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Abstract: Conserving biodiversity is a global imperative, yet our capacity to quantify and 20 

understand species occurrences has been limited. To help address this challenge, we develop a 21 

novel monitoring approach based on deep sequencing of airborne eDNA. When applied to a 22 

34-year archive of weekly filters from an aerosol sampling station in northern Sweden, our 23 

methods enabled robust detection of over 2,700 genera across all domains of life and estimates of 24 

eDNA catchment areas. Reconstructed time series revealed regional biodiversity declines 25 

consistent with contemporary, large-scale transformations of forest composition and structure. 26 

Our results show airborne eDNA can reliably monitor biodiversity and underscore the immense 27 

latent potential in the thousands of aerosol monitoring stations deployed worldwide. 28 

One-Sentence Summary: DNA captured from air reveals organisms from all domains of life 29 

and their long-term trends.  30 
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Main Text: 31 

Humans are driving a global decline in biodiversity (1, 2) and the gravity of this crisis 32 

remains partially obscured by the difficulty of tracking organisms across time and space. 33 

Environmental DNA (eDNA) has emerged as a promising solution to this challenge. Unlike 34 

traditional count-based surveys, eDNA can readily detect cryptic taxa (3) and archival substrates 35 

can grant access to lost or irrevocably altered ecosystems (4). These unique features, combined 36 

with the logistic demands of traditional monitoring, mean our knowledge of the biodiversity 37 

from a given time and place may only extend as far as eDNA permits. 38 

Accumulating evidence from substrates ranging from seawater (5) to surface air (6–10) 39 

support eDNA as a source of presence-absence data. More quantitatively, some methods can 40 

provide abundance indices (11, 12) and diversity estimates congruent with traditional surveys 41 

(13). In practice, however, eDNA-based applications remain limited due to the stochasticity 42 

inherent in ecological processes (14) and the errors introduced by existing analytical pipelines, 43 

especially false positive detections (15, 16). 44 

We demonstrate the potential of airborne eDNA monitoring using a multidecadal archive 45 

collected by an aerosol sampling station in northern Sweden. We address some of the most 46 

pressing challenges limiting wider adoption of eDNA methods by integrating high-depth 47 

metagenomic sequencing with ecological insights. Our approach delineates the spatial footprint 48 

of airborne eDNA, robustly determines taxonomic assignments, and uses dynamic models to 49 

reconstruct diversity over time. Applied to the filter archive, this allowed us to survey more than 50 

2,700 taxa from all domains of life, recover abundance trends congruent with traditional 51 

monitoring, and detect a decline in biodiversity consistent with the effects of contemporaneous 52 

forest management. 53 

Air contains DNA from all types of organisms from a wide range of habitats 54 

Airborne eDNA metagenomics 55 

We sequenced near-surface airborne eDNA sampled by a radionuclide monitoring station in 56 

the boreal forest of northern Sweden (67.84°N, 20.42°E, see Fig. 1A and supplementary 57 

materials). As part of the station’s routine activities, high volumes of surface-level air are 58 

continuously pumped (>100,000 m3/week) through 0.2 µm glass fiber filters, which are changed 59 

weekly and stored long-term in airtight containers. Previously, we found that eDNA can be 60 
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preserved for decades under these conditions with limited degradation (6). We isolated DNA 61 

from filters installed during weeks with a mean temperature > 0°C from even-numbered years 62 

between 1974 to 2008 for analysis. In total, we generated ca. 30 terabases of high-quality 63 

metagenomic sequence collected during 380 weeks. 64 

Accurate taxonomic classifications across all domains of life 65 

Detecting cryptic organisms is a key strength of eDNA, but metagenomic classification 66 

methods struggle to balance sensitivity and precision (17, 18). We targeted three critical but 67 

often neglected steps in a standard pipeline (19) for optimization: reference database coverage, 68 

parameter choice during read-level classification (18), and selection of taxon-level stringency 69 

filters (17, 20). Combined, these optimizations resulted in a false discovery rate of 4%, a 70 

precision of 0.95 and a recall of 0.72 on out-of-sample pseudolabeled test data (supplementary 71 

materials). In total, we identified 2,739 high-confidence genera from 69 phyla and 173 classes, in 72 

addition to DNA viruses (Fig. 1B, data S5), from a wide range of habitats (Fig. 1C). 73 

The amount of airborne eDNA from a taxon is influenced by their abundance (11, 21), 74 

habitat (3, 22), dispersal mechanisms (23), and the source and size of the particles they emit (22), 75 

among potentially numerous other factors (12, 22). Once captured by an air filter, detection 76 

probabilities and relative abundances further depend on the eDNA state (24), sequencing effort, 77 

and the genome sizes and database representation of all organisms contained in an isolate. Wind-78 

dispersed plants, flying insects, and spore-producing fungi are the most abundant taxa in our 79 

data, all of which are well-represented in our reference database and on the landscape. However, 80 

applying deep sequencing to high-volume air samples also enabled reliable detection of 81 

organisms whose particles are less abundant in air, including sixteen genera of fish (Fig. 1C), 82 

frogs (Rana), moose (Alces), reindeer (Rangifer) and 41 additional vertebrate genera (Fig. 1B; 83 

data S5). 84 

Bioaerosol catchments are quantifiable and stable 85 

Spatial footprints, or catchments, for an aerosol sampling station can be estimated from 86 

particle sizes and a model of atmospheric conditions. We estimated weekly catchments for three 87 

common forest bioaerosols: pine pollen (60 µm), birch pollen (22 µm), and the spores (5 µm) 88 

from a typical bracket fungus (Basidiomycota: Polyporales) (25). Summed over the annual 89 

sampling period, these simulations suggested > 50% of 60, 22 and 5 µm particles originate 90 
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within 20 (± 5.1), 50 (± 17.7) and 310 (± 38.4) km of the aerosol station, respectively (fig. S3). 91 

Size distributions for bioaerosols emitted by animals, as well as somatic plant and fungal tissues, 92 

are less documented but may fall within the modal 1.0-5 µm fraction ubiquitously documented in 93 

bioaerosols (26–28). More precise catchment estimates require further research (28), but we 94 

expect airborne eDNA in this study to broadly reflect local plant phenology and landscape-level 95 

biodiversity. 96 

Catchment areas for each particle size were broadly elliptical in shape (Fig. 1A) and showed 97 

no evidence of systematic changes in size or shape (supplementary materials, data S1). Similarly, 98 

we found little indication of seasonal or longer periodicity in wind directions during our annual 99 

sampling period (|ρ�| < 0.10) and no support for a relationship between catchment variation and 100 

eDNA abundance patterns (data s9, data s10). At local to regional scales, the station’s catchment 101 

areas cover a matrix of alpine tundra, montane deciduous forests, open wetlands, and coniferous 102 

forests, with smaller components of open water and paved surfaces (supplementary materials, 103 

fig. S2). Commercial forest management is extensive at the landscape scale (> 50 km): 1.5% of 104 

forests were thinned or felled annually between 1986, the earliest year with reported data, and 105 

2008 in an administrative region roughly congruent with the ≤ 5 µm catchment area 106 

(supplementary materials). 107 

eDNA abundance indices correlate with traditional surveys 108 

Field experiments in aquatic ecosystems support a strong correlation between abundance 109 

estimates from traditional surveys and DNA particle concentrations in natural environments (11). 110 

Using sequencing data to estimate abundance is considered less promising because read counts 111 

provide catch-per-unit-effort (CPUE) data and are always affected by saturation (29). As with 112 

traditional CPUE surveys, reads can vary proportionally with abundance but how often this holds 113 

true for empirical datasets is uncertain (30). To test for proportionality, we searched for 114 

traditional inventories with sufficient spatial and temporal overlap with the eDNA time series. 115 

Data from standardized point-transect surveys for nine bird genera from seven families met this 116 

requirement. 117 

Abundance estimates from the traditional surveys explained 60% (p < 0.001) of the variation 118 

in log-ratio transformed eDNA abundances (Fig. 1D). Species-specific models could offer 119 

further improvements, but the general correlation is already comparable to results from single-120 

species studies in fish using direct DNA quantification (11). This shows the potential of using 121 
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airborne eDNA as an index for population abundances, but we emphasize the need to evaluate 122 

each dataset before assuming proportionality. 123 

 124 
Fig. 1. Airborne eDNA provides reliable records of organisms across all domains of life. 125 
A) Mean modeled origin densities of 22 µm particles in the catchment area during the study 126 
period. The differences in intensity of green shading indicate 10-fold differences in density of 127 
particles from that area, assuming all areas released the same amount of particles per unit area. 128 
The yellow star marks the position of the aerosol monitoring station. B) Taxonomic assignments 129 
of the 2,739 genera detected in the air filters, according to NCBI taxonomy. C) Normalized read 130 
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proportions from eight genera. D) Comparison of taxon abundance estimates from eDNA and 131 
point-based surveys estimated for nine bird genera. 132 

Airborne eDNA records seasonal and long-term changes in ecosystem composition 133 

Temporal community assemblages 134 

We identified seventeen groups of taxa with similar temporal trends through hierarchical 135 

clustering of pairwise log-ratio variances (Fig. 2A, data S5 and S6) (31). Seasonal differences 136 

divided most organisms along higher taxonomic ranks: eDNA from eukaryotes generally peaked 137 

in abundance during a single season, whereas 88% of prokaryote genera were most common 138 

during spring and autumn (Fig 2A). A peak consistent with autumn sporulation distinguished 139 

most fungi from plants (32, 33), and the early spring flowering of trees and dicotyledons 140 

separated them from the summer peaks of grasses (32) and mosses (Fig. 2A, B). The bimodal 141 

seasonality in prokaryotes, however, differed from prior evidence (33, 34) and likely results from 142 

sequencing effects; that is, organisms with small genomes are most readily sampled when there 143 

is little competition in the sequencing pool. 144 

In addition to phenology, coherent shifts in abundance can result from trophic interactions 145 

(5). For example, the well-documented endosymbiosis between flies and Rickettsiales bacteria 146 

(Fig. 2B) and lichenized fungi and algae (Fig 2A) can be detected from their strong temporal 147 

covariation (cluster C8 and C12, respectively). This suggests other clusters may reflect 148 

undiscovered interactions, such as between putatively endophytic Venturiales fungi (33) and pine 149 

(C6) or the rust fungi and grasses in cluster 4 (Fig. 2B) (35). Shared temporal shifts may also 150 

indicate a shared response to environmental change (5) or aerosolization from a common 151 

substrate. A combination may explain the separation between groups of predominantly soil-152 

dwelling (C1) vs. endophytic fungi (C2) (33, 36) and among bacteria associated with above-153 

ground plant surfaces (C17) (33, 37), animal hosts (C14) (38), and soils (C16) (33, 36). Abiotic 154 

conditions, direct trophic interactions, or aerosol emission fluxes that are in turn influenced by 155 

the environment (39) are all plausible hypothesis for the temporal variation found among 156 

microcrustaceans, planktonic bacteria, and other aquatic microbes (C13). 157 
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 158 
Fig. 2. Correlated shifts in abundance reveal temporal assemblages in airborne eDNA. 159 
A) Hierarchical clustering of the 2,739 genera into 17 temporal clusters by their pairwise log-160 
ratio covariances; stacked bars indicate kingdom membership and the heatmap shows median 161 
log-ratio transformed abundances for calendar weeks 21-41 (increasing from dark blue to bright 162 
yellow). Cluster sizes are approximately proportional to their taxon richness but note the largest 163 
clusters were reduced in size for display. B) Taxonomic composition of the clusters from 164 
kingdom to order. Protists contains eukaryotes lacking a kingdom classification. Numbered 165 
boxes show representative genera for each cluster. Taxonomic groups comprising ≥ 5% of the 166 
dataset or a cluster are shown; ribbon and box heights are roughly proportional to rank 167 
abundances but the lowest ranks are shown as ties for display. 168 

Seasonal and long-term cluster dynamics 169 

We partitioned changes in the seventeen clusters into components explained by seasonality, 170 

longer-term trends, and environmental parameters using state space models. Ecosystems respond 171 

to shifting means, but changes in climatic variability and extremes are expected to be more 172 
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mechanistically relevant to biota (40). To capture some of this complexity, we compared the 173 

predictive skill of models using different combinations of latent trend structures and regression 174 

matrices, including 75 (|ρ�| = 0.15, σ = 0.13) climatic covariates and six comprising a null model 175 

of seasonal variation (supplementary materials). The best-performing models predicted 12 – 76% 176 

(𝑥𝑥 �= 33%) of variation in cluster abundance. 177 

Climatic covariates improved forecasts for eight of the clusters, including all four dominated 178 

by plants and three of the four fungal clusters (data S9). Consistent with the timing of pollen and 179 

spore release in the boreal region, we found variables related to seasonal transitions to be reliable 180 

predictors of fungal and plant eDNA abundance (data S10, data S11). Fungi-dominated clusters 181 

generally increased with rain and snow, although eDNA from fungal endophytes (C2) was 182 

predictably lower up to 78 weeks after extreme rainfall events (data S10, data S11). Variables 183 

related to evapotranspiration were also selected by the models of some plant and fungal clusters, 184 

along with the bacterial genera in cluster 11 (data S10, data S11). In general, climatic covariables 185 

predicted weekly, seasonal, and cyclic variation but not multiannual or directional trends in 186 

abundances (data S10). 187 

After removing the variation predicted by climatic covariates, we found robust evidence of 188 

long-term abundance trends in thirteen clusters (Fig. 3A, B; data S10). Most conspicuously, the 189 

pine-dominated cluster (C6) increased from 40% of the entire community in the early years of 190 

the time series to 80% around 1994 followed by a gradual decline to 60% by 2008 (Fig. 3A). As 191 

these are relative abundance trends, a dramatic increase in one component forces declines among 192 

the others. However, the trends following this peak indicate a shift in community composition, 193 

rather than a saturation artefact driven by a transient spike in pine-associated eDNA. Nine 194 

clusters continued to decline even after 1994 and increases in abundance were unequally 195 

distributed among the other clusters (Fig. 3A, B). We also detected large abundance changes in 196 

some clusters in 2008, the end of our time series, which could indicate nascent trend reversals 197 

(Fig. 3B). 198 

Biodiversity loss from declines in forest taxa 199 

We used transformations of the Rényi entropies (41, 42) to partition changes in biodiversity 200 

into evenness and distinctiveness components (supplementary materials). This framework 201 

extends the logic of Hill numbers (43) to relative entropy (β) and cross-entropy (γ) to obtain 202 

unified families of diversity indices. Higher α diversity indicates a more even relative abundance 203 
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distribution whereas β increases as taxa are temporally structured. Changes in γ diversity occur 204 

through either, or both, of these components and indicate that biodiversity in a broad sense is 205 

unevenly distributed across time. 206 

 207 
Fig. 3. Airborne eDNA records seasonal and long-term changes in ecosystem composition. 208 
A) Relative abundances of each cluster across the time series. B) Centered and scaled relative 209 
abundances of each cluster. C) Modeled α, β, and γ diversities for the total composition. D) 210 
Median difference in gamma contributions between 1974-1988 and 1992-2008 for each genus in 211 
the 17 clusters. The value of Pinus (orange circle) in cluster 6 has been truncated (actual value in 212 
parenthesis). 213 

Mean γ diversity declined between 1990 and 1994 (Fig. 3C), concurrently with the rapid 214 

increase of the pine cluster. Despite an increase from the mid-1990s, γ diversity averaged 35% 215 

lower (95% CI: 31-40%) between 2002-2008 than 1974-1988, a loss equivalent to ca. 31 216 

effective taxa. Evenness decreased modestly but consistently over the same period, from 22 to 20 217 

effective taxa (95% CI:17-30 to 15-27), although a steeper decline may have begun in 2008. This 218 

means the decline in γ diversity mostly resulted from a change in distinctiveness, with taxa more 219 

disproportionately abundant in 1974-1988 than in 2002-2008. Reducing the influence of rarer 220 
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taxa (q = 2, 3) or restricting the analysis to different taxonomic subsets did not change this 221 

pattern of biodiversity loss (data S10). 222 

Diversity metrics are not necessarily positively correlated with ecosystem health. Generalist 223 

and invasive taxa can increase diversity (44), even though their success often increases with 224 

environmental degradation (45). We identified the taxonomic drivers of the diversity decline by 225 

comparing per-taxon γ contributions from 1978-1988 vs. 1992-2008. Consistent with the cluster 226 

trends, we found a large increase in in the γ contribution of pine (Wilcoxon signed-rank test, 227 

