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Abstract 31 

Background 32 

The use of genome-wide association studies (GWAS) has led to the identification of numerous 33 

quantitative trait loci and candidate genes in dairy cattle. To obtain sufficient power of GWAS and 34 

to identify quantitative trait nucleotides, whole-genome sequence data is required. Sequence data 35 

facilitates the identification of potential causal variants; however, sequencing of whole genomes 36 

is still expensive for a large number of animals. Imputation is a quick and efficient way of obtaining 37 

sequence data from large datasets. Milk production traits are complex and influenced by many 38 
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genetic and environmental factors. Although extensive research has been performed for these 39 

traits, with many associations unveiled thus far, due to their crucial economic importance, complex 40 

genetic architecture, and the fact that causative variants in cattle are still scarce, there is a need for 41 

a better understanding of their genetic background. In this study, we aimed to identify new 42 

candidate loci associated with milk production traits in German Holstein cattle, the most important 43 

dairy breed in Germany and worldwide. For that purpose, 252,285 cattle were imputed to the 44 

sequence level and large-scale GWAS was carried out to identify new association signals. 45 

Results 46 

We confirmed many known and identified 30 previously unreported candidate genes for milk, fat, 47 

and protein yield. While all of the genes were functionally associated with the traits, some showed 48 

pleiotropic effects as well. Specifically, association with mammary gland development, fatty acid 49 

synthesis, metabolism of lipids, or milk production QTLs in other farm animals has been reported. 50 

Variants associated with these genes explained a large percentage of genetic variance, compared 51 

to random ones. 52 

Conclusions 53 

Our findings proved the power of large samples and sequence-based GWAS in detecting new 54 

association signals. In order to fully exploit the power of GWAS, one should aim at very large 55 

samples combined with whole-genome sequence data. Although milk production traits in cattle 56 

are comprehensively researched, the genetic background of these traits is still not fully understood, 57 

with the potential for many new associations to be revealed, as shown in our study. With constantly 58 

growing sample sizes, we expect more insights into the genetic architecture of production traits in 59 

the future.  60 
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Background 61 

Intensive selection for milk production traits enhanced with improved nutrition and management, 62 

as well as reproductive technologies and accelerated by genomic selection  (reviewed by [1]), has 63 

strongly increased milk production over the years [2]. The Holstein breed is dominant in milk 64 

production worldwide. The German Holstein population alone comprises 2.4 million cows, with 65 

an average milk yield of 10,000 kg per lactation [3]. The breeding goal for German Holstein is 66 

balanced and includes many traits that can be grouped into milk production, health, fertility, and 67 

longevity [4]. This has not always been the case, and although selection for milk production has 68 

been successful in increasing milk yield, it has also been associated with a higher incidence of 69 

mastitis, metabolic and reproductive diseases [5]. The relative weight of milk production in total 70 

merit indices is decreasing as new traits are continuously added to the breeding goal. However, 71 

because production still makes up a substantial part (e.g. 36% in Germany), there is the risk of a 72 

further decline in animal health. More extensive knowledge of the genetic architecture of economic 73 

traits is needed, especially given that the majority of these traits are complex traits, influenced by 74 

many genes and environmental factors. 75 

So far, genome-wide association studies have been successful in the discovery of quantitative trait 76 

loci (QTL) and candidate genes (reviewed by [6]), however, only a few causal variants for 77 

economically important traits in cattle have been confirmed [7, 8]. In order to be able to detect the 78 

underlying causal variant whole-genome sequence (WGS) data and large samples are needed to 79 

ensure sufficient power of GWAS [9, 10]. GWAS in cattle is restricted by long-distance linkage 80 

disequilibrium (LD) segments [11], due to a small effective population size (Ne) caused by intense 81 

selection [12], therefore making it hard to pinpoint the true causal variant which may be hidden 82 
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among the many variants in LD. Another source of difficulty in revealing the true associations is 83 

the highly polygenic genetic architecture of quantitative traits, i.e. large number of variants with 84 

small effects affecting the trait [13]. Genotypes from whole-genome sequences obtained from 85 

sequencing the study individuals are limited, especially when large samples are considered. In that 86 

case, imputation [14] can be utilized as a method of obtaining the sequence-dense data. Imputation 87 

methods exploit LD patterns among the individuals in the sample and reference dataset, with the 88 

assumption that apparently unrelated animals inherited haplotype blocks from a common ancestor 89 

