce FASTQ files and “cellranger multi” to perform alignment, 

filtering and UMI counting. mkfastq was run using the Illumina bcl2fastq v2.2.0 and alignment was 

done against human genome GRCh38. Day 20 samples were demultiplexed based on 

multiplexing barcode sequences using the cellranger multi pipeline. Cell recovery was 22,628 and 

18,486 from the two 10x samples sequenced, with 50.89% and 73.61% cells assigned to a cell 

line (singlet rate), respectively, resulting in approximately 4,000 cells captured per cell line across 

technical replicates (Table S4). In 10x samples from days 40 (n=3) and 70 (n=2), donors were 

pooled at the time of sequencing. We assigned donor identity to each cell with demuxlet49 by 

leveraging common genetic variation from the same donors previously genotyped (see Methods, 

Genotyping section). Demuxlet was run using a default prior doublet rate of 0.5. We only retained 

those (singleton) cells that could unambiguously be linked to a donor (average of 69.5% per pool), 

resulting in 5,011 cells on average per donor at each timepoint. 

scRNA-seq data was analyzed using the Seurat R package v4.1.1 (Stuart et al., 2019) using R 

v4.1.3. To exclude low-quality cells from analysis, we discarded cells with either less than 2,000 

genes expressed or more than 8,000, as well cells presenting more than 15% of reads mapping 

to the mitochondrial DNA. Additionally, it was ensured that each 10x sample contained between 

10-20% reads mapping to ribosomal protein transcripts on average, as expected from neuronal 
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populations. Following filtering, the 10x samples from all three timepoints were merged and genes 

expressed in <0.1% of cells in the merged dataset were removed. 

Gene expression counts were normalized by total expression, with a default scale factor of 

10,000, and then transformed to log-space. Then, this matrix of log-normalized counts was scaled 

while regressing out cell cycle scores50, depicted as the difference between G2/M and S phase 

scores to preserve inherent differences between cycling and non-cycling cells. Dimensionality 

reduction was performed via Principal Component Analysis (PCA) using previously identified 

highly variable genes (n=3,000). Harmony (v.0.1.0) was used to batch-correct the PCA 

embeddings from all 10x samples51. Based on the top 15 batch-corrected PCs, we constructed a 

KNN graph and clustered the cells with a resolution of 0.8, using Seurat functions FindNeighbors() 

and FindClusters(), respectively. We then generated a UMAP embedding again using the top 15 

batch-corrected PCs from Harmony. 

scRNA-seq cell type annotations from in vivo fetal brain 

The primary reference dataset used for cell type annotation was the publicly available human fetal 

scRNA-seq data from Poulioudakis et al.16, obtained from the CoDEx online interface 

(http://solo.bmap.ucla.edu/shiny/webapp/). It was selected given the data and code availability, 

plus the metadata with regional specificity of the developing neocortex. The raw matrix of counts 

was log-normalized to a scale factor of 10,000 counts and we identified the top 3,000 highly 

variable genes. Based on the expression of G2/M and S phase markers, we calculated cell cycle 

phase scores. Then, counts were scaled, regressing out ‘Number_UMI’, ‘Library’ and ‘Donor’ and 

the difference between G2/M and S cell cycle scores. Dimensionality reduction was performed 

via PCA on the top 3,000 highly variable genes. We then batch-corrected the PCA embeddings 

with Harmony specifying the library as a covariate and used the harmonized dimensional 

reduction as an embedding to project our in vitro dataset. To transfer the cell type labels from the 

fetal reference to our in vitro query dataset, we used a two-step anchor-based approach 

implemented in Seurat: first running ‘FindTransferAnchors’ using the first 30 batch-corrected PCA 

from the reference embedding, and then “MapQuery”. Further, the tag of ‘Unmapped’ was 

assigned to cells that did not achieve a mapping score of >0.5 for any cell type label. Correlation 

analysis of the annotated cell types between the in vitro and reference datasets was performed 

similar to Bhaduri et al. (2020)4. On-diagonal and off-diagonal means of Pearson correlation 

coefficient were calculated. We classified cells in bins of low and high quality within a cell type 

assigned based on their best mapping score. Those cells with a score>0.5 were referred to as 

high quality for a predicted cell type, while cells with a score<0.5 were considered as low-quality 

cells. Additionally, cell types with less than 50 cells were not considered for any downstream per-

cell type analyses (in this case, only ExDp2). 