Benjamini-Hochberg adjusted p-value < 0.001) and numerous declines in core taxa like birch 228 

(Betula; p < 0.05), spruce (Picea; p > 0.05), feathermoss (Pleurozium; p < 0.001), tree and 229 

ground-dwelling lichens, and wood-dwelling fungi (all p < 0.001), among other taxa with 230 

uncertain ecologies (Fig. 3D). These genera, and the species within them, occur in different 231 

habitats but are all directly affected by forest management (46–48). 232 

Productive forests (capable of producing > 1 m3/ha year-1) in Fennoscandia are most 233 

frequently clearcut, replanted with seedlings, and thinned multiple times before they are felled 234 

again. While effective for timber production, this silvicultural system has converted a 235 

structurally-diverse landscape to a mosaic of monocultures. Between 1974 and 2008, primary 236 

forests in the region declined by > 50% and more clearcuts occurred within 100 km of the filter 237 

station in the 1980s than any earlier period in the 20th century (supplementary materials). These 238 

forests were disproportionately replaced by pine, consistent with the long-term increase of pine-239 

associated eDNA. On-the-ground management activities may also create bioaerosol pulses that 240 

influence shorter-term eDNA trends: the 1990-2000 maxima in the pine cluster coincides with a 241 

period of extensive harvests and reforestation in the region (supplementary materials). 242 

Population declines in taxa dependent on old forests, including both Porodaedalea species 243 

in the region and Fomitopsis rosea, one of the two species in this genus potentially represented 244 

in our data, (Fig. 3D) are widely documented in Sweden (49). Rare, specialist species like these 245 

are naturally vulnerable to environmental changes, but we also detected large γ declines in 246 

genera common in young, natural forests: Pleurozium, Trametes, and Fomitopsis pinocola (Fig. 247 

3D). Field-based studies have more recently emphasized the threats to these and other core 248 

genera posed by soil scarification (50), insufficient dead wood quantity or quality (25), habitat 249 

fragmentation (51, 52), or the altered light and moisture regimes from high planting densities and 250 
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fire suppression (46, 48). Together, this suggests the largest change in airborne eDNA diversity 251 

resulted from commercial forest management across the landscape. 252 

 253 

Fig. 4. Data support analysis of sub-compositions, individual species and their genetic 254 
diversity. 255 
A) Mapping reads from seven spring weeks in 1998 to the Betula nana chloroplast genome (161 256 
Kbp). The y-scale indicates mapping depth and red lines indicate single nucleotide variants 257 
relative to the reference genome. In the center, the number of reads supporting two observed 258 
sequence variants at one of the positions is shown. IR: inverted repeat regions, where reads 259 
cannot be uniquely mapped. B) Reclosing the data solely for taxa included in cluster 13 (i.e., 260 
holding the total abundance of those taxa constant across time), dominated by aquatic 261 
microorganisms, and fitting individual models for those taxa, reveals that changes in abundance 262 
of taxa of similar type tend to be more similar (fig. S17). Summation of the relative abundances 263 
by type reveals distinct trends for different types of organisms, indicating that ecological 264 
interactions could be investigated. 265 

Conclusions and outlook 266 

We demonstrate the ability of airborne eDNA to detect the contemporary presence of 267 

organisms across the tree of life, track shifts in ecosystem composition, and provide quantitative 268 

abundance indices. While this marks a notable improvement in the resolution and scope of 269 

eDNA biodiversity monitoring, amenability to reanalysis is a key benefit of our dataset. Most 270 

(76%) of our reads are unclassified, an unsurprising result given that only a tiny sliver of species 271 

have reference sequences (53). With more extensive reference databases, future reanalysis of this 272 

dataset will continue to provide insights into biodiversity at multiple levels of organization, 273 

including the gene pools of individual species (Fig. 4A). We here focused on relative changes 274 
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between 17 clusters, but relative changes within any given subcomposition can also be 275 

investigated (see Fig. 4B). 276 

Our study underscores the value of aerosol stations as serendipitous collectors of 277 

biodiversity data (10). Our results suggest the high flow rates (500-1,500 m3 h-1) used in 278 

radionuclide detection also enable detection of even organisms that do not readily emit 279 

bioaerosols. Similarly to air quality networks (10), radionuclide stations operate worldwide 280 

under standardized protocols. Europe alone hosts more than 400 stations (54) and those 281 

surveilling for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) are 282 

strategically positioned to maximize global coverage (55). Airborne eDNA from these and other 283 

already operational networks may provide an unprecedented opportunity to reconstruct 284 

ecological history and detect ongoing changes almost in real-time. 285 
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Materials and Methods 814 

Summary of supplementary materials and methods 815 

DNA was extracted from weekly air filters sampled in even-numbered years from 1974 to 816 

2008 by a radionuclide aerosol monitoring station in northern Sweden. DNA isolates from each 817 

week were shotgun sequenced on their own Illumina NovaSeq 6000 S4 flow cell. Reads were 818 

subjected to quality control and then taxonomically classified using a large custom reference 819 

database. Classification stringency parameters were optimized for genus-rank using publicly-820 

available species observations made in the vicinity of the aerosol monitoring station. Read counts 821 

per genus were log-ratio transformed and detrended to remove potential biases from e.g., read 822 

length variation. The last processing step removed putative false positive taxa using a novel 823 

machine learning approach (fig. S1). 824 

The final 2,739 high confidence genera were then clustered based on shared temporal 825 

patterns. Time series analysis of the resulting 17 cluster abundances, community diversity 826 

components, and of individual genus abundances was performed using Bayesian state space 827 

models. The relative predictive power of covariables representing endogenous seasonal patterns, 828 

variation in climate and weather-related parameters, and weekly changes in the aerosol station’s 829 

catchment area were compared using leave-future out cross validation. 830 
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 831 

Fig. S1. Brief summary of the analysis workflow. 832 
For more details of each step, see the indicated section. 833 

 834 
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1. Aerosol sampling station and catchment area 835 

1.1. Ecological context 836 

The aerosol sampling station is located in the province of Norrbotten, the northernmost in 837 

Sweden, ca. 9 km east of the mining town of Kiruna (population 23,000, 67.84°N, 20.42°E) in 838 

the northern boreal zone. Data on land cover were extracted from the Swedish National Land 839 

Cover Database (56), mapped in 2017-2019. The data consist of a base map with 25 thematic 840 

classes in three hierarchical levels and has a raster format with 10 m pixel size. Using ArcGIS v. 841 

10.3, we extracted the area and proportion of land cover classes within 50, 20, 5, 0.5, and 0.1 km 842 

radius of the aerosol sampling station. Thematic classes were aggregated into nine classes. 843 

Forests outside and on wetlands were not separated. 844 

Land cover within 50 km was dominated by vegetated open land (39%; mainly low and 845 

middle alpine belts), open wetland (20%), coniferous forests (15%), deciduous forests (11%), 846 

mixed forests (6%), and water (6%; fig. S2). Minor classes included temporarily deforested land 847 

(1.8%; clearcuts), open land without vegetation (0.8%; mainly high alpine belt), and artificial 848 

vegetation-free surfaces (0.7%; e.g. mining areas, building, and road/railway). Agriculture was 849 

uncommon. Forested area increased from 32% at the 50 km scale to 64% at the 0.5 km scale with 850 

a commensurate decrease in open habitats. Land cover within 0.1 km of the aerosol sampling 851 

station was composed of 75% forest, 12% open wetland, 8% artificial surfaces, and 5% other 852 

land cover. 853 

In 2020, we inventoried a total of eleven 10 m radius plots located at 25 (four plots) and 854 

100 m (seven plots) distance from the station. We recorded the diameter at breast height (DBH; 855 

1.3 m) and species of trees with DBH ≥ 10 cm and calculated basal area per hectare. At this 856 

scale, the forests were dominated by pine (71% of basal area), followed by spruce (18%), and 857 

birch (11%). They were old, multi-layered, and semi-open (mean basal area 15 m2 ha-1). The 858 

forests had a semi-natural character, with a few old stumps indicating past selective logging. 859 

Understory vegetation was dominated by dwarf shrubs (Empetrum nigrum ssp. hermaphroditum, 860 

Vaccinium myrtillus, V. vitis-idaea) and bryophytes (Hylocomium splendens, Pleurozium 861 

schreberi), with patches of terricolous lichens (e.g., Cladonia spp., Nephroma arcticum, 862 

Peltigera spp.). 863 

 864 
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 865 

Fig. S2. Land cover around the aerosol sampling station. 866 
A) Map of nine land cover classes in a 50 km buffer around the aerosol monitoring station. B) 867 
Relative composition (%) of land cover at five different spatial scales (50 km to 0.1 km). Based 868 
on land cover data with 10 x 10 m pixel size. 869 
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1.2. Aerosol sampling 870 

Air filters were collected once a week between 1974 and 2008 by the Swedish Defense 871 

Research Agency (FOI) to monitor radioisotopes in surface level aerosols (57). The filters belong 872 

to a larger collection spanning the five decades of continuous and ongoing radionuclide 873 

surveillance at stations across Sweden. Filters are made of glass fiber with a pore size of 0.2 µm 874 

and filter more than 100,000 m3 of air each week. The manufacturer changed in 1996 (from 875 

Camfil type CS 5.0, Camfil Svenska AB, to HB5773, Hollingsworth & Vose Company Ltd.), but 876 

the new filters were produced with the same specifications. We detrended the sequence data 877 

(section 4.2 Detrending) to account for potential effects of the filter manufacturer change. From 878 

1976-1984, filters were stored in rectangular plastic containers and in cylinder shaped containers 879 

in all other years. We selected weekly air samples from every other year between 1974 and 2008. 880 

We attempted DNA extraction from filters installed during weeks with a mean temperature 881 

> 0°C because aerosol DNA concentrations are low during freezing conditions (6). The air filters 882 

were randomized and coded prior to DNA extraction. 883 

1.3. Catchment area estimation 884 

Bioaerosols are airborne particles released into the atmosphere such as fungal spores, 885 

bacteria, pollen, and shed cells. During their journey to an aerosol sampler, bioaerosols undergo 886 

processes such as deposition and coagulation and interact with atmospheric moisture as they are 887 

carried by complex and chaotic wind patterns. These processes determine the spatial extent of 888 

sources sampled by the aerosol station, which we refer to as catchment areas. 889 

We employed PELLO (58), a random displacement Lagrangian particle model validated 890 

(59) and applied in several studies (9–11), to estimate catchment areas. PELLO is normally used 891 

in applications with some basic knowledge of the source (i.e., position and characteristics of the 892 

pollutant released in the atmosphere), but we lacked two important source properties: position 893 

and time. The straightforward solution to this problem is to define a large number of sources 894 

covering the entire calculation domain both in time and space and then keep track of all aerosols 895 

that enter the filter station. This was unfeasible in our scenario due to the large number of 896 

sources we would have to define, and hence the large number of model particles to handle, to 897 

cover the region of interest in time and space. Our approach was therefore to use an adjoint 898 

version of PELLO where model particles advected with wind and dispersed due to turbulence 899 
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backward in time from the aerosol station to their origin. This backward simulation let us define 900 

only one source, but spread in time, which shortened the computation time by several orders of 901 

magnitude. 902 

PELLO models particle transport with data from numerical weather predictions (NWP) 903 

from the European Centre for Medium-Range Weather Forecasts (ECMWF). For this study, we 904 

used the ERA-5 dataset (60, 61) (1980-2008, except 1994 as the data for that year could not be 905 

retrieved) with a 1.0 x 1.0° horizontal resolution and a vertical resolution of 79 hybrid sigma 906 

pressure levels (in ERA-5, this is the lowest 16 km of the atmosphere). We used a 6 and 12 hour 907 

forecast step starting at 06:00 and 18:00, resulting in four forecast fields per day. The spatial 908 

domain of the weather data covered Europe, including western part of Russia and Northern 909 

Africa. Aerosol dry and wet deposition were modeled but no other biological or chemical 910 

particle properties were incorporated. 911 

As a source for the adjoint dispersion, we used particles with diameters of 5, 22 and 60 µm 912 

and a density of 800 kg/m3 (62), representing smaller fungal spores or larger bacterial cells, birch 913 

pollen, and pine pollen, respectively. The spatial domain of the release of bioaerosol for the 914 

adjoint dispersion was defined with a horizontal domain of 30 x 30 m and a vertical domain 915 

stretching from 0-300 m, roughly corresponding to the planetary boundary layer in a neutral 916 

atmosphere. The source domain represents a ground source on the regional scale where the bulk 917 

of the bioaerosols are well mixed in the planetary boundary layer. Although we only modeled 918 

three different particle diameters, we expect it to provide a rough estimation of the catchment 919 

area within this regional context. 920 

We summarized the spatial extent of the catchment areas and the proportion of particles 921 

originating from eight cardinal directions. We calculated the particle mass originating from 922 

different distances from the aerosol sampling station (2, 5, 10, 20, 31, 50, 100, 180, 310, 520, 923 

and 860 km) for each week in the even-numbered years from 1980 to 2008 (except 1994 as 924 

previously described) for the 22 µm particle and for each week in 1988 for the 5 and 60 µm 925 

particles (data S1). For each particle size, we calculated the cumulative mass within each radius 926 

scaled by the sum within the 860 km radius area (fig. S3). Yearly averages of the proportion of 927 

particle mass originating from each cardinal direction were also calculated for each distance 928 

(data S1). We used these weekly sums for the 22 µm particle size as regression covariates in the 929 
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time series analysis in Section 8. This allowed us to assess the potential influence of changes in 930 

bioaerosol sources on weekly eDNA compositions. 931 

 932 

Fig. S3. Particle dispersion bootstrapping and Monte Carlo simulation results. 933 
Normalized weighted sums (i.e., contributions from various distances closed to one) plotted 934 
against the distance (log-scale) from the aerosol sampling station, color-coded according to 935 
particle size. Shaded areas correspond to the normalized standard error obtained from the 936 
bootstrap procedure for each particle size. Horizontal error bars (standard deviation) and data-937 
points at top of plot correspond to the results of the Monte Carlo simulation equal to 50% of 938 
cumulative particle mass from all directions, color-coded according to particle size, using the 939 
block bootstrapping as input. 940 

To assess the range of particle dispersion and its associated uncertainty, block bootstrapping 941 

with R package ‘boot’ v. 1.3-28.1 (63, 64) was employed. Each bootstrap replicate consisted of 942 

1,000 resamples with a block size of four weeks, approximating a lag of one month. The 943 

bootstrapped data were then normalized using weighted sums (fig. S3). To identify the 50% 944 

cumulative particle mass originating from all directions, a weighted Monte Carlo simulation was 945 
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conducted, using the normalized weighted sums and their standard errors as input parameters 946 

over 1,000 draws. 947 

To evaluate the year-to-year variation in the shape of the catchment area for the even years 948 

between 1980 and 2008, a linear mixed-effects model was implemented using the R package 949 

‘nlme’ v. 3.1-163 (65, 66). The dependent variable was the scaled particle mass value, 950 

normalized to sum to one. Fixed effects included the year and the cardinal direction, as well as 951 

their interaction. A random intercept for the year was included to account for repeated measures, 952 

along with a first-order autoregressive correlation term to handle autocorrelation. The mixed-953 

effects model indicated no significant year-to-year variation in the shape of the catchment area 954 

across the studied period (table S1). 955 

Table S1. Catchment area linear mixed-effect model results. 956 
effect estimate std. error df t-value p-value 

intercept 0 0.86 1204 0.00 1.00 
year (fixed effect) 0 0.00 12 0.01 0.99 
cardinal directions (fixed) not shown individually    n.s. 
year × cardinal direction not shown individually    n.s. 