[15]. Imputation accuracy depends on various factors such as the size of the reference panel, the 90 

relationship between the individuals in the reference and sample dataset, imputation software 91 

choice and the number of the variants to be imputed [16–18]. In cattle, sequence-level imputation 92 

is usually performed in two steps [18], due to higher accuracy obtained when first imputing from 93 

a lower to a higher-density SNP chip, and then to sequence level.  94 

To exploit the power of large sample size in detecting novel causative loci, we carried out GWAS 95 

for three milk production traits using imputed sequence data. After obtaining GWAS summary 96 

statistics with a mixed linear model approach, meta-analysis was utilized to pool the results of 97 

different animal groups. Candidate gene search was performed for top variants from GWAS with 98 

the lowest p-values and functional enrichment analysis was done to confirm the candidate genes. 99 

Finally, the percentage of genetic variance explained by the top SNPs was calculated to see which 100 

proportion of the variance could be attributed to variants associated with the novel candidate loci. 101 

Methods 102 

Dataset 103 
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The dataset for imputation consisted of 252,285 German Holstein cows with 45,613 SNP markers. 104 

Animals were mainly genotyped with various low-density SNP genotyping arrays (see Additional 105 

file 1: Table S1) and then imputed to 50K level according to the national genetic evaluation 106 

procedure [19], or genotyped with various 50K SNP chips (see Additional file 1: Table S1). The 107 

dataset was collected during the KuhVision project that aimed to genotype and phenotype German 108 

Holstein cows to establish a large-scale female reference population for genomic evaluation. The 109 

phenotypes for milk (MY), fat (FY), and protein yield (PY) in kg were obtained in the form of 110 

deregressed proofs (DRPs), which are pseudo-phenotypes produced using the special single-step 111 

SNP BLUP model for deregressing genomic estimated breeding values (GEBV) [20].  112 

Imputation 113 

The genomic coordinates of the input genotypes were lifted from the previous bovine reference 114 

genome assembly UMD 3.1. to the ARS-UCD1.2 with a custom approach. CombineVariants from 115 

the Genome Analysis Toolkit (GATK) v. 3.8.1.0 [21] was used to merge the samples by 116 

chromosomes and by groups. The sample of 252,285 cows consisting of 30 autosomal and sex 117 

chromosome pairs was imputed to sequence level in a two-step imputation approach using the 118 

BEAGLE v. 5.2 [22]. The effective population size parameter was set to 1000. The animals were 119 

first imputed to high-density (HD) genotype level using the genotype data of 1278 Holstein cows 120 

consisting of 585,517 markers [23]. The HD reference panel was phased using BEAGLE v. 5.1 121 

beforehand [24]. In the next step, data were imputed to the WGS level using the multi-breed 122 

reference panel from the 1000 Bulls Genome Project Run9 [25]. The reference panel consisted of 123 

5116 cows and bulls of the species Bos taurus (see Additional file 1: Table S2). Both imputation 124 

steps were performed chromosome-wise, with the samples divided into groups of approximately 125 

equal size, due to high computational demand. The imputed files were indexed afterwards with 126 
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IndexFeatureFile, GATK v. 4.2.2.0, merged by the sample groups, and split into separate lines due 127 

to the presence of multi-allelic variants (SNPs, insertions, and deletions) using BCFtools v. 1.14 128 

[26]. As a quality control, the imputed WGS dataset was filtered using the dosage R-squared 129 

parameter, a measure of the estimated squared correlation between estimated and true allele dosage 130 

(DR2; [27]). Markers imputed with DR2 < 0.75 were removed with BCFtools. The imputed WGS 131 

dataset was annotated with VariantAnnotator from the GATK v. 4.2.2.0 using the Ensembl 132 

variation database, release 105 [28] imported from dbSNP [29], to account for SNPs without rsID. 133 