Pseudotime analysis 

The pseudotime trajectory was constructed using R package monocle3 (v1.2.9). The Seurat 

object was converted to the monocle3-compatible cds object type using the function 

‘as.cell_data_set()’ followed by pre-processing with 100 dims, alignment by 10x sample and 

clustering at a resolution of 1e-4. The ‘learn_graph()’ function was used with default parameters 

to construct the trajectory and the cells were ordered along the trajectory using a principal node 
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rooted in the time point day 20. Genes that vary across the trajectory were identified using 

‘graph_test()’ by setting the argument ‘neighbor_graph” to ”principal_graph”. The resulting genes 

were grouped into modules based on ‘find_gene_modules()’ after evaluating modularity using 

different resolution parameters {10-6, 10-5, 10-4, 10-3, 10-2, 10-1}.. Finally, the expression of these 

modules was aggregated per cell type using the function ‘aggregate_gene_expression()’. 

GO enrichment 

Overrepresentation analysis using gene ontology (GO)52 was performed using clusterProfiler 

v4.2.2 and org.Hs.eg.db v3.14.0. The gene universe consists of 23,289 genes present after 

filtering out those expressed in <0.1% of cells (see Methods, scRNA-data pre-processing), and 

mapped to ENTREZ and ENSEMBL gene IDs. The enrichGO function from clusterProfiler was 

used to find enriched terms of all categories (‘BP’, ‘CC’ and ‘MF’) per previously identified gene 

module and top 15 terms per analysis (passing a qvalueCutoff=0.05) were visualized using 

enrichplot v1.14.2.  

GSVA 

Gene expression was aggregated per cell type based on mean log-normalized expression values 

to generate pseudobulked data. Gene set variation analysis was performed on pseudobulked cell 

types using the R package GSVA v1.49.4 and gene sets obtained from the Molecular Signatures 

Database (MSigDB)53 compiled in the R package msigdbr v7.5.1. Selected pathways from KEGG 

(Fig. 3d & 5c) or Gene Ontology: Cellular Components (GO CC) containing the 

‘MITOCHONDRIAL’ term (Fig. 3e) were tested for enrichment across cell types using the function 

‘gsva’ with a min.sz filter of 15 and max.sz of 500. 

Organoid mapping 

Reference scRNA-seq data from cortical organoids was obtained from Bhaduri et al.4, via the 

UCSC Cell Browser (https://cells.ucsc.edu/?ds=organoidreportcard). As in the original 

publication, the raw count matrix was pre-processed following original filtering steps to remove 

cells with fewer than 500 genes expressed or with an excessive mitochondrial count fraction 

(>10%). Then, gene counts were normalized to a scale factor of 10,000 counts and natural-log 

transformed and computed the 3,000 highly variable genes. Based on the expression of G2/M 

and S phase markers, we calculated cell cycle scores, and the difference between G2/M and S 

was regressed out during data scaling. We performed PCA dimensionality reduction using the top 

3,000 highly variable genes. We used the first 30 PCA to project the organoid reference to our in 

vitro dataset as described for fetal mapping. This reference mapping was the second step in 

producing the final cell type annotation, as we only assigned the organoid cell type labels to those 

cells that were classified as ‘unmapped’ from the fetal reference-based (first-step annotation). 

Those cells that did not achieve a maximum mapping score of >0.5 for any cell type label in any 

of the two mappings were finally tagged as “Unmapped”. 