2. DNA sequencing 957 

2.1. Extraction 958 

The DNA extraction protocol was adopted from (6, 67, 68) with a few modifications. For 959 

each air filter, three punches were punched out within a sterile plastic bag using a biopsy punch 960 

(Ø8 mm, Integra Miltex, Plainsboro, NJ, USA) and collected in three separate 2.0 mL screw cap 961 

tubes containing 1.0 g of 0.1 mm zirconia/silica beads and 0.5 g of 1.0 mm zirconia/silica beads 962 

(BioSpec, Bartlesville, OK, USA). Prior to extraction, lysis and binding solutions were UV-963 

radiated for a minimum of 90 min. A volume of 1.0 mL lysis buffer was then added to each tube 964 

(0.5 M EDTA, pH 8.0 (Thermo Fisher Scientific, Waltham, MA, USA), 0.5% Tween-20 (Sigma-965 

Aldrich, Saint Louis, MO, USA) and 20 mg/mL Proteinase K (Thermo Fisher Scientific) and 966 

briefly agitated in a FastPrep-24 instrument (MP Biomedicals, Santa Ana, CA, USA) for 10 s at 967 

4.0 m/s. The samples were then incubated at 37°C overnight. The next morning the samples were 968 

agitated for the same duration and speed and then centrifuged 15 min at 16,000 g. The 969 

supernatants (3 x 0.5 mL) belonging to the same air filter were pooled in a 50 mL screw cap tube 970 

(Sarstedt, Newton, NC, USA). An additional 0.5 mL buffer (0.5 M EDTA, 0.5% Tween-20) was 971 
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added to each filter punch, agitated for 30 s at 5.0 m/s and centrifuged for 15 min at 16,000 g. 972 

The supernatants were collected and added to the corresponding 50 mL tube. This procedure was 973 

repeated once more with a 30 s, 6 m/s agitation, and a 5 min centrifugation step. 974 

To each 50 mL tube, 8.8 volumes of binding buffer were added (5M GuHCl, (≥ 99%, 975 

Sigma-Aldrich), 40% Isopropanol (Thermo Fisher Scientific), 90 mM NaAc (pH 5.2, Sigma-976 

Aldrich), 0.05% Tween-20 (Sigma-Aldrich), Nuclease free water (Qiagen, Hilden, Germany), 977 

followed by 10 s vortexing. Using a QIAvac 24 Plus vacuum manifold (Qiagen), the solution 978 

was then passed through a Zymo-Spin IIICG column (Zymo Research, Irvine, CA, USA) 979 

mounted with conical reservoirs (Zymo Research). The column was washed once with 0.75 mL 980 

binding buffer and twice with 0.75 mL 80% Ethanol (Thermo Fisher Scientific). The column was 981 

dried by centrifugation for 2 min at 13,000 g. The column was then moved to a DNA LowBind 982 

tube (Sarstedt) and 60 µL EB buffer (Qiagen) was added to the column. The column was then 983 

left for 5 min before the DNA was eluted by centrifugation for 1 min at 13,000 g. The eluted 984 

DNA was further cleaned using DNeasy PowerClean pro (Qiagen) and repaired using NEBNext 985 

FFPE DNA Repair Mix (New England Biolabs) as per manufacturers’ protocol. The final DNA 986 

concentrations were measured using Qubit Fluorometric Quantification and the Qubit 1X 987 

dsDNA HS Assay Kit (Thermo Fisher Scientific). 988 

2.2. Sequencing 989 

Libraries were prepared from isolates with a minimum of ~10 ng DNA at the Swedish 990 

National Genomics Infrastructure (SciLifeLab, SNP&SEQ, Uppsala) using the Thruplex 991 

DNA-Seq kit (Takara, Kusatsu, Shiga, Japan) with 8 PCR cycles according to the manufacturer’s 992 

protocol. Libraries were sequenced on Illumina NovaSeq 6000 S4 flow cells using 2 x 150 bp 993 

output (Illumina, San Diego, CA, USA). Read numbers for sequenced weeks are shown in 994 

fig. S4. Sequencing data are available through the NCBI Sequence Read Archive under project 995 

PRJNA808200. The files are named according to the following format Ki-YYYY-WW-RandID, 996 

where Ki is short for Kiruna station, YYYY and WW are the ISO year and week, respectively, 997 

and RandID is the randomized ID that determined the order of DNA extraction and sequencing. 998 
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 999 

Fig. S4. Number of paired-end reads sequenced from each weekly air filter. 1000 
White cells indicate weeks without data. The consecutive run of missing data in the end of 1986 1001 
was due to air filters missing from the archive. 1002 

3. Bioinformatics pipeline 1003 

3.1. Read preprocessing and filtering 1004 

We first trimmed adapter sequences using Cutadapt v. 2.0 (69) and retained reads with 1005 

length ≥ 50 bp. Air filters are replaced at the aerosol sampling station by hand. Therefore, we 1006 

removed reads mapping to the human reference genome hg19 using BBMap v. 38.69 with the 1007 

following parameters: minid: 0.95 maxindel: 3 minhits: 2 bandwidthratio: 0.16 1008 
bandwidth: 12 qtrim: "rl" trimq: 10 quickmatch: "quickmatch" fast: "fast" 1009 

untrim: "untrim". The proportion of human reads detected and removed from the weekly 1010 

sequence data are displayed in fig. S5. 1011 
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 1012 

Fig. S5. Human read removal. 1013 
Proportion of paired-end reads from each week that mapped to the human reference genome and 1014 
were removed prior to further analysis. 1015 

3.2. Taxonomic read classification 1016 

We used a version of Kraken 2 v. 2.0.8-beta (70) that we forked1 to report the number of 1017 

minimizer hit groups in the standard output and StringMeUp,2 a post-processing python script 1018 

developed in-house. StringMeUp allows reclassification of reads based on a user-specified 1019 

confidence score stringency and/or minimum minimizer hit groups cutoff. It only requires the 1020 

output from Kraken 2 and the taxonomy used to build the database. In short, StringMeUp 1021 

processes each read by evaluating the confidence score at the currently assigned node. If the 1022 

confidence score is less than the user-specified cutoff, the read is reclassified to the parent of the 1023 

current node and the confidence score is recalculated as outlined in the manual of Kraken 2.3 1024 

This continues until the confidence score requirement is satisfied. If the current node is the root 1025 

and the confidence score is less than the cutoff, the read is deemed unclassified.  1026 

                                                 
1 https://github.com/danisven/kraken2 
2 https://github.com/danisven/StringMeUp 
3 https://github.com/DerrickWood/kraken2/wiki/Manual#confidence-scoring 
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3.2.1. Custom Kraken 2 database 1027 

Input data for the Kraken2 database comprised nucleotide sequences from the 1) NCBI non-1028 

redundant nucleotide (nt), 2) NCBI RefSeq genomic, and 3) GenBank whole genome shotgun 1029 

(WGS) databases. The nt fasta file contained 256 GB of sequence data and was downloaded4 1030 

using the Kraken 2 command --download-library. The RefSeq genomic blast database was 1031 

downloaded5 from the NCBI ftp,6 converted to a 1.6 terabyte (TB) fasta file using the NCBI 1032 

blast+ package (71) application blastdbcmd, and staged for inclusion in the Kraken 2 database 1033 

with the Kraken 2 command --add-to-library. 1034 

The WGS assemblies were selected in a multi-step process. First, a list of available WGS 1035 

projects was acquired through the NCBI Sequence Set Browser7 and WGS projects (at the 1036 

species rank) non-redundant with the nt or RefSeq genomic databases were identified. Projects 1037 

with unannotated (UNA) or environmental (ENV) sequences or that lacked a biosample or 1038 

taxonomic ID were excluded, leaving 13,731 projects from 4,809 unique species and 2.4 TB of 1039 

sequence data. Fasta files were downloaded using fastq-dump, part of the SRA toolkit,8 and 1040 

subsequently staged for inclusion in the Kraken 2 database in the same way as the RefSeq 1041 

genomic fasta file. 1042 

Input for the Kraken 2 database build summed to 4.2 TB and included sequence data from 1043 

1,740,636 taxa from 89,168 named genera (data S2). From this, a 2.2 TB hash table (database) 1044 

was built using 72 threads with a wall time of 75 hours. Minimizer and k-mer size settings were 1045 

kept at their defaults. 1046 

3.2.2. Kraken 2 classification and filtering with StringMeUp 1047 

Sequences from the 380 weeks were classified using the Kraken 2 database (section 3.2.1) 1048 

using 72 threads with a mean wall time of 1.96 hours per sample. Classifications were made 1049 

under minimal stringency settings, i.e., --confidence 0 and --minimum-hit-groups 1. The 1050 

reads were classified in this way so that StringMeUp could be applied on the output and 1051 

stringency settings freely selected from a wide range. We found that 76,521 genera had at least 1052 

one classified read under the minimum stringency threshold. 1053 

                                                 
4 date: 2 January 2020 
5 date: 11 December 2019 
6 ftp://ftp.ncbi.nlm.nih.gov/blast/db/ 
7 https://www.ncbi.nlm.nih.gov/Traces/wgs/ 
8 https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software 
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 1054 

Fig. S6. A larger fraction of reads are classified to taxa reported in Torne lappmark 1055 
whereas classification success decreases with increasing stringency cutoffs in Kraken 2. 1056 
Stringency was altered by varying the cutoffs for minimum confidence scores and hit groups 1057 
(e.g., c0.1_m2 denotes a confidence score of 0.1 and 2 minimum number of hit groups). The 1058 
combination we used is marked in red (c0.1_m10). Parameter combinations that have a lower 1059 
proportion of reads assigned to observed taxa at a comparable level of total assigned reads are 1060 
unlabeled. The left panel shows all tested combinations and the right shows a detailed view of 1061 
the more stringent parameter settings. 1062 

The penultimate step in the read classification pipeline was to select confidence score and 1063 

hit group threshold. We randomly selected two weeks from each year (n = 36), subset the reads 1064 

assigned to the most abundant genera (> 25th percentile), and then calculated the fraction of reads 1065 

assigned to a taxonomic family observed in Torne lappmark9 out of all assigned reads over a grid 1066 

of cutoff combinations. Taxa observations were retrieved from the Swedish Species Observation 1067 

System database10 (72) (data S3). Confidence scores were evaluated at 0, 0.05, 0.1, 0.15, 0.2, 1068 

0.25, and 0.3. Minimum hit groups were evaluated at 1, 2, 5, and 10 for all confidence scores and 1069 

at 15, 20, 25, 30, 35, and 40 for confidence scores 0, 0.05, and 0.1. The parameter space was 1070 

                                                 
9 a historic administrative division, roughly extending 100 km north, east, and west and 15 km south of the aerosol 
sampling station 
10 Artportalen, a repository for biological surveys in Sweden and quality-reviewed community observations: 
https://artportalen.se/ 
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extended until no improvement (in proportion of reads assigned to Torne lappmark taxa) was 1071 

observed. 1072 

We considered a minimum confidence of 0.1 with a minimum of 10 hit groups to be a good 1073 

trade-off between the fraction of reads assigned to taxa plausibly present near the aerosol 1074 

sampling station and the total number of classified reads (fig. S6). Using this level of stringency, 1075 

40,034 genera had at least one classified read. More stringent cutoffs marginally increased the 1076 

Torne lappmark fraction but the total number of classified reads continued to decrease almost 1077 

linearly. A less stringent cutoff combined with the machine classifier in Section 4.3 may have 1078 

increased the sensitivity of our assignments, but we preferred this more conservative approach 1079 

for the ecosystem-level biodiversity analyses. Finally, we removed taxa that did not have > 10 1080 

classified reads in any of the weekly samples, leaving 15,672 genera. 1081 

4. Relative abundance transformations and detrending 1082 

4.1. Removal of zero inflated taxa and log-ratio transformations 1083 

Metagenomic datasets are a type of compositional data because the maximum number of 1084 

reads is constrained by the sequencing instrument. In our dataset, classified reads for a given 1085 

week comprise a D-part composition, where D is the number of genera. The sample space of a 1086 

D-part composition is a subset of ℝ𝐷𝐷 known as the simplex, 𝕊𝕊𝐷𝐷−1 (73). Because a composition is 1087 

only free to vary in 𝕊𝕊D−1, operations defined on ℝ𝐷𝐷 are invalid. More simply, compositions 1088 

cannot be added together or multiplied by a scalar and methods based on the covariance matrix 1089 

cannot be expected to give sensible results. This challenge can be addressed by using the 1090 

Aitchison geometry to define a Euclidean vector space on the simplex and using log-ratio 1091 

transformations to express compositions as coordinates in ℝ with respect this geometry (74). 1092 

We performed most subsequent analyses on log-ratio transformed data, which requires 1093 

addressing zero count data first. An observation of zero reads from an organism may be due to its 1094 

true absence from the catchment area, but we assume zeros from regularly detected taxa are 1095 

artifacts of limited, stochastic sampling. We removed 9,380 genera with zero counts in ≥ 2/3 of 1096 

the weeks and imputed zeros for the remaining 6,292 using geometric Bayesian multiplicative 1097 

replacement (75) as implemented by the cmultRepl function in the R package ‘zCompositions’ 1098 

v. 1.4.0-1 (76). This method replaces zeros with estimates drawn from a multinomial distribution 1099 

and preserves the sum and correlation structure of the composition. 1100 
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The centered log-ratio (CLR) transformation maps a composition from the simplex 𝕊𝕊𝐷𝐷−1  to 1101 

the unconstrained space of  ℝ𝐷𝐷. The CLR transformation is an isometry, meaning the Euclidean 1102 

distances between two parts of a composition in  ℝ𝐷𝐷 is equivalent to the Aitchison distance in 1103 

𝕊𝕊𝐷𝐷−1. The CLR also provides a one-to-one transformation of all features, which makes 1104 

interpretability easier but always results in singular covariance matrices. 1105 

A composition 𝑥𝑥 ∈  𝕊𝕊𝐷𝐷−1 can be CLR transformed through: 1106 

 1107 

 
𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥) =  �𝑙𝑙𝑙𝑙𝑙𝑙 �

𝑥𝑥1
𝑔𝑔(𝑥𝑥)� , 𝑙𝑙𝑙𝑙𝑙𝑙 �

𝑥𝑥2
𝑔𝑔(𝑥𝑥)� , . . . , 𝑙𝑙𝑙𝑙𝑙𝑙 �

𝑥𝑥𝐷𝐷
𝑔𝑔(𝑥𝑥)�� (1) 

 1108 

where 𝑔𝑔(𝑥𝑥) is the geometric mean of the composition 𝑥𝑥 and 𝐷𝐷 is the number of parts in the 1109 

composition 𝑥𝑥. 1110 

An alternative is the isometric log-ratio (ILR) transformation, which assigns coordinates in 1111 

ℝ𝐷𝐷−1 with respect to an orthonormal basis in 𝕊𝕊𝐷𝐷−1. This transformation can be done according to 1112 

the formulae: 1113 

 1114 

 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥)  =  𝑧𝑧 =  (𝑧𝑧1, . . . , 𝑧𝑧𝐷𝐷−1) (2) 
 1115 

 

𝑧𝑧𝑗𝑗 = �
𝐷𝐷 − 𝑗𝑗

𝐷𝐷 − 𝑗𝑗 + 1
𝑙𝑙𝑙𝑙

⎝

⎛ 𝑥𝑥𝑗𝑗

�∏ 𝑥𝑥𝑘𝑘𝐷𝐷
𝑘𝑘=𝑗𝑗+1

𝐷𝐷−𝑗𝑗

⎠

⎞ ,𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1, … ,𝐷𝐷 − 1 (3) 

 1116 

where D is the number of parts in the composition. 1117 

The ILR transformation is also an isometry and additionally matches the dimension of the 1118 

simplex in ℝ and therefore does not result in singular covariance matrices. The tradeoff is the 1119 