GWAS 134 

Since phenotype measurements were not available for all 252,285 animals, the sample for GWAS 135 

consisted of 180,217 WGS-imputed cows with phenotypic observations for MY, FY, and PY. 136 

Samples were filtered for minor allele frequency (MAF) > 0.01. Due to memory restrictions of the 137 

high-performance computing (HPC) cluster, the samples were divided into 4 groups consisting of 138 

~ 45,000 animals each. GWAS was performed using the GCTA software v. 1.93.2 beta [30] 139 

applying a mixed linear model approach (MLMA) for all autosomes. The SNP effects were 140 

estimated using the following model: 141 

y = Xb + Zu + e 142 

where y is a vector of DRPs; b is the fixed effect of the variant tested for the association with each 143 

trait; X is a vector containing the genotype score for the tested SNP; u is the vector of polygenic 144 

effects with u ~ N (0, Gσ²u), where G is genomic relationship matrix (GRM) calculated using 50K 145 

SNP genotypes from all chromosomes, and σ²u is a variance of polygenic effects; Z is the incidence 146 

matrix of u; and e is the vector of residual effects with e ~ N (0, Iσ²e), with I being an identity 147 

matrix and σ²e residual variance. Bonferroni correction was used to set a genome-wide 148 
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significance threshold, corresponding to a p-value of 0.05/number of markers. The Manhattan plots 149 

were created using RStudio v. 3.6.3 [31]. METAL software [32] for meta-analysis was used to 150 

merge the GWAS summary statistics of each of the four animal groups per trait, using the approach 151 

that takes into account test statistics and standard errors. To correct for genomic inflation, lambda 152 

(λGC) values were calculated as the median of observed χ² test statistics divided by the expected 153 

median of χ² distribution with one degree of freedom. 154 

Downstream analyses 155 

SnpEff [33] and SnpSift [34] were utilized for functional annotation of genome-wide significant 156 

variants and prediction of their effect on genes, as well as the identification of the closest genes. 157 

The R packages cluster profiler [35] and DOSE [36] were used to carry out an over-representation 158 

analysis (ORA) [37] to determine whether the genes positioned closest to the genome-wide 159 

significant variants are enriched in the known biological pathways. ORA was performed using the 160 

Kyoto Encyclopedia of Genes and Genomes (KEGG) [38] database for variants that passed the 161 

significance threshold of 0.001/number of markers with enrichKEGG (q-value > 0.25). Candidate 162 

genes were also investigated manually, through the Animal Quantitative Trait Loci database 163 

(Animal QTLdb) [39] and using the publications previously associated with milk production 164 

candidate genes, based on the STRING database [40]. A Venn diagram of common candidate 165 

genes was created using the R package VennDiagram [41]. The percentage of genetic variance 166 

explained by the top 50 genome-wide significant SNPs and 50 random SNPs across all 167 

chromosomes was calculated using GCTA’s genomic-relatedness-based restricted maximum-168 

likelihood (GREML) approach [42], by fitting the GRMs together in the model with 50K SNP 169 

chip variants. The analysis was done for the smaller subset of 45,000 animals due to high 170 
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computational demand. PLINK v. 1.9 [43] was used to prune the variants in high linkage 171 

disequilibrium, based on pairwise R² correlation greater than 0.5 (--indep-pairwise 50 5 0.5). 172 

Results 173 

Imputation 174 

To evaluate the genotype liftover quality, we examined the allele frequency (AF) concordance 175 

between the imputed WGS dataset and Run9, by plotting the AF from BTA16 of the two datasets 176 

against each other. Allele frequencies of imputed variants were congruent with the ones from 1000 177 

Bulls Run9, showing the coherence in the frequency for the majority of loci (Figure S1). 178 

Imputation quality control was carried out by utilizing the DR2 parameter, built into the BEAGLE 179 

software. Markers imputed with DR2 < 0.75 were removed with BCFtools, leaving the 20,737,793 180 

markers for further analyses. Then, we checked the DR2 values of known causal variants, such as 181 

two variants in the DGAT1 gene, which were imputed with almost perfect quality (DR2=0.99), as 182 

well as rs385640152 in the GHR gene with DR2=0.98, and rs211210569 in MGST1 with DR2=1. 183 