Differential abundance testing 

We tested for differential abundance between the cell types produced by the two versions of the 

protocol (original vs modified) using miloR v1.4.024. This analysis was performed solely with 
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samples from day 40 due to the representation of all donors in each protocol version (Table S2). 

The KNN graph was constructed using the buildGraph() function with 15 dimensions (d=15) and 

30 nearest-neighbors (k=30), followed by makeNhoods() using the same number of dimensions 

and sampling 20% of the graph vertices (prop=0.2). In both cases, the dimensionality reduction 

from Harmony after batch-correcting the PCA was used.  To calculate the distance between 

neighborhoods, we used the function calcNhoodDistance() with 15 dimensions (d=15) from 

Harmony. The neighborhoods were tested for differential abundance between protocols by 

running testNhoods() with the design: 

 

~ donor + protocol 

 

The resulting differentially abundant neighborhoods were annotated with cell types from the two-

step annotation using annotateNhoods(), and neighborhoods that were not homogeneously 

composed of a single cell type (fraction of cells from any given cell type <0.7) were annotated as 

‘Mixed’. The differential abundance fold changes were visualized using a beeswarm plot with 

default significance level for Spatial FDR (<0.1). 

Gene Set Enrichment Analysis (GSEA) 

GSEA was performed on differentially expressed genes between pan-neuronal and inhibitory cell 

types (Fig. 4d) or between excitatory and inhibitory cell types (Fig. 5b, S5c) using fgsea v1.20.0. 

The function ‘fgseaMultilevel’ was used on the ranked list of DEGs using KEGG gene sets from 

msigdbr and filtering for minsize=10, maxsize=500, eps=0 and nPErmSimple=10000. Results 

were ordered by NES and filtered for padj<0.05 before visualizing the top (maximum) 20 results 

per analysis. Additionally, in sections 4 & 5, the genes driving specific pathways were identified 

based on the ‘leadingEdge’ of each pathway and represent the core of the gene set enrichment’s 

signal20,21. The module score for each of these core sets of genes was computed per single cell 

using ‘AddModuleScore’ from Seurat with default parameters. 

Cell Painting image processing 

The acquired images were processed using CellProfiler 4.2.154. The workflow file is available in 

the article Github at CellPainting/cellProfilerWorkflow.cppipe. Briefly, quality metrics such as 

blurriness and saturation were measured for each image. Nuclei were then segmented using the 

Hoechst channel using the minimal cross-entropy method. Then, an image summing up the 

channels and excluding Nucleus staining was generated to segmentate the cells (Supplementary 

Methods Fig. 1a). Neurites were algorithmically enhanced on summed images prior to 

segmentation. Cell segmentation was done by propagation from the nucleus using the Otsu 

method. Cytoplasms were identified by subtracting nuclei area to the cell. For each object type 

(Cell, Nuclei, Cytoplasm), a large number of features were measured per channel. A description 

of each feature can be found in the CellProfiler manual (https://cellprofiler-

manual.s3.amazonaws.com/CellProfiler-4.0.4/help/). Those features were metrics relative to 

channel intensity, texture or object shape and size. To export images, intensity of each channel 

was rescaled and attributed to a color. Channels merged to create one image per field in the well. 

An overlay of the well is then created for each field using a python script. 
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Analysis of quantified features of Cell Painting 

The feature data frames were analyzed by R 4.2 using the oob package 

(https://github.com/DimitriMeistermann/oob). First, images underwent a filtering process based 

on the PowerLogLogSlope, a blur metric. For each field, the average PowerLogLogSlope was 

calculated across the four channels. We retained images with an average value greater than -

2.16, which is determined based on the distribution. Additionally, images identified as blurry by 

Cell Profiler are excluded. Any objects associated with discarded images are removed from the 

dataset. Cells exhibiting extreme values for cytoplasm area (≤1000 or ≥100000) or too small 

nucleus (≤10000) are also eliminated, as they are indicative of poor segmentation. Cells with too 

low nucleus channel intensity were also excluded (≤0.003), as well as being outlier in a projection 

with nucleus intensity as x-axis and sum of other channels as y-axis. Outliers were determined 

by a uniform kernel density estimation with bandwidth=1 and removed if density ≤0.0001. 