ILR transformation losses interpretability because matching the dimensionality of 𝕊𝕊 means there 1120 

cannot be a one-to-one correspondence of the D compositional parts. Due to this, the ILR 1121 

transformation is preferable to CLR when one wishes to analyze the composition as a whole, 1122 

rather than a subset of components (77). 1123 

When using the ILR transformation, all information about 𝑥𝑥1 is contained the first 1124 

coordinate 𝑧𝑧1. The same cannot be said about the other coordinates since e.g., 𝑥𝑥2 is used in the 1125 

calculation of 𝑧𝑧1 and 𝑧𝑧2. Calculating the first coordinate for each 𝑥𝑥 = (𝑥𝑥1 , … ,  𝑥𝑥𝐷𝐷) results in D 1126 
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pivot coordinate systems, which measures the relative dominance of each part in the composition 1127 

(74). The pivot coordinate log-ratio (PLR) transformation is a pragmatic solution when 1128 

univariate analysis or visualization of compositional parts is desired or necessary. PLR 1129 

transformations were made with the R package ‘robCompositions’ v. 2.3.1 (74, 78). 1130 

4.2. Detrending 1131 

We identified three confounding factors that could bias eDNA abundance estimates: 1) a 1132 

change in air filter manufacturer in 1996, 2) potentially more human contamination earlier in the 1133 

time series (fig. S7), and 3) read length variation due to partial DNA degradation (fig. S7). 1134 

 1135 

Fig. S7. Proportion of human reads and mean read length. 1136 
The proportion of reads that mapped to the human reference genome (red) and the mean read 1137 
length in base pairs (blue). 1138 

We addressed read length variation by removing trends between genera abundances and 1139 

their weekly mean read length. First, we applied the ILR transformation to both read lengths and 1140 

relative abundances prior to detrending using the R package ‘compositions’ v. 2.0-6 (79). We 1141 

modeled the weekly abundance of a given ILR component as a function of mean read length 1142 

using generalized linear models (GLM). GLMs for each component were fit using the python 1143 

module ‘statsmodels’ v. 0.11.1 (80) with the log, identity, and inverse link functions. The best fit 1144 
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was inferred using the Akaike information criterion (81). Weeks with a zero read count for a 1145 

given component were not included in the models, leaving their imputed zero values unchanged. 1146 

Sample means were re-added to the residuals, which were inversely transformed to relative 1147 

abundances using the ‘compositions’ package. Redundancy analysis (RDA) was applied to the 1148 

relative abundance matrix conditioned on air filter type and human read count proportion using 1149 

the R package ‘vegan’ v. 2.6-4 (82) and the residuals were then used for subsequent analysis. For 1150 

a comparison of the data before and after detrending, see fig. S8. 1151 

 1152 

Fig. S8. Comparison of relative abundances before and after detrending. 1153 
For each genus two data tracks are shown. The top track shows relative abundances before 1154 
detrending and the bottom after detrending. Abundances are scaled between 0 and 1. 1155 

4.3. Classification refinement with gradient boosting 1156 

The 6,292 genera putatively captured by the air filters included unlikely taxa such as the 1157 

white rhinoceros (Ceratotherium simum). Besides initial misclassification due to read quality, 1158 

redundant k-mers, and low sequence abundance, false positives may also arise from 1159 

contaminants and other issues in the reference genomes and the unique computational burden 1160 
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imposed by any given database (17). To address this problem, we developed a gradient boosting 1161 

machine (GBM) to distinguish between taxa likely to be true and false positives based on their 1162 

classification metrics and abundance patterns throughout the time series. 1163 

4.3.1. Feature engineering 1164 

Based on the known limitations of the classification pipeline (17) and the behavior of a few 1165 

conspicuous false positives (see also Section 4.4), we hypothesized that false positive genera 1166 

would have lower abundances; be detected rarely, or alternatively, with unusual consistency; 1167 

occur more frequently in lineages with more sequence data and/or larger genomes, and have 1168 

distinct per-read Kraken 2 classification quality metric profiles. We defined 31 features 1169 

(parentheses correspond to column names in data S4) from these expectations and calculated 1170 

them for each genus:  1171 

1) mean abundance (abundance_mean) and 2) its square (abundance_mean_squared), 1172 

3) median abundance (abundance_median) and 4) its square 1173 

(abundance_median_squared), 1174 

5) 5th percentile of weekly abundances (abundance_percentile_5th) and 6) its square 1175 

(abundance_percentile_5th_squared), 1176 

7) 95th percentile of weekly abundances (abundance_percentile_95th) and 8) its square 1177 

(abundance_percentile_95th_squared), 1178 

9) number of weeks with relative abundance > 0 (weeks_present) and 10) its square 1179 

(weeks_present_squared), 1180 

11) standard deviation of relative abundance (abundance_sd) and 12) its square 1181 

(abundance_sd_squared), 1182 

13) abundance coefficient of variation (CV) and 14) its square (CV_squared), 1183 

15) number of minimizers per clade (minimizers_clade), 1184 

16) number of minimizers per taxon (minimizers_taxon), 1185 

17) total sequences per clade (total_sequence_clade), 1186 

18) total sequences per taxon (total_sequence_taxon), 1187 

19) ratio of mean abundance to number of clade minimizers 1188 

(abundance_mean_minimizerC_ratio), 1189 

20) ratio of median abundance to number of clade minimizers 1190 

(abundance_median_minimizerC_ratio),  1191 
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21) ratio of mean abundance to number of taxon minimizers 1192 

(abundance_mean_minimizerT_ratio), 1193 

22) ratio of median abundance to number of taxon minimizers 1194 

(abundance_median_minimizerT_ratio), 1195 

23) Kraken 2 confidence score: total number of k-mers classified to a given genus 1196 

divided by the total number of k-mers from the corresponding reads 1197 

(confidence_original),  1198 

24) alternative confidence score: same as feature 22 but without unclassified k-mers in 1199 

the denominator (confidence_classified), 1200 

25) other k-mers lineage ratio: number of k-mers classified to any node leading to the 1201 

assigned genus divided by the total number of k-mers, excluding those classified 1202 

to the genus (other_kmers_lineage_ratio), 1203 

26) other k-mers root ratio; the ratio of k-mers classified to the root node to the total 1204 

number of k-mers, excluding those classified to the genus 1205 

(other_kmers_root_ratio), 1206 

27) other k-mers classified ratio: the ratio of classified to unclassified k-mers, excluding 1207 

those classified to the genus (other_kmers_classified_ratio), 1208 

28) other k-mers distance: the average taxonomic distance (number of intervening 1209 

edges) between the nodes that the k-mers are classified to (other than the genus) 1210 

and the genus that the corresponding reads are classified to 1211 

(other_kmers_distance), 1212 

29) other k-mers distance lineage excluded: as in feature 27, but excluding k-mers 1213 

classified to any rank in the lineage leading to the genus 1214 

(other_kmers_distance_lineage_excluded), 1215 

30) total k-mers: sum of k-mers classified to the genus clade across the time series 1216 

(total_kmers), and 1217 

31) number minimizer hit groups per k-mer: the sum of minimizer hit groups from 1218 

reads classified to a genus divided by the total number of k-mers 1219 

(mhg_per_kmer).  1220 

We also considered the possibility that one or more weeks could be enriched for false 1221 

positives by including the weekly abundance of each genus as features. Finally, we one-hot 1222 
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encoded kingdom-rank assignments to allow these features to differ in their utility and 1223 

probability distributions. All features were calculated from PLR transformed data (Section 4.1). 1224 

4.3.2. Training data acquisition 1225 

As we lacked labeled (i.e., empirically known) training data, we used species occurrence 1226 

records to create two groups that we expect to be enriched for true and false positive taxa, 1227 

respectively. As pseudopostives, we used genera registered in the Swedish Species Observation 1228 

System11 with > 3 observations reported from ≤ 40 km of the aerosol sampling station between 1229 

1974-2008 (83). We also included humans, dogs, Aedes, and 33 bacterial genera identified in soil 1230 

and water samples from a similar ecosystem12 as pseudopositives, yielding 317 in total. For 1231 

pseudonegative taxa, we identified 379 taxa that 1) have no reported occurrences in the Global 1232 

Biodiversity Information Facility online database (GBIF) within 5,000 km of the aerosol 1233 

sampling station (84), and 2) are not closely related to any European taxa lacking a reference 1234 

genome. For example, Glossinidae, containing the Glossina tsetse flies, is in the same 1235 

superfamily as the Hippoboscidae, which occur in Europe and lack a representative genome, so 1236 

Glossina was not considered a pseudonegative genus. These criteria presumably exclude many 1237 

actual false positives (i.e., where the classification does not result from shared ancestry) from the 1238 

training data, but we wanted to allow genera poorly represented in the reference database to be 1239 

captured at higher taxonomic ranks (see also Section 4.4). Prior to model training, we randomly 1240 

selected and set aside 15% (n = 91) of the pseudopresences and absences as test data. The full list 1241 

of pseudolabeled taxa and their feature data is provided as data S4 and their taxonomic 1242 

composition is summarized in table S2. 1243 

  1244 

                                                 
11 Artportalen, a repository for biological surveys in Sweden and quality-reviewed community observations: 
https://artportalen.se/ 
12 NCBI Bioproject accession number PRJNA767205 
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Table S2. Taxonomic composition of pseudolabeled data. 1245 
Taxa are divided by kingdom into positive and negative and test and training fractions. Orders 1246 
with more than 15 labeled taxa are shown; the remaining taxa in each kingdom are summed as 1247 
‘others’. 1248 

taxon 
training test total 

neg. pos. neg. pos. neg. pos. 
Bacteria 0 29 0 4 0 33 
Metazoa 212 70 35 12 247 82 

Mammalia 110 11 18 0 128 11 
Aves 27 31 8 4 35 35 

Insecta 4 25 0 6 4 31 
Actinopteri 40 0 6 1 46 1 

others 31 3 3 1 34 4 
Viridiplantae 90 99 15 16 105 115 

Magnoliopsida 33 60 5 10 38 70 
Pinopsida 26 3 4 0 30 3 

Polypodiopsida 24 7 6 0 30 7 
Bryopsida 0 16 0 3 0 19 

others 7 13 0 3 7 16 
Fungi 24 81 3 6 27 87 

Agaricomycetes 16 52 1 2 17 54 
Lecanoromycetes 0 14 0 3 0 17 

others 8 15 2 1 10 16 
total 326 279 53 38 379 317 

 1249 

4.3.3. Parameter tuning and classification 1250 

We trained the GBM using the R interface for xgboost v. 1.7.5.1 (85). We iteratively 1251 

performed grid searches with 5-fold cross validation over a total of 6,561 hyperparameter 1252 

combinations to identify a set approaching the smallest binary classification error rate. First, we 1253 

fixed the learning rate (eta) to 0.3 and explored regularization and tree-specific parameters over 1254 

the grid: 1255 
max_depth = c(1, 3, 5, 7, 9), 1256 
min_child_weight = c(1, 3, 5, 7, 9), 1257 
gamma = c(0.0, 0.01, 0.1, 0.3, 0.5, 1.0), 1258 
subsample = c(0.4, 0.6, 0.8), 1259 
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colsample_bytree = c(0.4, 0.6, 0.8), 1260 
reg_alpha = c(1e-5, 1e-2, 0.1, 1, 100), 1261 
reg_lambda = c(1.0, 1.5, 2.0, 3.0, 4.5). 1262 

We defined successively narrower ranges over six tuning rounds and, in the final round of 1263 

tuning, tested eta = c(0.1, 0.15, 0.2, 0.25, 0.3) with the remaining parameters fixed. 1264 

The final trained model used: eta = 0.3, max_depth = 5, min_child_weight = 2, 1265 
subsample = 0.7, colsample_bytree = 0.4, reg_alpha = 1e-05, gamma = 0.3, 1266 
reg_lamba = 1.5. 1267 

Table S3. Gradient boosting machine (GBM) classification performance. 1268 
False discovery rate (FDR), precision, and recall are reported for the n = 91 test dataset using 1269 
predictive probabilities from 0.50 to 0.95 as the cutoff for a positive classification. ‘#negative’ 1270 
and ‘#positive’ denote the number of genera below or above a given cutoff, respectively, out of 1271 
the 6,292 genera dataset. 1272 

cutoff FDR precision recall #negative #positive 
0.50 0.09 0.89 0.74 2,830 3,462 
0.55 0.08 0.91 0.74 2,941 3,351 
0.60 0.08 0.91 0.74 3,083 3,209 
0.65 0.08 0.91 0.74 3,225 3,067 
0.70 0.06 0.93 0.74 3,369 2,923 
0.75 0.04 0.95 0.71 3,553 2,739 
0.80 0.04 0.95 0.71 3,737 2,555 
0.85 0.04 0.94 0.61 3,960 2,332 
0.90 0.02 0.96 0.50 4,267 2,025 
0.95 0.00 1.00 0.47 4,795 1,497 

 1273 

We compared the false discovery rate (FDR), precision, and recall for the test data over a 1274 

range of predicted classification probabilities (table S3). We emphasize that these are based on 1275 

estimated labels and do not necessarily indicate the error rates of the full dataset. Nevertheless, 1276 

the key features identified by the trained GBM are mostly derived from the k-mer classification 1277 

patterns, a result expected only if the pseudolabeled training are enriched for real positive and 1278 

negatives. Four features comprised 45% of the binary classification error improvement: the 1279 

original Kraken 2 confidence score (25%; feature 22 in Section 4.3.1); other k-mers distance 1280 

(13%; feature 27), relative abundance standard deviation (4%; feature 10), and the classified 1281 

confidence score (3%; feature 23). Pseudonegative genera tended to have a larger other k-mers 1282 

distance, a smaller standard deviation, and lower confidence scores than pseudopostives 1283 
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(fig. S9). This suggests false positive genera are likely to show limited variation in abundance 1284 

over the time series and that reads with k-mers assigned to false positives tend to also contain 1285 

k-mers assigned to taxonomically-distant clades. In particular, k-mer distances > 20 result if a 1286 

read contains k-mers classified to both eukaryotes and prokaryotes, which can occur from 1287 

reference genome contamination (Section 4.4). 1288 

 1289 

Fig. S9. Distributions of the four most influential features in the gradient boosting machine 1290 
classification model. 1291 
Each row corresponds to a feature. The first two columns (blues) show values for the 1292 
pseudolabeled negative genera and the last two columns (greens) show pseudolabeled positive 1293 
genera. Training data are shown in a darker shade and test data in a lighter shade. 1294 
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For the final classification of the 6,292 genera dataset, we selected the 0.75 probability 1295 

threshold, which classified 2,739 as true occurrences (weekly relative proportions of these taxa 1296 

are given in data S5). Given the taxonomic composition of the pseudolabeled training data (table 1297 

S2), we expect genera-rank classifications to be most accurate for mammals, birds, and fish, 1298 

followed by common seed plants and agaricomycote fungi. Genera-rank assignments for insects 1299 

and microbial taxa are probably the least accurate but we demonstrate a method in Section 4.4 1300 

for determining if questionable assignments result from shared ancestry with the assigned genus. 1301 

4.4. Read mapping analysis of classified taxa 1302 

Accurate taxonomic classification highly depends on the reference sequences in the 1303 

database library. Organisms lacking a reference can be misclassified e.g., to close relatives or 1304 

contaminated reference genomes. After Kraken 2 classification we found reads assigned to 1305 

organisms that are vanishingly unlikely to be present near the aerosol sampling station, such as 1306 

the white rhinoceros (Ceratotherium simum). To understand the source of this signal, we mapped 1307 

reads classified by Kraken 2 to white rhinoceros back to northern white rhinoceros’ genome.13 1308 

Reads from week 37 in 1996 were selected for this analysis due to high number classified to 1309 

white rhinoceros. Reads were aligned using Hisat2 v. 2.2.1 (86) using default parameters. Reads 1310 

from the air filter mapped to only 213 out of the 942,426 contigs in the draft assembly. We 1311 

blasted (blast v. 2.10.1+) 15 of the contigs with most hits against the nt database using the 1312 

following parameters (unspecified parameters kept as default): 1313 
-task megablast 1314 
-db nt_v5 1315 
-outfmt "6 qseqid staxids bitscore std sscinames sskingdoms stitle" 1316 
-num_threads 10 1317 
-max_target_seqs 10 1318 
-evalue 1e-25 1319 
-max_hsps 1320 