After the imputation of 252,285 animals to sequence level, and filtering for DR2 and MAF, 184 

17,256,703 variants were left for GWAS. 185 

GWAS 186 

A large number of variants exceeded the genome-wide significance threshold. GWAS analyses 187 

identified 54,032 significant variants for MY, 42,323 for FY, and 35,106 for PY, with the highest 188 

number of associations on chromosomes 5, 6, and 14 (Figures 1-3). Low p-values were observed 189 

for many SNPs, with top variants positioned on bovine chromosome (BTA) 14: rs109050667 (p = 190 
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7.04x10-737), rs136630297 (p = 7.18x10-380), and rs109050667 (p = 2.38x10-221) for MY, FY and 191 

PY, respectively. 192 

The top 50 variants from each chromosome were chosen for further research (see Additional file 193 

2: Tables S1-S3). Considering that significant associations have not been identified on every 194 

chromosome and that some chromosomes had less than 50 significant variants, the number of top 195 

variants chosen for further investigation differed across chromosomes and traits. For MY, 1012 196 

top SNPs were found within or in proximity of 109 genes from 25 chromosomes (see Additional 197 

file 1: Table S3). The top candidate genes on chromosomes with the highest number of significant 198 

SNPs were MGST1 and SLC15A5 on BTA5, GC, NPFFR2, ENSBTAG00000049290 and SLC4A4 199 

on BTA6, ADCK5, CPSF1, SLC52A2, SLC39A4, FBXL6, TMEM249 and SCRT1 on BTA14. 200 

For FY, the top 962 SNPs from 24 chromosomes were located within or close to 108 genes (see 201 

Additional file 1: Table S3). The top candidate genes were MGST1 and SLC15A5 on BTA5, GC, 202 

NPFFR2, ENSBTAG00000049290 on BTA6, CPSF1, SLC39A4, ADCK5, TMEM249, SCRT1, 203 

SLC52A2, FBXL6 and ENSBTAG00000053637 on BTA14. 204 

For PY, 1065 top SNPs from 26 chromosomes were located close to or in 172 genes (see 205 

Additional file 1: Table S3). The candidate genes associated with the most significant genomic 206 

regions were: GC, NPFFR2, ENSBTAG00000049290, and SLC4A4 on BTA6, ABCC9, ST8SIA1, 207 

ENSBTAG00000026611 and CMAS on BTA5. Many genes were found to be associated with the 208 

same traits, as shown on the Venn diagram (Figure 4). The highest number of common candidate 209 

genes were found between MY and PY (47). The second highest number of candidate genes was 210 

between FY and PY (27), 7 genes were in common for MY and FY, and 23 genes were in common 211 

for all three traits (see Additional file 1: Table S4). Lambda values, calculated to assess for false 212 

associations were as follows: λMY = 1.764, λFY = 1.898, and λPY = 1.928. The reason for increased 213 
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genomic inflation factors was due to the meta-analysis that inflated the p-values and therefore the 214 

number of genome-wide significant variants. To assess the effect of meta-analysis on inflation we 215 

divided the individuals from direct-GWAS summary statistics into smaller groups, running the 216 

GWAS for each of these groups again, and merging them into a meta-analysis. The lambda values 217 

were higher after merging the animals into meta-analysis compared to direct GWAS summary 218 

statistics for the same individuals (Figure 5). 219 

Downstream analyses 220 

SnpEff was used to predict the functional effects of genome-wide significantly associated variants 221 

on proteins and to identify the closest genes. The majority of variants were identified in introns 222 

(46.41%) or intergenic regions (37.46%). The number of predicted effects was larger than the 223 

actual number of variants, due to genes with multiple transcripts and variants which affect multiple 224 

genes. A detailed description of the variant effects by type is available in an additional file (see 225 