Features were then regularized to approximately follow a normal distribution. This was done by 

examining each feature distribution and classifying them. We defined 6 feature distribution 

families (Supplementary Methods Fig. 8, Supplementary Methods Table 1) and applied a 

specific transformation for each. For example, intensity features underwent a log2(x+1) 

transformation. Range of each feature was then scaled to [0,1000]. 

The dataset, originally containing 1,186,458 cells, was reduced for ensuring a relatively balanced 

contribution from each experimental population (time-point × cell line) and reducing the 

computation time. The subsampling was aimed to reach a range of 50,000 to 60,000 cells. This 

specific range was determined using bootstrapping, which involved repeatedly sampling the 

dataset and assessing the correlation between the subsamples and the original dataset. When 

50,000 cells were selected, the average correlation was approximately 0.98. Subsampling was 

carried out based on experimental populations, considering differentiation day and cell line, with 

a maximum of 2000 cells drawn if the population exceeded this size. 

Feature selection was conducted through a multi-step process. Initially, a feature graph was 

constructed, and edges were established between features if their correlation exceeded 0.99. 

Modules were subsequently identified from this graph using the function "cluster_fast_greedy" 

from the igraph package55. Within each of these modules, the most parsimonious feature was 

retained for further analysis. The features associated with spatial measures (x-y locations), 

Zernike-related values, and Cel_Neighbors_AngleBtNghbors_Adjacent were excluded from 

further analysis. Their signals did not exhibit a discernible pattern and, as a result, posed a 

potential risk of introducing noise into subsequent analyses. 

Finally, a temporary cell clustering was performed (see next paragraph), and the pictures of cells 

from each cluster was assessed, revealing two clusters composed of image artifacts or dying 

cells. Those clusters were removed from downstream analysis. We obtained a feature matrix 

consisting of 223 features and 54,415 cells. 

A UMAP and Leiden clustering analysis was conducted using the oob package with a specified 

parameter of "n_neighbors = 20." Subsequently, feature modules were identified by performing 

hierarchical clustering on the features, utilizing a covariance distance matrix. The number of 
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modules was determined using the derivative loss method. This process resulted in the 

identification of a total of 18 modules, and they were named based on an examination of their 

content. To determine module activation scores, the first component of a Principal Component 

Analysis (PCA) was extracted from the matrix, which contained the features of each module for 

all cells. The web interface for visualizing the CP dataset was coded using the d3.js framework. 

Integration of scRNA-Seq and Cell Painting 

For the purpose of the multi-modal analysis, scRNA-seq data was reprocessed to enhance 

comparability between CP features and gene expression, aiming to align these datasets as 

closely as possible. The used set of cells is consistent with those used in the primary scRNA-seq 

analyses (refer to the section on scRNA-seq data pre-processing for more details). The genes 

with average expression < 0.005 were filtered out and normalization was performed using the 

computeSumFactors function from scran56. Batches were corrected using fastMNN with k=5 from 

the batchelor package57. 

To perform the integration, only the common experimental population (combination of 

differentiation day and cell line) were selected, then 3 metacells were created per experimental 

population per modality. The metacells were created by randomly attributing cells from each 

experimental population to one of three metacell. Feature values or gene expressions were then 

averaged by metacell. This led to 2 matrices of 42 metacells. These matrices were used to train 

Lasso regressions models using sklearn58 from Python (alpha=0.02, max_iter = 10000). For each 

experimental population, two metacells from each modality were used for the training and one for 

cross-validation. The intercepts and regression coefficients were then exported to a matrix that 

was used to predict CP features from gene expression. This matrix was used to build the predicted 

Cell Painting feature matrix of the scRNA-Seq dataset. CP features markers of each CP cluster 

were computed in the CP feature matrix, and CP features markers of each cell type in the 

predicted CP feature matrix. This was done using getMarkers from the oob package. 