The blast matches showed > 80% identity with sequences from Pseudomonas species. From 1321 

this, we conclude the signal from white rhinoceros is a false positive caused by reference genome 1322 

contamination. 1323 

                                                 
13 GenBank accession number: GCA_004027795.1 
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After performing genus-level classification refinement (Section 4.3), we detected two 1324 

potential misclassifications among the 100 most abundant taxa: the forest tree Larix (Pinales: 1325 

Pinaceae) and an insect endemic to Antarctica, Belgica (Diptera: Chironomidae). Reads assigned 1326 

to Larix are surprisingly abundant (9% of reads assigned to positive classified taxa), given that 1327 

the nearest natural populations are located ca. 1,000 km east in Arkhangelsk oblast, Russia or 1328 

2,000 km south in the northern Carpathians. This is comparable to Picea (9% of reads), which is 1329 

the dominant tree along with Pinus (30%) in the region. Interestingly, we found an almost 1330 

perfect correlation between the PLR coordinates of Larix and Pinus (fig. S10A). Larix flowers 1331 

ca. 2 months earlier than Pinus in central Europe (87) and about month earlier in Siberia (88), 1332 

which suggests they would also differ in phenology if present together in the aerosol station’s 1333 

catchment area. 1334 

We mapped reads classified to Pinus and Larix back to their reference sequences included 1335 

in our Kraken 2 database (masked for low-complexity sequences). We extracted reads from the 1336 

week with the highest abundance in each year for Larix: 1974:25, 1976:27, 1978:26, 1980:26, 1337 

1982:28, 1984:23, 1986:26, 1988:21, 1990:27, 1992:25, 1994:27, 1996:28, 2000:28, 2002:23, 1338 

and 2004:28. We only mapped reads from weeks 1980:26, 1990:27, and 2004:28 for Pinus due 1339 

to the extremely high number of Pinus-classified reads in our dataset (> 108 PE reads during 1340 

flowering weeks). Extracted reads were mapped back using BBMap v. 38.98 with the following 1341 

parameters: pairedonly = t ambiguous = best killbadpairs = f minid = 0.97 (other 1342 

parameters set as default). For a true positive signal, we expect aligned reads to be randomly 1343 

distributed across the non-repetitive parts of the genome. Thus, we expect a positive relationship 1344 

between the number of reads aligned and the contig length. To compare the last between Larix 1345 

and Pinus, we used the mapping results of the 1,000 longest contigs from each genus. We see the 1346 

expected positive relationship between the aligned reads and contig length for Pinus (fig. S10B) 1347 

but not for Larix (fig. S10C). Our results suggest Larix is a false positive, unlike the Pinus 1348 

signal, potentially driven by cross-classification of Pinus reads. 1349 

We investigated Belgica using the same false-true positive reasoning that we used for Larix 1350 

and Pinus. We mapped Belgica-classified reads from weeks 1974:26, 1976:39, 1978:27, 1351 

1980:23, 1982:27, 1984:26, 1986:28, 1988:30, 1990:24, 1992:27, 1994:31, 1996:31, 1998:32, 1352 

2000:30, 2002:27, 2004:34, 2006:23, and 2008:35 back to its reference sequences in the Kraken 1353 

2 database using the same method as for Larix and Pinus. For Belgica, we found a positive 1354 
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relationship between the number of aligned reads and contig length, as in Pinus (fig. S10D). 1355 

From this, we conclude that the Belgica signal most likely originates from a relative absent from 1356 

the reference database. From the perspective of our GBM classifier, Belgica would then be 1357 

correctly classified as a positive occurrence, even though the genera-rank assignment is 1358 

extremely unlikely to be correct. 1359 

 1360 

Fig. S10. Correlation of Pinus and Larix abundances and relationship between the number 1361 
of mapped reads and contig length for Pinus, Larix and Belgica. 1362 
A) Correlation between Pinus and Larix PLR coordinates (ρ = 0.99, p < 0.001). Number of 1363 
mapped reads per contig vs. contig length for B) Pinus, C) Larix and D) Belgica. 1364 
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5. Dimensionality reduction and clustering 1365 

5.1. Taxa-based clustering and ordination 1366 

Standard measures of correlation and distance are inappropriate for compositional data due 1367 

to their constrained covariance structure. Therefore, we employed an analogue of dissimilarity 1368 

calculated from the pairwise variance between CLR transformed abundances (31, 89): 1369 

 1370 

 
𝜑𝜑𝑠𝑠�𝐷𝐷𝑖𝑖 ,𝐷𝐷𝑗𝑗� =

𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷𝑖𝑖 − 𝐷𝐷𝑗𝑗)
𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷𝑖𝑖 + 𝐷𝐷𝑗𝑗)

 (4) 

 1371 

We then performed hierarchical clustering of the 2,739 genera based on their pairwise 𝜑𝜑𝑠𝑠 1372 

using Ward’s method. This method was considered one of the most feasible options based on a 1373 

benchmarking routine that evaluated various clustering methods, including Gaussian mixture 1374 

models (GMM), DB-SCAN, k-Means, and hierarchical clustering. The clustering performance 1375 

was assessed through a combination of silhouette (90) and Calinski-Harabasz (91) indices. The 1376 

cluster membership of each genus at k = 17 is included in data S5 and the taxonomic 1377 

composition of each cluster is summarized in data S6. 1378 

6. Diversity metrics 1379 

Our data can be thought of as a metacommunity, where the sequences from each weekly 1380 

filter sample is a subcommunity. This is illustrated in the matrix P below, where each column 1381 

contains the sequences from week 𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑁𝑁 and each row contains the relative abundance 1382 

of genus 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑆𝑆: 1383 

 1384 

𝑃𝑃 = �
𝑃𝑃11 ⋯ 𝑃𝑃1𝑛𝑛
⋮  ⋮
𝑃𝑃𝑆𝑆1 ⋯ 𝑃𝑃𝑆𝑆𝑆𝑆

� 

𝑝𝑝 = �
𝑝𝑝1
⋮
𝑝𝑝𝑆𝑆
� 𝑝𝑝𝑠𝑠 =  �𝑃𝑃𝑠𝑠𝑠𝑠

𝑛𝑛

 

(5) 

𝑤𝑤 = (𝑤𝑤1, … ,𝑤𝑤𝑁𝑁) 𝑤𝑤𝑛𝑛 =  �𝑃𝑃𝑠𝑠𝑠𝑠
𝑠𝑠

 

 1385 

where ∑ 𝑤𝑤𝑛𝑛𝑛𝑛 = ∑ 𝑝𝑝𝑆𝑆𝑆𝑆  =  ∑ 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠,𝑛𝑛 = 1. This is equivalent to considering 𝑃𝑃𝑆𝑆𝑁𝑁 as a probability 1386 

distribution ∈  {1, … , 𝑆𝑆}  × {1, … ,𝑁𝑁} with marginal distributions 𝑝𝑝 and 𝑤𝑤. For our 1387 
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data, 𝑆𝑆 = 2,739 positive-classified genera (Section 4.3) and 𝑁𝑁 = 378 sequence compositions 1388 

from calendar weeks 21-41 in even-numbered years from 1974-2008. 1389 

We partitioned the diversity observed in week 𝑛𝑛 into alpha (α), beta (β), and gamma (γ) 1390 

diversity components following the framework of (41) and (42). As in the Hill numbers and 1391 

Shannon entropy, α-diversity here quantifies the evenness, or average rarity, of 𝑃𝑃.𝑛𝑛 independently 1392 

from the rest of the time series. In contrast, β- and γ- diversity relate 𝑃𝑃.𝑛𝑛 to 𝑝𝑝, the vector of 1393 

marginal relative abundances. β-diversity scales 𝑝𝑝 by 𝑤𝑤𝑛𝑛, the size of the community in week 𝑛𝑛 to 1394 

measure the distinctiveness of the composition. Scaling by 𝑤𝑤𝑛𝑛 allows comparison of changes in 1395 

compositional uniqueness that are conditionally independent of α-diversity. γ-diversity measures 1396 

the average rarity of taxa in week 𝑛𝑛 with respect to the entire metacommunity, that is, γ = β + α. 1397 

α-diversity is Hill diversity and equal to the exponential of Shannon entropy when q = 1: 1398 

 1399 

α𝑛𝑛 = �
𝑃𝑃𝑠𝑠𝑠𝑠
𝑤𝑤𝑛𝑛

−𝑃𝑃𝑠𝑠𝑠𝑠 𝑤𝑤𝑛𝑛⁄

𝑠𝑠

 𝑞𝑞 = 1 (6.1) 

α𝑛𝑛 = ��𝑃𝑃𝑠𝑠𝑠𝑠
𝑠𝑠

�
1

(𝑃𝑃.𝑛𝑛 𝑤𝑤𝑛𝑛⁄ )𝑠𝑠
�
1−𝑞𝑞

�
1 1−𝑞𝑞⁄

 𝑞𝑞 ≠ 1 (6.2) 

 1400 

Larger values of q increasingly emphasize dominant over rare taxa; 𝛼𝛼𝑞𝑞=0  is taxon richness and 1401 

𝛼𝛼𝑞𝑞=2  is also known as Simpson’s concentration index. Higher α-diversity (for q > 0) indicates a 1402 

more even abundance distribution, that is, a larger number of effective taxa. α-diversity obtains 1403 

its maximum α = S if all 1, … , 𝑆𝑆 taxa are present in equal relative abundances.  1404 

β-diversity is the exponential of Rényi’s relative entropy and equal to the exponential of 1405 

Kullback-Leilber divergence for q = 1: 1406 

 1407 

β𝑛𝑛 = ��
𝑃𝑃𝑠𝑠𝑠𝑠
𝑝𝑝𝑠𝑠𝑤𝑤𝑛𝑛

�
𝑃𝑃𝑠𝑠𝑠𝑠/𝑤𝑤𝑛𝑛

𝑠𝑠

 𝑞𝑞 = 1 (7.1) 

β𝑛𝑛 = 1 � �
𝑃𝑃𝑠𝑠𝑠𝑠
𝑤𝑤𝑛𝑛

�
𝑝𝑝
𝑃𝑃.𝑛𝑛
�
𝑠𝑠

1−𝑞𝑞

𝑠𝑠

�
1 (1−𝑞𝑞)⁄

�  𝑞𝑞 ≠ 1 (7.2) 

 1408 
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β-diversity measures the distinctiveness of the genera abundance distribution of the nth week 1409 

relative to the entire metacommunity. β-diversity is 1 if the composition in a week is identical to 1410 

the whole metacommunity (i.e., perfectly representative) and increases as genera are more 1411 

overrepresented in week n relative to 𝑝𝑝𝑠𝑠𝑤𝑤𝑛𝑛 to a maximum of β𝑛𝑛 =  1 𝑤𝑤𝑛𝑛⁄ . 1412 

γ-diversity is the exponential of Rényi’s cross entropy: 1413 

 1414 

𝛾𝛾𝑛𝑛 = ��
1
𝑝𝑝𝑠𝑠
�
𝑃𝑃𝑠𝑠𝑠𝑠/𝑤𝑤𝑛𝑛

𝑠𝑠

 𝑞𝑞 = 1 (8.1) 

𝛾𝛾𝑛𝑛 = ��
𝑃𝑃𝑠𝑠𝑠𝑠
𝑤𝑤𝑛𝑛𝑠𝑠

�
1

(𝑝𝑝)𝑠𝑠
�
1−𝑞𝑞

�
1 (1−𝑞𝑞)⁄

 𝑞𝑞 ≠ 1 (8.2) 

 1415 

This measures the average rarity of genera in week n relative to the metacommunity. This means 1416 

that if the composition of a week is identical to the marginal distribution 𝑝𝑝, its γ-diversity would 1417 

equal the α-diversity of the metacommunity. γ-diversity increases with evenness, as in 1418 

α-diversity, and as genera are more common in week n compared to their overall rarity, up to a 1419 

maximum of 𝛾𝛾𝑛𝑛 =  𝑆𝑆/w 𝑛𝑛. 1420 

6.1. Per-taxon γ-diversity contributions 1421 

We tested for significant differences in the weekly γ-diversity contributions from each 1422 

genus, i.e., the multiplicand in Equation 8.1, in matched calendar weeks between the early and 1423 

late years of the time series using the two-sided Wilcoxon rank sum test. We initially assessed 1424 

the sensitivity of the results to the years used as the ‘early’ and ‘late’ periods using comparisons 1425 

between ’74-’80 vs. ’02-’08, ’74-’82 vs. ’00-’08, ’74-’84 vs. ’98-’08, ’74-’86 vs. ’96-’08, and 1426 

’74-’88 vs. ’94-’08. We avoided comparisons including ’90 and ’92 because these years 1427 

correspond to the temporary peak in Pinus abundance and the lowest γ-diversity. With the 1428 

exception of Picea, we found no difference in the significance of Benjamini-Hochberg adjusted 1429 

p-values (FDRᵒ=ᵒ0.05) or the direction of change for the genera with the largest differences in 1430 

γ-diversity contributions (those in Fig. 3C in the main text). Picea changed both signs and 1431 

significance depending on the weeks used in the comparison, likely because pollen production is 1432 

irregular in Norway spruce. We therefore used ’74-’88 vs. ’94-’08 for the analysis. The median 1433 
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per-genus difference in γ-diversity contribution, 95% confidence intervals, and Benjamini-1434 

Hochberg adjusted p-values are given in data S7. 1435 

7. Climatic variables 1436 

7.1. Data sources and construction 1437 

We used observations from a weather station14 located ca. 3 km from the aerosol sampling 1438 

station (92) and 1/24° gridded daily estimates (93) to construct 24 base variables capturing 1439 

changes in the mean, variance, skewness, and kurtosis of local precipitation and temperature. 1440 

Fifteen follow the ETCCDI climate extreme indices (94), including inhomogeneity adjustments 1441 

(95), but we estimate their values over multiple rolling intervals. We derived 20 variables 1442 

describing water and energy available for primary production from the monthly values in the 1443 

1/24° TerraClimate dataset (96). Given the frequency of the eDNA samples, we disaggregated 1444 

the Terraclim variables to weekly intervals using cubic spline interpolation such that monthly 1445 

means (or sums, if applicable) remained unchanged. Similarly, we interpolated weekly values 1446 

from the monthly indices of the North Atlantic (97) and Atlantic Multidecadal (98) oscillations, 1447 

which influence regional temperature and precipitation. Weekly values for the Arctic oscillation 1448 

were calculated from daily indices (99). All 56 base variables and their data sources are 1449 

summarized in table S4. 1450 

The duration of exposure to thermal and moisture variability can modulate vital rates and 1451 

phenological patterns. For example, accumulated temperature is a key signal of bud burst and 1452 

insect emergence and the balance between duration and intensity influences the ability of 1453 

organisms to acclimate to stressful conditions (100). To incorporate some of this complexity into 1454 

our models, we applied summary statistics to each base variable over rolling windows covering 1455 

up to the previous 78 weeks. Intervals were selected to reflect local seasonal patterns between 1456 

1961 and 2009: four and eight weeks cover the period between the first (last) days consistently 1457 

> 0°C and ≥ 5°C (𝑥𝑥� = 3.9, σ = 2.0); 13, 17, and 26 weeks connect the current week to conditions 1458 

during the prior spring thaw (week number 𝑥𝑥� = 17.8, σ = 1.5), snow melt (𝑥𝑥� = 19.7, σ = 1.1), and 1459 

start of the 5°C growing season (𝑥𝑥� = 22.7, σ = 1.4); and the 52 and 78 windows include the 1460 

influence of the prior growing and dormant season, with the latter including the two previous 1461 

                                                 
14 World Meteorological Organization (WMO) number: SWE00140904 
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dormant seasons. Additionally, we included one- and two-week windows for daily counts of 0°C 1462 

temperatures and mean daily temperature and precipitation. For disaggregated variables, we 1463 

considered standard deviations over ≥ 8-week intervals due to their original monthly resolution. 1464 