Additional file 1: Table S5). Regarding the variant impact on proteins, a high majority of variants 226 

were classified as modifiers (98.38%), and only 0.025% were high-impact variants. Of the 50 top 227 

variants which were further investigated, the same high-impact, frameshift variant was found for 228 

both PY and MY on BTA16, at 80,129,589 bp, in the SYT2 gene. One frameshift variant was also 229 

found for FY on BTA3, at 7,933,141 bp in the FCGR2B gene. 230 

KEGG functional enrichment analysis revealed a large number of over-represented terms. To 231 

narrow the list of possible terms, ORA was performed only for genes associated with variants that 232 

passed the genome-wide significance threshold of 0.001/number of markers. A list of all over-233 

represented genes and associated pathways is available in an additional file (see Additional file 1: 234 

Table S6). The common dot plot of the 20 most significant terms of KEGG analysis for MY, FY, 235 
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and PY is shown in Figure 6. The top variants were found in or in proximity to the genes over-236 

represented in 23 pathways, mostly in the PI3K-Akt signaling pathway (Table 1). Two terms were 237 

significantly enriched with all three traits. 238 

The percentage of genetic variance explained by 50 top variants, as well as by 50 random variants 239 

from all autosomal chromosomes was estimated for all three traits (Table 2). For MY, 1012 top 240 

variants from 25 chromosomes explained 8.67% of the variance. Random SNPs from 29 autosomal 241 

chromosomes, explained on average 0.78% of the variance. As for FY, 962 top SNPs from 24 242 

chromosomes accounted for 7.04% of the genetic variance, while the random 1450 variants from 243 

all chromosomes explained about 0.31%. For PY, 6.66% of the variance was explained by 1065 244 

top SNPs from 26 chromosomes, and 0.37% was due to random 1450 variants. After LD pruning 245 

of the top variants for each trait, there were 124, 147, and 182 variants left for MY, FY, and PY, 246 

respectively. Genetic variance explained by pruned variants was 10.01% for MY, 6.51% for FY, 247 

and 5.17% for PY. 248 

 249 

Discussion 250 

Imputation 251 

In this study, we performed a stepwise imputation of 252,285 German Holstein cows from SNP 252 

chip up to sequence level, which makes our sample size one of the largest imputed in cattle so far.  253 

The stepwise imputation approach seems to improve the imputation accuracy, as previously shown 254 

in cattle [18, 44]. Imputation error rate tends to decrease when an intermediate reference panel is 255 

used [44], possibly due to a larger choice of possible haplotype matches between WGS and 256 

medium-density SNP chip, which are narrowed down when using an HD panel as an intermediate 257 
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[18]. In our study, stepwise imputation was done using the Holstein breed HD panel, a subset from 258 

van den Berg et al. [23] as an intermediate step, and the WGS panel from 1000 Bulls Genome 259 

Consortium, as a second step. The WGS-based panel consisted of various breeds of taurine cattle 260 

(see Additional file 1: Table S2). The usage of a multi-breed reference was shown to increase the 261 

imputation accuracy in many studies in cows [45–47], especially for low-frequency variants [46]. 262 

However, multi-breed panels can be counter-productive if animals in the reference panel are too 263 

distant from the sample dataset [48]. The usage of BEAGLE software for imputation can at least 264 

partly overcome this issue since its algorithms can prioritize between the closer and the genetically 265 

distant individuals in the multi-breed reference panel [49]. Moreover, the 1000 Bulls reference 266 

panel consisted of a large number of Holstein animals (~1200) making them the most represented 267 

breed in the reference panel (see Additional file 1: Table S2), therefore enabling the reliable 268 

imputation of Holsteins even in the presence of genetically distant breeds. Another crucial factor 269 

to consider is the value of the Ne parameter [49]. Default Ne in BEAGLE is 1,000,000, however, 270 

this corresponds to the human populations for which was it initially developed. Therefore, updating 271 

the Ne parameter to smaller values is needed, when working with other, less-diverse populations 272 

[49]. 273 

To evaluate the accuracy of imputation we used the second category of quality measures [50] based 274 

on estimated genotypes (DR2) since SNP array genotyped animals were not whole genome 275 

sequenced. Filtering the variants with DR2 < 0.8 is recommended when using DR2, as the 276 

imputation error rate increases below this threshold [49] hence we filtered out all the variants with 277 