Subsequently, two marker score matrices were generated and correlated to obtain Fig. 2e. 

Parallelly to the lasso regression models, regular linear regressions were computed with the same 

formula (CP feature ~ genes) with the aim to provide one value per gene for each CP feature. 

This enabled the use of GSEA to enrich CP features, using the regression coefficients as GSEA 

input scores. Prior to the enrichment, a median of coefficients was computed per CP module to 

perform the enrichment per module with KEGG and GO databases as gene set databases. 

For each cell from the scRNA-Seq dataset, the predicted CP feature matrix was used along the 

Seurat cell cycle scores annotation to build two lasso regression models: one to predict S.score, 

the other to predict the G2M score with a formula on the form of score ~ CP features. The models 

were then used to predict the cell cycle scores values in the CP dataset. 

AMI 

Adjusted Mutual Information (AMI) was computed using the aricode package for R59. 
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Stratified linkage disequilibrium (LD) score regression analysis 

Positive markers per annotated cell type from our in vitro dataset were determined using Seurat 

FindMarkers() function. A 100 kb window was added on either side of each of these genes using 

the GenBank reference genome version NCBI:GCA_000001405.14 from GRCh37.p13 

(https://ftp.ensembl.org/pub/grch37/current/fasta/homo_sapiens/pep/) and LD scores computed. 

We then investigated heritability enrichment for 79 traits (Table S7) given our cell-type specific 

annotations (n=22 cell types) using stratified LD score regression implemented in LDSC (LDSC 

v1.0.0)33, with the full set of genes expressed in at least <0.1% of cells (n=23,289) as the control 

gene set. As a comparison, we ran the same analysis using annotations for 13 brain tissues from 

GTEx34. Multiple testing correction was performed across resulting trait-specific p-values across 

all cell/tissue types using the Benjamini-Hochberg Procedure. 

Expression of brain-related developmental delay genes 

Developmental delay associated genes from the DDD study were obtained from 

https://www.ebi.ac.uk/gene2phenotype (version 28_7_2023). The geneset was filtered for loss of 

function (absent gene product) brain-specific genes of ‘definitive’ confidence and with autosomal 

monoallelic requirement. Finally, genes were filtered for loss-of-function observed/expected upper 

bound fraction (LOEUF) score <0.3 in order to limit the analysis to genes with higher probability 

of large consequence on cellular phenotypes. LOEUF information was downloaded from gnomAD 

v460. The selected genes’ scaled expression was plotted per pseudobulked cell type from the fetal 

annotation.  

Data availability 

Raw scRNA-seq data and genotype information from the cell lines used in the in vitro cortical 

differentiation will be made available on the European Genome-Phenome Archive. Additionally, 

raw image data from CP will be deposited to the EMBL-EBI BioImage Archive. Count matrices 

and metadata from both scRNA-seq and CP, as well as the CP-to-gene expression coefficient 

matrix and functional enrichment of CP feature modules, will be made available in Zenodo.  