Note that observations are equally weighted within windows and do not incorporate time-lagged 1465 

effects per se but values of TNN52,78 and TXN52,78 are determined by the previous year’s winter 1466 

temperatures and TXX52,78 and TNX52,78 by summer. 1467 

Table S4. Summary of climatic covariables. 1468 
name base description f(x) windows (weeks) 

AETa Actual Evapotranspiration; weekly total water extracted from 
plants and soil 

x̄ 4,8,13,17,26,52,78 
σ 8,13,17,26,52,78 

AMOIb Atlantic Multidecadal Oscillation Index; weekly mean 
x̄ 4,8,13,17,26,52,78 
σ 8,13,17,26,52,78 

AMOI.LPb 10-yr low-pass Atlantic Multidecadal Oscillation Index; 
weekly mean 

x̄ 4,8,13,17,26,52,78 
σ 8,13,17,26,52,78 

AOIc Arctic Oscillation Index: daily Hurrell station-based value 
x̄ 4,8,13,17,26,52,78 
σ 8,13,17,26,52,78 

DSd Dry spells; ≥ 6 consecutive days with < 1 mm precipitation Σ 4,8,13,17,26,52,78 

CSDe Cold spell duration; ≥ 6 consecutive days where TMIN < 10th 
percentile† Σ 4,8,13,17,26,52,78 

WSd Wet spells; ≥ 6 consecutive days with ≥ 1 mm precipitation Σ 4,8,13,17,26,52,78 

deficita Deficit: difference between weekly PET and AET totals 
x̄ 4,8,13,17,26,52,78 
σ 8,13,17,26,52,78 

DTRe Diurnal temperature range; difference between daily TMIN and 
TMAX† x̄ 4,8,13,17,26,52,78 

FCFe Frost change frequency; days where TMIN < 0°C and 
TMAX > 0°C % 1,2,4,8,13,17,26,52,78 

FDe Frost days; TMIN < 0°C† Σ 1,2,4,8,13,17,26,52,78 

IDe Ice days; TMAX < 0°C† Σ 1,2,4,8,13,17,26,52,78 

NAOIf North Atlantic Oscillation Index; weekly mean Hurrell 
station-based value 

x̄ 4,8,13,17,26,52,78 
σ 8,13,17,26,52,78 

PDa Potential deficit; difference between weekly precipitation and 
PET totals 

x̄ 4,8,13,17,26,52,78 
σ 8,13,17,26,52,78 

PDSIa Palmer Drought Severity Index; weekly mean 
x̄ 4,8,13,17,26,52,78 
σ 8,13,17,26,52,78 

PETa Potential evapotranspiration; weekly total Penman-Montieth 
reference evapotranspiration 

x̄ 4,8,13,17,26,52,78 
σ 8,13,17,26,52,78 
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precipd Total daily precipitation 
x̄ 

1,2,4,8,13,17,26,52,78 
σ 

pressuree Daily mean atmospheric pressure 
x̄ 4,8,13,17,26,52,78 
σ 8,13,17,26,52,78 

radiationa Weekly total downward surface shortwave solar radiation 
x̄ 4,8,13,17,26,52,78 
σ 8,13,17,26,52,78 

RM10d Days with ≥ 10 mm precipitation† Σ 4,8,13,17,26,52,78 

runoffa Weekly total precipitation and snowmelt exceeding PET and 
soil recharge 

x̄ 4,8,13,17,26,52,78 
σ 8,13,17,26,52,78 

RX1dayd Maximum 1-day precipitation† Σ 4,8,13,17,26,52,78 

soila Weekly total soil column moisture 
x̄ 4,8,13,17,26,52,78 
σ 8,13,17,26,52,78 

SWEa Snow water equivalent; amount of liquid water in snow pack 
x̄ 4,8,13,17,26,52,78 
σ 8,13,17,26,52,78 

TAVGd Daily mean temperature 
x̄ 

1,2,4,8,13,17,26,52,78 
σ 

TMAXe Daily maximum temperature x̄ 1,2,4,8,13,17,26,52,78 

TMINe Daily minimum temperature x̄ 1,2,4,8,13,17,26,52,78 

TN10pe Cool nights; days where TMIN < 10th percentile† % 4,8,13,17,26,52,78 

TN90pe Warm nights; days where TMIN > 90th percentile† % 4,8,13,17,26,52,78 

TNNe Minimum daily TMIN† min 4,8,13,17,26,52,78 

TNXe Maximum daily TMIN† max 4,8,13,17,26,52,78 

TX10pe Cool days; days where TMAX < 10th percentile† % 4,8,13,17,26,52,78 

TX90pe Warm days; days where TMAX > 90th percentile† % 4,8,13,17,26,52,78 

TXNe Minimum daily TMAX† min 4,8,13,17,26,52,78 

TXXe Maximum daily TMAX† max 4,8,13,17,26,52,78 

VPa Vapor pressure; weekly mean atmospheric pressure exerted by 
water vapor 

x̄ 4,8,13,17,26,52,78 
σ 8,13,17,26,52,78 

VPDa Vapor pressure deficit; weekly mean difference between 
saturated vapor pressure and actual vapor pressure 

x̄ 4,8,13,17,26,52,78 
σ 8,13,17,26,52,78 

WSDe Warm spell duration; ≥ 6 consecutive days where TMAX > 90th 

percentile† Σ 4,8,13,17,26,52,78 

a – TerraClimate (96); b – Trenberth and Shea (98); c – Climate Prediction Center, NOAA (99); 1469 

d – PTHBV v. 3.0 (93); e – Menne et al. 2012 (92), station code: SWE00140904; f – Hurrel (97); 1470 

†ETCCDI index (94). 1471 
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7.2. Variable selection 1472 

We first excluded variables with > 50% zero-valued observations during the aerosol 1473 

sampling period (weeks 21-41), which removed 16 related to cold spells, ice days, frost days, 1474 

and consecutive wet days. Then, we used the findCorrelation function in the R package 1475 

‘caret’ v. 6.0-93 to identify the largest subset with all pairwise |𝜌𝜌�| < 0.70. We curated this subset 1476 

to include variables with potentially greater mechanistic importance or clearer interpretations 1477 

over those that simply maximized the size of the regressor matrix (e.g., VPD over PDSI, FCF17 1478 

over runoff_sd13). The final regressor matrix comprised 75 variables with pairwise |𝜌𝜌�| =1479 

0.15 (𝜎𝜎 = 0.13) and is provided in data S8. 1480 

7.3. Missing year interpolation 1481 

Daily measurements for TMIN, TMAX and air pressure were not reported from 1993-1995 1482 

by the nearest weather station.15 In practice, this resulted in 21 missing observations for their 1483 

derived variables. We initially considered using other nearby weather stations (92) to supplement 1484 

the observations but they either also lacked these measurements or their temporal coverage did 1485 

not overlap sufficiently to assess potential inhomogeneity. Therefore, we interpolated values for 1486 

1994 for the 18 affected variables: pressure4,8,26, DTR4,13,52, FCF17,26,78, FD365, TN10p4,13, 1487 

TN90p4,26, TNX52, TXN52, and TXX26,52. We followed the state space model framework 1488 

described in section 8, with the following modifications: 1) we used the entirety of the reported 1489 

data from 1959-2008 to inform parameter estimation, 2) only trigonometric seasonal dummy 1490 

variables were included in the regressor matrix, and 3) we considered the model with the lowest 1491 

cumulative one-step-ahead forecast errors to be the best prediction. We examined the 1492 

rank-transformed time series and considered the imputed 1994 estimates to be plausible, 1493 

especially for variables calculated over longer periods or with long-term trends or cycles 1494 

(fig. S11). 1495 

                                                 
15 World Meteorological Organization (WMO) number: SWE00140904 
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 1496 

Fig. S11. Climatic covariables with imputed values for 1994. 1497 
Rank-transformed observed data is shown in blue and imputed values in orange. 1498 

7.4. Variable clustering and categorization 1499 

We related each of the original 393 variables to their larger ‘climatic’ neighborhood using 1500 

densMAP16 (101) combined with hdbscan17 (102) with ‘densvis’ v. 1.8.1 (101) and ‘dbscan’ 1501 

v. 1.1-11 (103) for R, respectively. Informally, variables within a neighborhood describe the 1502 

same, or a similar, climatic feature while those in distant neighborhoods are more likely 1503 

generated by a different latent process. 1504 

Both densMAP and hdbscan are sensitive to hyperparameter choices. In the absence of a 1505 

more objective cost function, we considered hyperparameter combinations with higher 1506 

classification rates to be better summaries of the climatic data. We conducted a grid search over 1507 

                                                 
16density-preserving manifold approximation and projection 
17 hierarchical density-based spatial clustering of applications with noise 
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the densUMAP and hdbscan parameters: n_neighbors = c(10, 15, 20, 25), 1508 
n_components = c(10, 20, 30, 40, 60), lambda = c(0.05, 0.1, 0.15), 1509 
metric = c(“correlation”, “cosine”, “manhattan”, “euclidean”), 1510 

min_samples = c(10, 11, 12, 13, 14, 15, 16, 17, 18). Cluster number varied by 1511 

min_samples, which directly specifies the smallest permitted cluster size but no other 1512 

hyperparameter had a clear individual effect, nor did any independently influence the 1513 

classification rate. Combinations with classification rates above the 75th percentile (n = 32, 1514 

mean = 95.53%) most frequently resolved 3 and 7 clusters (n = 16 and 9, respectively). We 1515 

compared the climatic variable assignments at k = 3 and k = 7 to assess their stability. 1516 

Assignments differed primarily in resolution and in identity of unclassified variables, although 1517 

the Manhattan distance differed in both cases and additionally produced hierarchically 1518 

incompatible k = 3 and k = 7 assignments. The remaining three k = 7 assignments differed by 1519 

only a single successfully classified variable and were consistent with the k = 3 results. 1520 

We considered the k = 7 assignments as the best estimate of high-dimensional neighborhood 1521 

space and examined each group to identify common features. Based on this, we suggest our 1522 

climatic variables can be summarized as aspects of seven latent axes: 1523 

1) precipitation, which includes precipitation variables with < 52-week intervals; 1524 

2) water storage, comprising most runoff and soil moisture variables with ≥ 8-week 1525 

intervals, running means of the PDSI, and precipitation variables with ≥ 52-week 1526 

intervals; 1527 

3) snow accumulation, inferred from the inclusion of ≥ 52-week snow water variables 1528 

and running means of the NAO and AO indices; 1529 

4) warming trend, based on the inclusion of most temperature-derived variables with 1530 

≥ 52-week intervals and all estimates of TN90p and TX90p; 1531 

5) seasonal transitions, which consists of variables delimiting the potential vegetative 1532 

growth period, including the recent number of frost and ice days, temperature 1533 

variability, and short window estimates of runoff, snow cover, radiation, PET, and 1534 

AET; 1535 

6) evapotranspiration, a group with similar base variables as seasonal transitions but 1536 

with ≥ 8-week windows, in addition to most sub-annual temperature variables and 1537 

estimates of water deficit and soil moisture variability; and 1538 
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7) the Atlantic Multidecadal Oscillation, which simply consists of running means of 1539 

both AMO indices. 1540 

Like the climatic variables themselves, these categories are an abstraction intended to 1541 

represent the environment experienced by a hypothetical organism. However, we use them as a 1542 

heuristic device because they help clarify the kind of variation represented by abstruse regressors 1543 

(e.g., the standard deviation of the NAOI falls on the ‘seasonal transitions’ axis), and they 1544 

emphasize the relationship between trends and potentially more proximate factors, rather than a 1545 

single index. 1546 

8. Time series analysis 1547 

8.1. Introduction to state-space models 1548 

We used linear state-space models (SSMs) to analyze eDNA and traditional count-based 1549 

time series. Such models consider time series data to be the result of two connected stochastic 1550 

systems: 1) a hidden, or latent, process that generates variation across time, and 2) a 1551 

measurement process that allows discrepancies between the latent state and observed data. The 1552 

relationship between sequenced eDNA from a given taxon y and the true DNA abundance in the 1553 

catchment area μ, for example, can be written: 1554 

 1555 

 𝑦𝑦𝑡𝑡 =  𝜇𝜇𝑡𝑡 + 𝜀𝜀𝑡𝑡, 𝜀𝜀𝑡𝑡~𝑁𝑁(0,𝜎𝜎𝜀𝜀2)  

   (9) 

 𝜇𝜇𝑡𝑡 =  𝜇𝜇𝑡𝑡−1 + 𝜂𝜂𝑡𝑡 , 𝜂𝜂𝑡𝑡~𝑁𝑁�0,𝜎𝜎𝜇𝜇2�  

 1556 

where 1557 

o y is the vector of eDNA abundance at time steps t = 1…T, 1558 

o ε is measurement error with variance 𝜎𝜎𝜀𝜀2, 1559 

o μ is the corresponding latent population size, 1560 

o and η represents variation in μ with variance 𝜎𝜎𝜇𝜇2. 1561 

Recursive algorithms, most commonly the Kalman filter (104), solve Equation 9 by 1562 

formalizing the intuition that the historic performance of a model can be used to refine future 1563 
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predictions. The filter computes 𝑝𝑝�𝑥𝑥𝑡𝑡�𝑦𝑦1:𝑡𝑡−1,𝜎𝜎𝜀𝜀2,𝜎𝜎𝜇𝜇2� and uses the prediction errors vt = xt – yt and 1564 

their variance Ft to obtain minimum-variance unbiased estimates of xt and the system parameters, 1565 

in this case, 𝜎𝜎𝜀𝜀2 and 𝜎𝜎𝜇𝜇2 (105). SSMs fit by a Kalman filter can be framed in maximum-likelihood 1566 

or Bayesian terms, and we employ both as a matter of accessibility given the available 1567 

implementations suitable for ecological time series. 1568 

8.2. eDNA abundance and diversity trends 1569 

8.2.1. Structural time series models 1570 

We modeled eDNA abundances observed in calendar weeks 21-41 of each year using the R 1571 

package ‘bsts’ v. 0.9.9 (106, 107). Here, the simple model in Equation 9 is extended to include a 1572 

second latent state, δt, to allow a stochastic directional trend: 1573 

 1574 

  𝜇𝜇𝑡𝑡 = 𝜇𝜇𝑡𝑡−1 + 𝛿𝛿𝑡𝑡−1 + 𝜂𝜂𝜇𝜇,𝑡𝑡, 𝜂𝜂𝜇𝜇,𝑡𝑡 ~ 𝑁𝑁�0,𝜎𝜎𝜇𝜇2� (10.1) 

 1575 

 𝛿𝛿𝑡𝑡 = 𝛿𝛿𝑡𝑡−1 + 𝜂𝜂𝛿𝛿,𝑡𝑡, 𝜂𝜂𝛿𝛿,𝑡𝑡 ~ 𝑁𝑁�0,𝜎𝜎𝛿𝛿2� (10.2) 

 1576 

 𝑦𝑦𝑡𝑡 =  𝜇𝜇𝑡𝑡 + 𝐷𝐷𝑇𝑇𝑑𝑑𝑡𝑡 + 𝜀𝜀𝑡𝑡, 𝜀𝜀𝑡𝑡 ~ 𝑁𝑁(0,𝜎𝜎𝜀𝜀2) (10.3) 

 1577 

This is known as a local linear trend (LLT) or ‘random walk with drift’ model. If 𝜎𝜎𝛿𝛿2 1578 

approaches zero but 𝜎𝜎𝜇𝜇2 does not, the model reduces to the local level (LL) in Equation 9 and 1579 

indicates that μ is equally likely to increase as decrease at each time step. Conversely, a 1580 

relatively large 𝜎𝜎𝛿𝛿2 with 𝜎𝜎𝜇𝜇2 approaching zero results in an integrated random walk (IRW) model, 1581 

where μ changes according to a stochastic but directional trend (108). 1582 

We tested for potential responses to climatic (Section 7) and aerosol dispersion-related 1583 

(Section 1.3) variation by comparing predictive power of Equation 10 using three different sets 1584 

of dt covariables: 1585 

1) six variables representing generic seasonal patterns, defined by the trigonometric 1586 

function (105): 1587 

 1588 
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𝐷𝐷𝑇𝑇𝑑𝑑𝑡𝑡 =  �𝐷𝐷�𝑗𝑗 cos 𝜆𝜆𝑗𝑗𝑡𝑡 +  𝐷𝐷�𝑗𝑗∗ sin 𝜆𝜆𝑗𝑗𝑡𝑡,  𝜆𝜆𝑗𝑗 =  

2𝜋𝜋𝜋𝜋
𝑆𝑆

, 𝑗𝑗 = 1 … 3, 𝑆𝑆 = 21
𝐽𝐽

𝑗𝑗=1

 (11) 

 1589 

where λ denotes the jth harmonic and S specifies the length of the season; 1590 

2) these combined with the 75 climatic variables described in Section 7; 1591 

3) or the trigonometric seasonality combined with the particle dispersion variables 1592 

described in Section 1.3. 1593 

Our SSMs are limited to linear Gaussian cases, but ecology theory predicts unimodal or 1594 

skewed responses to environmental variation (109). Therefore, we tested five transformations 1595 

(Yeo-Johnson, exponential, minmax, ranks, and standard scores) of the covariate matrices in a 1596 

regression model for each of the 17 cluster abundances. We compared their forecast errors using 1597 

the diagnostic tests in Section 8.2.3 to identify which transformation best conformed with model 1598 

assumptions for the majority of the clusters. Rank transformation was most consistently adequate 1599 

for the climatic regressors whereas all transformations performed well with the particle 1600 

dispersion variables. For better comparability between the models, we applied the rank 1601 

transformation to both regressor matrices. 1602 

8.2.2. Prior distribution specifications 1603 

Completing the model in Equation 10 requires specifying prior distributions on the 1604 

estimated parameters 𝜃𝜃 = 𝜎𝜎𝜀𝜀2,𝜎𝜎𝜇𝜇2,𝜎𝜎𝛿𝛿2,𝐷𝐷. In ‘bsts,’ variance terms are drawn from the gamma 1605 

distribution: 1606 

 1607 
 1

𝜎𝜎2
 ~ 𝛤𝛤(𝛼𝛼,𝛽𝛽) (12) 

 1608 
with mean 𝛼𝛼/𝛽𝛽 and variance 𝛼𝛼/𝛽𝛽2. A hierarchical spike-and-slab prior is placed on the vector of 1609 

regression coefficients D, where ζ is a Bernoulli distributed variable determining if D = 0 for 1610 

each of the 1...K covariates: 1611 

 1612 

 
𝜁𝜁 ~ �𝜋𝜋𝑘𝑘

𝜁𝜁𝑘𝑘
𝐾𝐾

𝑘𝑘=1

(1 − 𝜋𝜋𝑘𝑘)1− 𝜁𝜁𝑘𝑘 (13) 
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 1613 

or is otherwise drawn from 1614 

 1615 

 𝐷𝐷𝜁𝜁|𝜎𝜎𝜀𝜀2 ∼ 𝑁𝑁 �0,𝜎𝜎𝜀𝜀2�Ω𝜁𝜁−1�
−1
�, 

1
𝜎𝜎𝜀𝜀2

∼ 𝛤𝛤(𝛼𝛼,𝛽𝛽) (14) 

 1616 

where 1617 

 1618 

 Ω−1 = 𝑔𝑔�𝑤𝑤𝑑𝑑𝑇𝑇𝑑𝑑 + (1 − 𝑤𝑤)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑𝑇𝑇𝑑𝑑)� (15) 

 1619 

and Ω𝜁𝜁−1 denotes the rows and columns of Ω-1 where ζ = 1. Equation 15 reduces to Zellner’s g 1620 

prior when the diagonal shrinkage parameter w is zero. More simply, Ω-1 conveniently scales the 1621 

prior distribution on Dζ based on the covariance structure of the subset of covariates sampled in a 1622 

particular draw. 1623 

We defined the priors on 𝜎𝜎𝛿𝛿2 and 𝜎𝜎𝜇𝜇2 to enforce two cases of Equation 10: the local linear 1624 

trend (LLT) and the integrated random walk (IRW). We compared these models explicitly 1625 

because we found that in practice, LLT models simplified to an LL process when 𝜎𝜎𝛿𝛿2 was 1626 

negligible but not to an IRW process unless both 𝜎𝜎𝜇𝜇2 and 𝜎𝜎𝜀𝜀2 approached zero, an unlikely 1627 

scenario for eDNA time series. This result is not surprising given the difficulties of estimating 1628 

process error when measurement error is high. As we considered an IRW process with high 1629 

measurement error and a small slope to be a plausible alternative to the LLT, we chose to enforce 1630 

this outcome by fixing 𝜎𝜎𝜇𝜇2 to an arbitrarily small value. 1631 

In a set of pilot runs on clusters 17 (prokaryotes), 8 (insects), and 5 (plants), posterior 1632 

estimates were generally insensitive to priors on and over the unique combinations of 1633 

𝛼𝛼 = {0.01, 0.05, 0.1, 0.5, 1, 2} and 𝛽𝛽 = {10−2𝑠𝑠𝑦𝑦2, 5−2𝑠𝑠𝑦𝑦2, 101𝑠𝑠𝑦𝑦2, 2−1𝑠𝑠𝑦𝑦2}, where 𝑠𝑠𝑦𝑦2 is the sample 1634 

variance of the time series. However, MCMC diagnostics (Section 8.2.3) favored 𝛼𝛼 = 1. We 1635 

then selected β with the expectation that measurement error is the largest source of variance, 1636 

followed by 𝜎𝜎𝜇𝜇2 and 𝜎𝜎𝛿𝛿2, respectively. Prior distributions used in the production models are given 1637 

in table S5. 1638 
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Table S5. Prior distributions used in the production models. 1639 
model regressors abbreviation 𝜎𝜎𝜇𝜇2 𝜎𝜎𝛿𝛿2 Ω−1 𝜋𝜋𝑘𝑘 𝜎𝜎𝜖𝜖2 

local 
linear 
trend 

harmonics LLT-base 
𝛼𝛼 = 1 

𝛽𝛽 = 10−1𝑠𝑠𝑦𝑦2 
𝜎𝜎𝜇𝜇2 ≤  𝑠𝑠𝑦𝑦2 

𝛼𝛼 = 1 
𝛽𝛽 = 10−2𝑠𝑠𝑦𝑦2 
𝜎𝜎𝛿𝛿2 ≤  0.5 𝑠𝑠𝑦𝑦2 

𝑔𝑔 = 1 
𝑤𝑤 = 0.5 

2
7

 
𝛼𝛼 = 1 

𝛽𝛽 = 0.5 𝑠𝑠𝑦𝑦2 
𝜎𝜎𝜖𝜖2 ≤  𝑠𝑠𝑦𝑦2 

harmonics 
&  

climate 
LLT-climate    

3
41

 
𝛼𝛼 = 1 

𝛽𝛽 = 0.75 𝑠𝑠𝑦𝑦2 
𝜎𝜎𝜖𝜖2 ≤  𝑠𝑠𝑦𝑦2 

harmonics 
& 

catchment 
LLT-particle    

2
27

 
𝛼𝛼 = 1 

𝛽𝛽 = 0.75 𝑠𝑠𝑦𝑦2 
𝜎𝜎𝜖𝜖2 ≤  𝑠𝑠𝑦𝑦2 

integrated 
random 

walk 

harmonics IRW-base 10−4 
𝛼𝛼 = 1 

𝛽𝛽 = 10−2𝑠𝑠𝑦𝑦2 
𝜎𝜎𝛿𝛿2 ≤  0.5 𝑠𝑠𝑦𝑦2 

𝑔𝑔 = 1 
𝑤𝑤 = 0.5 

2
7

 
𝛼𝛼 = 1 

𝛽𝛽 = 0.5 𝑠𝑠𝑦𝑦2 
𝜎𝜎𝜖𝜖2 ≤  𝑠𝑠𝑦𝑦2 

harmonics 
&  

climate 
IRW-climate    

3
41

 
𝛼𝛼 = 1 

𝛽𝛽 = 0.75 𝑠𝑠𝑦𝑦2 
𝜎𝜎𝜖𝜖2 ≤  𝑠𝑠𝑦𝑦2 

harmonics 
& 

catchment 
IRW-particle    

2
27

 
𝛼𝛼 = 1 

𝛽𝛽 = 0.75 𝑠𝑠𝑦𝑦2 
𝜎𝜎𝜖𝜖2 ≤  𝑠𝑠𝑦𝑦2 

 1640 

8.2.3. Model fit and convergence diagnostics 1641 

For pilot runs exploring data transformations and prior specifications, we relied primarily 1642 

on omnibus tests applied to posterior mean forecast errors to efficiently compare dozens of 1643 

models. Following Commandeur and Koopman (110) and Durbin and Koopman (105), we used 1644 

the F variance ratio between the first (t = 2, …, 121) and last (t = 254, …, 378) thirds of the time 1645 

series, the magnitude and significance of autocorrelation in the first 42 lags, and 1646 

Kolomogorov-Smirnov’s d to test for heteroscedasticity, serial dependence, and non-normality, 1647 

respectively. Convergence was evaluated by calculating effective sample sizes (ESS) for each 1648 

parameter, Geweke’s convergence diagnostic (111), Raftery and Lewis's diagnostic (112) with 1649 

the R package ‘coda’ v. 0.19-4 (113) and through visual inspection of parameter trace plots. For 1650 

final model runs, we verified these summary statistics using diagnostic plots of the posterior 1651 

forecast error and latent state distributions and assessed identifiability by plotting univariate prior 1652 

and posterior distributions, likelihood profiles, and joint posterior distributions. Pilot models 1653 

were run for 105 and final models for 106 MCMC iterations, with 10% discarded as burn-in.  1654 
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Some models, primarily of bacteria-dominated cluster abundances, exhibited substantial 1655 

evidence against normal, identical, and independent (IID) errors in all tested combinations of 1656 

priors, time series models, and covariate transformations. Poor model performance was most 1657 

likely caused by a small number of extreme observations in all cases. We removed data points 1658 

more extreme than 1.5 × the interquartile range in log space for both abundances and diversity 1659 

metrics. Forecast errors were approximately IID after removing these outliers. Diagnostic 1660 

summary statistics and the transformations applied, if any, for all production runs in data S9. 1661 

8.2.4. Leave-future-out cross validation 1662 

We compared the predictive accuracy of models with different trend and regression 1663 

specifications using the exact expected log pointwise predictive density (ELPD) estimated by 1664 

leave-future-out cross validation (LFO) (114, 115). Time series models that more accurately 1665 

predict the next M future observations conditioned on data from 𝑡𝑡 =  1 … 𝑡𝑡M−1 are more likely 1666 

to be well-specified and have generalizable parameter estimates. Thus, we computed the 1667 

expected log-predictive densities 𝑝𝑝(𝑦𝑦𝑡𝑡+1:𝑀𝑀|𝑦𝑦1:𝑡𝑡) for each 𝑡𝑡 ∈ {𝐿𝐿, … ,𝑁𝑁 −𝑀𝑀}, where L is the 1668 

minimum number of observations considered before making predictions ahead, N the sample 1669 

size, and M the number of future observations: 1670 

 1671 

 
ELPD𝐿𝐿𝐿𝐿𝐿𝐿 = � log 𝑝𝑝(𝑦𝑦𝑡𝑡+1:𝑀𝑀 | 𝑦𝑦1:𝑡𝑡)

𝑁𝑁−𝑀𝑀

𝑡𝑡=𝐿𝐿

 (16) 

 1672 

We used 21-step-ahead predictions (the number of time points in a year in our dataset) 1673 

for the last 57 weeks (15%) of the time series, i.e., M = 21, L = 300 and N = 378. This process 1674 

refits the time series model for each 𝑡𝑡 ∈ {𝐿𝐿, … ,𝑁𝑁 −𝑀𝑀} and uses S random draws �𝜃𝜃1:𝑡𝑡
(1), … ,𝜃𝜃1:𝑡𝑡

(𝑆𝑆)� 1675 

from the posterior distribution 𝑝𝑝(𝜃𝜃|𝑦𝑦1:𝑡𝑡) to calculate the log likelihood of 𝑝𝑝(𝑦𝑦𝑡𝑡+1:𝑀𝑀|𝑦𝑦1:𝑡𝑡): 1676 

 1677 

 
ELPD𝐿𝐿𝐿𝐿𝐿𝐿 = log𝑝𝑝(𝑦𝑦𝑡𝑡+1:𝑀𝑀 | 𝑦𝑦1:𝑡𝑡)  ≈  

1
𝑆𝑆

 �𝑝𝑝(𝑦𝑦𝑡𝑡+1:𝑀𝑀 | 𝑦𝑦1:𝑡𝑡,𝜃𝜃1:𝑡𝑡
(𝑠𝑠))

𝑆𝑆

𝑠𝑠=1

 (17) 

 1678 

We used 𝑆𝑆 = 3.6 × 105 (i.e., 4 × 105 iterations with the first 10% discarded as burn in) 1679 

for cross-validation. Obtaining 57 forecasts for each model is still time consuming, but each 1680 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.12.06.569882doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.06.569882


 
 

69 
 

model only needs to be fit to the full dataset once because the Kalman recursions can be 1681 

re-filtered to obtain 𝑝𝑝(𝑦𝑦𝑡𝑡+1:𝑀𝑀 | 𝑦𝑦1:𝑡𝑡) at each 𝑡𝑡 ∈ {𝐿𝐿, … ,𝑁𝑁 −𝑀𝑀}. We considered a model to be the 1682 

best among the candidates if the ELPD difference divided by the standard error of the difference 1683 

was > 2 in all pairwise comparisons (116). If one or more models were similarly supported, we 1684 

preferred the model with the fewest number of parameters and/or the smaller regressor matrix. 1685 

8.3. Abundance trends from traditional monitoring data 1686 

8.3.1. Data acquisition 1687 

We conducted an extensive search of publicly-available data and consulted with 1688 

government authorities to identify monitoring surveys within 100 km of the aerosol sampling 1689 

station with at least seven years of data between 1973-2008. We found two programs meeting 1690 

these initial requirements: the Swedish Bird Survey18 (117) and the Swedish Electrofishing 1691 

Register.19 However, electrofishing data for the river closest to the aerosol sampling station, the 1692 

Torne (< 5 km), was only available for four years after 2003. Our initial models indicated 1693 

different population trajectories among and within river catchments, which suggests that the 1694 

electrofishing data may not adequately represent the area closest to the aerosol sampling station. 1695 

We excluded fish from further consideration, leaving birds for comparison. 1696 

The Swedish Bird Survey comprises point observations collected by volunteers according to 1697 

a standardized protocol along predefined routes. We narrowed our search to routes surveyed for 1698 

≥ 5 years and with ≥ 10 total counts of a genus represented in the filter sequences. This resulted 1699 

in nine genera: Anas (Anseriformes: Anatidae), Corvus (Passeriformes: Corvidae), Cuculus 1700 

(Cuculiformes: Cuculidae), Ficedula (Passeriformes: Muscicapidae), Gavia (Gaviiformes: 1701 

Gaviidae), Lagopus (Galiformes: Phasianidae), Parus (Passeriformes: Paridae), Phylloscopus 1702 

(Passeriformes: Phylloscopidae), and Saxicola (Passeriformes: Muscicapidae). For the three 1703 

genera with multiple species in the Kiruna region (Corvus corax and carone, Anas crecca and 1704 

penelope, and Lagopus lagopus and muta), we summed the counts and analyzed them as a single 1705 

genus. 1706 

                                                 
18 Svensk Fågeltaxering; http://www.fageltaxering.lu.se 
19 https://www.slu.se/institutioner/akvatiska-resurser/databaser/elfiskeregistret 
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8.3.2. State space models 1707 

We modeled abundance trends from the count data using SSMs as implemented in the R 1708 

package ‘MARSS’ v. 3.11.4 (118). For each genus, we considered survey routes as observers of 1709 

the same latent population trend but with potentially different autoregressive (AR) errors (119). 1710 