Code availability 

Code used to analyze the scRNA-seq and Cell Painting datasets is available at 

https://github.com/Kilpinen-group/cortical_diff_code/. Additionally, an online interface linking the 

CP UMAP to individual images to facilitate exploration of the CP dataset will be made available.  
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Main Tables 

 

Name Cell 
Type 

Diagnosis Sex Derivation 
method 

Charac
terized 

as 
iPSC 

Marker 
expression 

Ref Registry 
info 

Karyotype 

HEL11.4 Skin 

fibroblast 

Unaffected Male Retrovirus Yes Yes 61 Uhi007-B 46,X,inv(Y)(p11q11),add

(1)(q12q21) 

HEL47.2 Skin 

fibroblast 

Unaffected Male Sendai virus Yes Yes 62 Uhi007-A 

46,X,inv(Y)(p11q11) 

HEL62.4 Skin 

fibroblast 

Unaffected Female Sendai virus Yes Yes  Uhi020-A 

47,XX,+12[2]/46,XX[18] 

HEL61.1 Skin 

fibroblast 

Unaffected Female Sendai virus Yes Yes  Uhi021-A 

46, XX 

HEL61.2 Skin 

fibroblast 

Unaffected Female Sendai virus Yes Yes  Uhi021-B 

46, XX 

HEL82.6 Skin 

fibroblast 

Unaffected Female Sendai virus Yes Yes  Uhi022-A 

46, XX 

Table 1. Cell lines used in the study with their corresponding donor information, derivation 
method, registration (https://hpscreg.eu/), and karyotype cytogenetic nomenclature. 
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Main Figures 

Figure 1. Overview of the experimental design and datasets. (a-d) Overview of the experiment. 6 

iPSC lines from 4 donors were differentiated to cortical neural fate and assayed at days 20, 40 and 70 
of the differentiation (a) using scRNA-seq (b), Cell Painting (CP) (c) and immunocytochemistry (ICC) 
(d). (b) UMAPs of cell types as identified by scRNA-seq analysis, split by time point. (c-d) 
Representative images from CP (c) and ICC (d) at each differentiation time point. Scale bar represents 
50 μm. (e) Representative heatmap of the model linking expression of marker genes (rows) to CP 
image-based features (columns). (f) Cell type composition from the scRNA-seq dataset. The facet on 
the left represents aggregated cell type proportions across donors per time point, while the other facets 
represent individual timepoints, depicting cell type proportions for each donor. Abbreviations: PgS - S 
phase progenitors, PgG2M - G2M phase progenitors, vRG - ventral radial glia, oRG - outer radial glia, 
IP - intermediate progenitors, ExDp1/2 - Excitatory deep layer neurons 1/2, ExN - mirating excitatory 
neurons, ExM - maturing excitatory neurons, ExM-U - upper-layer enriched maturing excitatory 
neurons, InCGE - caudal ganglionic eminence interneurons, InMGE - medial ganglionic eminence 
interneurons, OPC -  oligodendrocyte precursors, Per - pericytes, End - endothelial cells.  
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Figure 2. Cell Painting at the single-cell level. (a) UMAP of the Cell Painting dataset at the single-cell 