This allows each survey route to be influenced by local conditions and have different random 1711 

error rates. In MARSS notation, this model is written: 1712 

 1713 

�

𝑎𝑎
𝑥𝑥1
𝑥𝑥2
𝑥𝑥𝑛𝑛
�

𝑡𝑡

=  �

1 0 0 0
0 𝑏𝑏1 0 0
0
0

0
0

𝑏𝑏2 0
0 𝑏𝑏𝑛𝑛

� �

𝑎𝑎
𝑥𝑥1
𝑥𝑥2
𝑥𝑥𝑛𝑛
�

𝑡𝑡−1

+ �

𝑒𝑒
𝑤𝑤1
𝑤𝑤2
𝑤𝑤𝑛𝑛
�

𝑡𝑡

, �

𝑒𝑒
𝑤𝑤1
𝑤𝑤2
𝑤𝑤𝑛𝑛
�

𝑡𝑡

~ 𝑀𝑀𝑀𝑀𝑀𝑀�0, �

1 0 0 0
0 𝑞𝑞1 0 0
0
0

0
0

𝑞𝑞2 0
0 𝑞𝑞𝑛𝑛

�� 

(18.1) 

�
𝑦𝑦1
𝑦𝑦2
𝑦𝑦𝑛𝑛
�
𝑡𝑡

=  �
1 1 0 0
1 0 1 0
1 0 0 1

� �

𝑎𝑎
𝑥𝑥1
𝑥𝑥2
𝑥𝑥𝑛𝑛
�

𝑡𝑡

 
(18.2) 

 1714 

where 1715 

o 𝑎𝑎 is the latent trend observed by all routes at time t; 1716 

o 𝑏𝑏𝑛𝑛 is the AR(1) parameter (φ) for the 1. . .𝑛𝑛𝑡𝑡ℎ  route; 1717 

o 𝑥𝑥𝑛𝑛 is the AR(1) trend for each route at time t; 1718 

o and 𝑤𝑤𝑛𝑛 is the observation error for the 1. . .𝑛𝑛𝑡𝑡ℎ route at time t with variance 𝑞𝑞𝑛𝑛. 1719 

We fit maximum-likelihood models for each genus via the EM algorithm with the options: 1720 

minit = 500, maxint = 2000, abstol = 1e-6, conv.test.slope.tol = 1e-6. Because 1721 

the variance of the estimated shared trend was high for most genera (fig. S12), we calculated the 1722 

two-year centered moving average before extracting even-numbered years between 2000-2008 1723 

for comparison with the eDNA estimates. Our results are similar to estimates from the 1724 

Norrbotten Country Board20 (120), which suggests trends estimated from the Swedish Bird 1725 

Survey’s standardized routes are robust to analysis method. 1726 

                                                 
20 Länsstyrelsen Norrbotten 
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 1727 

Fig. S12. Scaled annual abundances indices for nine bird genera estimated from point 1728 
surveys (orange) and PLR transformed eDNA (blue). 1729 
Shaded regions show 95% confidence and credible intervals for point surveys and eDNA 1730 
estimates, respectively. Note different y-scales are used for the two data sources. 1731 

Models of PLR-transformed eDNA abundances were estimated following the methods in 1732 

Section 8. Models using the ‘climate’ regressors produced the best 1-year-ahead forecasts 1733 

according to ELPD differences (Section 8.2.4) for five genera and were tied for the top rank for 1734 

all genera (data S9). The LLT and IRW trend models performed similarly, but MCMC 1735 

diagnostics (8.2.3) suggested the LLT models had convergence issues for some genera (data S9). 1736 

We therefore used the ‘irw climate’ models for all genera and calculated annual averages from 1737 

the posterior median state (fig. S12). We z-transformed the averaged eDNA and count estimates 1738 

and estimated their correlation with ordinary least squares regression. 1739 
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9. Land use and forest history 1740 

 1741 

Fig. S13. Forest harvests outside formally protected areas in northern Sweden. 1742 
A) year of stand establishment within 50 and 100 km of the aerosol sampling station from 1955 1743 
to 1993, and B) with all available records, 1793-1993. Shaded areas in each panel denote years 1744 
overlapping with the eDNA time series. 1745 

Forests have been a dominant, continuous presence in northern Fennoscandia since shortly 1746 

after the last glacial maximum. Until the 19th century, the indigenous Sami people were the 1747 

majority inhabitants of the region and primarily engaged in reindeer pastoralism, hunting, 1748 

fishing, and low-intensity agriculture (121, 122). Colonization by Swedish and Finnish-speaking 1749 

agriculturalists began by the early 17th century, but demographic and land use changes occurred 1750 

slowly until the second half of the 19th century (121) or as recently as the 1880s around Kiruna 1751 

(123). We used stand age data from the Comprehensive Forest Inventory21 to estimate the timing 1752 

and spatial extent of stand-replacing disturbances within 50 and 100 km of the aerosol sampling 1753 

station (124). Consistent with the broader forest history in northern Fennoscandia (122), we 1754 

found two peak periods of canopy conversions, first in the mid-1800s and later in the 1980s (fig. 1755 

S13). Note that the inventory was conducted from 1982-1993 and stand establishments are likely 1756 

                                                 
21 Översiktlig skogsinventering; a national inventory of privately-owned property > 20 hectares conducted between 
1982 and 1993 
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underestimated during this period. Fire may have caused some portion of the canopy loss in the 1757 

1700 and 1800s, but clearcuts have been the dominant stand-replacing disturbance since the 1758 

1900s. 1759 

Contemporary land use comprises commercial forestry, nature-oriented tourism, reindeer 1760 

husbandry by the Sami people, and large-scale mining operations. The town of Kiruna 1761 

(population 23,000), inactive open-pit mines (1900-1960), and a large underground iron mine 1762 

(1960-present) lie 10 km west of the aerosol station. Another iron mine located near the town of 1763 

Gällivare ca. 90 km southwest operated open-pit until the 1960s, and the nearby Aitik open-pit 1764 

copper mine was established in 1968. A smaller open-pit mine 35 km to the southeast operated 1765 

from 1965-1983. A large, contiguous network of formally-protected nature reserves spans much 1766 

of the subalpine zone west of the aerosol sampling station (fig. S14). 1767 

Forestry outside the subalpine zone is intensive and extensive relative to other boreal 1768 

regions. For example, the Swedish National Forest Inventory22 (NFI) (125) reports ca. 14% of 1769 

the total forested area in northern Norrland23 was felled between 1986-2016 (126), compared to 1770 

10% of the eastern boreal shield region (roughly, Ontario and further east) and 4% of the western 1771 

shield (127). From 1982 to 2008, ca. 33% of northern Norrland forests received at least one 1772 

silvicultural treatment (126).24 The Swedish National Land Cover Database, constructed from 1773 

2017-2019 using satellite and LiDAR data, classified 16.5% of forests within 350 km of the 1774 

aerosol station (19.5% in Norbotten county) as ‘temporarily non-forested’, that is, regrowing 1775 

stands with a canopy height < 5 m (56). Given the site indices25 typical of the region (128), these 1776 

stands were likely younger than 20-40 at the time of the database construction. 1777 

                                                 
22 Riksskogstaxeringen (125) 
23 a historic region used for statistical reporting comprising the two northernmost provinces of Sweden 
24 calculated as the sum of hectares ‘cleaned’ (röjning in Swedish), thinned or felled and the total forest area 
(skogsmark) including alpine regions in 2020 for northern Norrland; data available from the Swedish National 
Forest Inventory (126) 
25 ståndortsindex 
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 1778 

Fig. S14. Map of land cover from the Swedish National Land Cover Database (NMD) and 1779 
formally protected areas in Sweden within 350 km of the aerosol station. 1780 
Land cover classes aggregated from the original 21 thematic classes: 'TNF' are 'temporarily 1781 
non-forested' with regrowing trees that are < 5 m tall; 'forests' designates areas with > 10% 1782 
crown cover and > 5 m canopy height; 'wetlands' denotes non-forested areas where water covers 1783 
the soil most of the year; 'alpine tundra' refers to non-wetland areas incapable of supporting 1784 
forests but may be covered by vascular plants, bryophytes, or lichens; 'developed' includes 1785 
permanent construction, roads, railways, and a small amount of cultivated land (< 1%); and 1786 
'water' includes all permanent water bodies. Inset shows the position of the town of Kiruna and 1787 
the two northernmost provinces of Sweden (darker and lighter shading, respectively) within 1788 
Fennoscandia; the dotted line indicates the border between Norrbotten and Västerbotten. 1789 

Data from the NFI for northern Norrland (126) indicate the extent of > 100 year old forests 1790 

declined by ca. 35% during the years concurrent with the eDNA time series (fig. S15A). Forests 1791 

older than 160 years decreased by 55% between 1974 and 1995, or an 80% decline since 1955 1792 

(fig. S15A). The oldest forest fraction increased modestly after the mid-1990s minima 1793 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.12.06.569882doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.06.569882


 
 

75 
 

(fig. S15A); these likely established from advance regeneration left by early high-grading (129) 1794 

and some may be functionally ‘old-growth’ forests (130). Forest biomass (in forest cubic 1795 

meters,26 m3sk) and density have generally increased since 1955, but pine has increased the most 1796 

by far (fig. S15B and C). 1797 

 1798 

Fig. S15. Forest age and standing biomass in northern Sweden. 1799 
A) Productive forest area by age class, B) total standing volume in millions of forest cubic 1800 
meters (m3sk) by species across all land use classes. C) Total number of living stems (≥ 10 cm) 1801 
in all land use classes. 1802 

Higher resolution forest history data, especially integrated in a spatiotemporal framework 1803 

with eDNA data, could help identify how specific silvicultural treatments or conservation 1804 

                                                 
26 the solid over-bark volume from stump to the top of the bole; skogskubikmeter 
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interventions impact (or not) regional biodiversity. Conversely, historic reconstructions informed 1805 

by archaeological datasets (e.g., (131)) would help verify and calibrate eDNA time series when 1806 

contemporary remote sensing and monitoring data are lacking, as is the case here. For example, 1807 

the peak in pine-associated eDNA we found during the mid-1990s coincides with a period of 1808 

rapid change in the area covered by pine, which suggests aerosols emitted by harvest and 1809 

afforestation activities may have also influenced this trend (fig. S16). 1810 

 1811 

Fig. S16. Comparison of trends in pine forest cover and pine-associated eDNA abundance. 1812 
A) spatial extent of pine forests in Norrbotten province from 1985 to 2008 from the National 1813 
Forest Inventory and B) weekly trend estimates of the PLR-transformed relative abundance of 1814 
cluster 6, the pine-dominated cluster. 1815 

10. Read alignment to the Betula nana chloroplast genome 1816 

Weekly samples with high Betula relative abundance were selected to study species 1817 

classification and genetic variation using the complete Betula nana chloroplast sequence.27 Air 1818 

filter samples from weeks 20-26 of 1998 were selected for this analysis. Reads were merged and 1819 

aligned using BBMap v. 38.61b with: pairedonly = t ambiguous = ‘toss’ (other 1820 

parameters set as default). The SAM output was then filtered with a custom script selecting only 1821 

                                                 
27 GenBank accession number: MT872530.1 
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complete reads (150 bp) that contain up to one mismatch in the alignment. To annotate 1822 

observation counts of SNPs, a naïve variant calling was performed using freebayes 1823 

v. 1.1.0-60-gc15b070 with: -haplotype-length = 0 -min-alternate-count = 1  1824 

-min-alternate-fraction = 0 -pooled-continuous (unnamed parameters set as default). 1825 

11. Cluster 13 individual genera models 1826 

We estimated trends within Cluster 13 using the pivot coordinate transformed data for each 1827 

genus using a simplified version of the state space models in Section 8: 1) we considered only 1828 

the LLT model (Equation 9) for the time series component and 2) only used the trigonometric 1829 

seasonal dummy variables for the regression component (Equation 11) We back-transformed the 1830 

pivot coordinates to relative abundances, with the genera within the cluster summing to one each 1831 

week, for display. The relative abundances for each genus in cluster 13 are displayed in fig S17. 1832 
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 1833 
Fig. S17. Individual relative abundance trends for genera in cluster 13. 1834 
Line plots showing the relative abundances (log scale) across the time series from fitting 1835 
individual models for each genus in cluster 13. Here, the genera are partitioned according to type 1836 
of organism and have thus not been clustered by similarity in relative abundances. The thick 1837 
black line for each group of organism indicates the mean relative abundance for that group. 1838 

  1839 
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Supplementary data file descriptions 1840 

Data S1 1841 
Particle mass originating from different distances from the aerosol sampling station for each 1842 
week (sheet 1) and yearly averages as well as proportion of particle mass originating from all 1843 
cardinal directions (sheet 2). 1844 

Data S2 1845 
Taxonomic composition of the Kraken 2 database and the total sequence (in basepairs) used as 1846 
input. 1847 

Data S3 1848 
List of observed genera in Torne lappmark according to the Swedish Species Observation 1849 
System. 1850 

Data S4 1851 
Pseudolabeled genera used to train the gradient boosting classifier. “tax_id” denotes the NCBI 1852 
taxonomic identification code assigned to the reads by Kraken 2 and “genus” is the 1853 
corresponding name; “type” indicates if a genus was considered as a true or false positive; “set” 1854 
identifies those used in model training or reserved for model testing; and columns 5-419 contain 1855 
feature data and are described in the Supplementary Materials. 1856 

Data S5 1857 
Weekly relative proportions of the 2,739 positively-classified taxa and their cluster 1858 
memberships. Column “pp” denotes the predictive probability of being a true positive. 1859 

Data S6 1860 
Summary of the taxonomic composition of the 17 clusters identified through hierarchical 1861 
clustering of pairwise covariance in log-ratios. Taxonomic ranks from domain through genus that 1862 
comprise ≥ 5% of a given cluster are enumerated, along with their mean relative abundance. 1863 
Taxonomy follows the NCBI taxonomic database. 1864 

Data S7 1865 
Estimated median and 95% non-parametric confidence intervals for per-genus differences in 1866 
γ-diversity contributions between 1974-1988 and 1994-2008. Negative values indicate a larger 1867 
contribution in 1994-2008. P-values were adjusted with the Benjamini-Hochberg procedure (5% 1868 
FDR). Cluster membership and NCBI taxonomy are provided for convenience. 1869 
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Data S8 1870 
Climatic regressor matrix used in time series models. Variable abbreviations correspond to table 1871 
s4. 1872 

Data S9 1873 
Summary of Bayesian state space model fit and convergence diagnostics for production runs. 1874 
Models are grouped by sheet, where ‘abundances’ refers to cluster abundance models using the 1875 
full time series data, ‘catchment’ refers to abundances truncated to match the time period of the 1876 
particle dispersion models, ‘diversity’ contains α-, β-, γ- diversity of order q = 1, 2, and 3 for 1877 
each of the the ‘total’, ‘no14’ and ‘eukaryotic’ fractions of the eDNA community; and ‘birds’ 1878 
contains the summary results for nine genera with contemporaneous survey data. The trend and 1879 
regressor matrix specification comprising the model are indicated, and the expected log 1880 
pointwise predictive densities (ELPD), its standard error (ELPD.SE), along with model 1881 
prediction and residual standard deviations and r2. Residual diagnostics include the maximum 1882 
residual autocorrelation (acf.max) and its lag (acf.max.lag), the F variance ratio, and 1883 
Kolomogorov-Smirnov’s d (KS.d). Effective sample sizes (ESS), the Geweke statistic, and 1884 
Raftery and Lewis's diagnostic (RL) are given for each parameter. The ELPD difference 1885 
(ELPD.diff) and the standard error of this difference (ELPD.diff.se) is reported between a given 1886 
model and the highest-scoring model in a comparison. 1887 

Data S10 1888 
Supplemental time series model results for eDNA temporal cluster abundances and community 1889 
diversity metrics. 1890 

Data S11 1891 
Marginal inclusion probabilities and median coefficient estimates with 95% credible intervals for 1892 
each regressor. Results are shown for climatic regression models that were supported over 1893 
alternative specifications by differences in expected log pointwise predictive densities (ELPD). 1894 
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