level. Cells are colored and labeled by Leiden clustering. A composite image representative of cells 
belonging to each CP cluster is indicated by arrows. (b) Heatmap of CP feature module activation score. 
541 cells (minimum cluster size) were drawn from each CP cluster to ensure an equal contribution of 
each CP cluster to the Heatmap. The CP feature modules represent sets of CP features that are highly 
correlated. (c) Differentiation day (timepoints) projected on the CP UMAP. (d) Violin plots of predicted 
cell cycle scores per cell painting cluster. (e) Correlation heatmap of cell types to cell painting clusters, 
using marker CP features per CP cluster and predicted marker CP features per cell type as an anchor 
to compute the correlation. 
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Figure 3. Mitochondrial feature dynamics in Cell Painting and gene expression. (a) Predicted 
pseudotime trajectory across timepoints in scRNA-seq showing progression from radial glia and 
progenitors, via intermediate progenitors, towards maturing excitatory and inhibitory neurons. 
Pseudotime is rooted in the predicted earliest node within day 20. (b) Feature values for mitochondrial 
intensity (left) and mitochondrial texture (right) projected onto the CP UMAP. (c) Predicted values for 
the CP features mitochondrial intensity (left) and texture (right) projected onto the scRNA-seq UMAP. 
(d) GSVA enrichment scores for glycolysis and oxidative phosphorylation pathways per pseudobulked 
cell type. Enrichment scores indicate a higher activation score of OxPhos in excitatory neurons, except 
for the deep layer 1 subtype (ExDp1). (e) GSVA enrichment scores for mitochondria-associated GO 
terms per pseudobulked cell type. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.03.569583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569583
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. Characterization of low-quality cells within the scRNA-seq dataset. (a) UMAP of scRNA-
seq data across timepoints with unmapped cells highlighted in red. (b) Enrichment scores from GSVA 
(across cell types) of key pathways driving the differences between high- and low-quality subsets per 
pseudobulked cell type. (c) Percentage of cells from the initial unmapped fraction that align to organoid 
cell types (Bhaduri et al.) per time point. (d) Ridge plots representing the distribution of module 
activation scores of key differentially activated pathways between pan-neuronal (ExPanNeu-O), 
excitatory (ExN) and inhibitory (InCGE) neuronal cell types. (e) Differential abundance of cell types 
produced by the original (left) or the modified (right) versions of the differentiation protocol, computed 
by MiloR. Abbreviations: panRG - pan radial glia, glycoRG - glycolytic radial glia, IPC-Mature - mature 
intermediate progenitors, ExDp - excitatory deep layer, ExNeuNew - newborn excitatory neurons, ExU 
- excitatory upper layer, ExPanNeu - pan-neuronal (excitatory), InhN - inhibitory neurons, Astro - 
astrocytes, hRG - hindbrain radial glia, AstroHindb - hindbrain astrocytes. “-O”  differentiates organoid 
cell type annotations from the fetal.  
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Figure 5. Mechanisms of donor-specific inhibitory neuron production. (a) AMI plots from scRNA-
seq data within InMGE cells at days 40 and 70. Each point represents aggregate expression per 
technical replicate and donor. (b) AMI plots from CP data within the d20.endoRetNeg cluster at d20 and 
d40.endoRet at d40. Each point represents aggregate expression of all wells per induction replicate 
and donor. (c) GSVA enrichment scores from curated KEGG pathways between experimental 
populations (donor x timepoint) with hierarchical clustering on both axes. Annotation barplot to the right 
of the heatmap shows the percentage of cells produced by each experimental population annotated as 
inhibitory cell types (InCGE, InMGE, InhN-O). (d) Relative expression per donor (log-normalized values) 
of inhibitory interneuron-associated transcription factors within the progenitor pool 
(oRG+vRG+PgG2M+PgS) at day 40. The expression per donor is grouped per 10x sample. (e) 
Expression of interneuron-associated DLX genes and ribosomal subunits RPL39 and RPL19, along 
pseudotime in two donors shown to produce a high (HEL61.2, left) and a low (HEL11.4, right) proportion 
of inhibitory neurons, respectively. Point colors represent fetal-annotated cell types. 
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Figure 6. In vitro neurons capture brain-relevant traits. (a) Stratified LD score regression analysis 

shown for selected brain-related traits per cell type from our in vitro differentiation. Tile color represents 
the corresponding p values after multiple testing correction across traits and cell types, with the 
significance level indicated as follows: pAdj<0.05(*), pAdj<0.01(**) and pAdj<0.001 (***). (b) Stratified 
LD score regression analysis as in (a) per GTEx Brain tissue type. (c) Heatmap of normalized 
expression, pseudobulked per cell type, of brain-specific genes associated with developmental 
disorders (DDD study). Only DDD genes known to be highly intolerant to loss of function mutations are 
illustrated (n=72). Genes highlighted in red represent examples of cell type-specific expression. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.03.569583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569583
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.03.569583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569583
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.03.569583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569583
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.03.569583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569583
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.03.569583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569583
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.03.569583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569583
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.03.569583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569583
http://creativecommons.org/licenses/by-nc-nd/4.0/