DR2 < 0.75. Known causal variants were left in the dataset after DR2 filtering, and were imputed 278 

with near to perfect quality (DR2=0.98 to 1). DGAT1 causal variants were among the 100 top 279 

genome-wide significant variants for all three traits analyzed but were not the top variants. A 280 
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possible explanation for this could be the presence of additional variation in the form of a known 281 

variable number of tandem repeats (VNTR) in the DGAT1 region or low imputation accuracy [47, 282 

51, 52]. To assess the liftover quality, AF concordance between the imputed WGS dataset and the 283 

Run9 reference panel was examined on the example of chromosome 16, showing the congruence 284 

for the majority of variants between the two datasets (see Additional file 1: Figure S1). 285 

 286 

GWAS and candidate gene research 287 

After carrying out the GWAS, possible candidate genes were retrieved by searching public 288 

databases such as Animal QTLdb and reviewing journal papers on previously reported candidate 289 

genes and QTLs. We confirmed many of the previously reported QTLs and candidate genes (see 290 

Additional file 1: Table S7 and Additional file 3: Tables S1-S3) such as DGAT1 and its variants 291 

rs109326954 and rs109234250 on BTA14, MGST1 on BTA5, ABCG2 on BTA6, GC on BTA6 292 

and GHR on BTA20, but also discovered new, previously unreported loci (Table 3). There were a 293 

large number of genes whose functions have not been reported yet, as well as the ones whose 294 

functions could not be associated with milk production or content (see Additional File 4: Table 295 

S1). Therefore, these genes were not considered as potential candidate genes. For simplification, 296 

we discussed only candidate genes associated with the most significant SNPs, while the list of all 297 

associations can be found in Additional file 3: Tables S1-S3. The majority of the most significant 298 

variants were intronic (37%) and intergenic (30%) (see Additional file 1: Table S5). Most of the 299 

significant variants that were included in candidate gene research were non-coding as well, which 300 

is in line with the majority of other GWAS publications [53–55]. Nayeri et al. [55] showed that a 301 

large proportion of the most significant variants affecting milk yield and composition traits in 302 

Holstein and Jersey cattle were located in non-coding regions of the genome. Both intron and 303 
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intergenic variants usually do not code for proteins, making their functional prediction challenging 304 

[56]. However, recent research in human studies (reviewed by [53]) and cattle [57] has shown that 305 

even the variants in non-coding regions may play an important part in complex traits and diseases, 306 

by indirect involvement in gene expression regulation. Known QTNs in livestock are not all coding 307 

variants that cause a change in amino acid [6, 58], therefore, variants in non-coding regions can be 308 

causal as well [57]. Xiang et al. [59] showed that non-coding variants can contribute substantially 309 

to variance in complex traits in cattle. 310 

Due to the large sample sizes in our study, which might contribute to the rise in genomic inflation 311 

[60], lambda values were measured before and after performing the meta-analysis. Genomic 312 

inflation is a spurious association between a variant and trait, where the relationship between a 313 

phenotype and SNP seems to arise from different factors than the true association [61]. These 314 

factors include population stratification [62], cryptic relatedness [63], polygenic inheritance [61], 315 

or strong association between variant and phenotype [64]. Although some of the genomic inflation 316 

in our study might be attributed to the polygenicity of milk production traits [65], and population 317 

structure in German Holstein [66], the main source of genomic inflation was the use of meta-318 

analysis software (Figure 5). Similar findings were reported in human studies [67], where large 319 

number of individuals are often pooled into the meta-analysis. The use of meta-analysis was 320 

inevitable in our case, due to the large samples that our HPC cluster was not able to utilize. MLMA 321 

accounted properly for genomic inflation, as the direct GWAS summary statistic had lambda 322 

values below 1 (Figure 5), and values up to 1 are usually considered as a threshold for genomic 323 

inflation. To prove that inflation was not due to population structure amplification that might arise 324 

when pooling the samples into the meta-analysis [68], we divided one of the animal groups on 325 

which we obtained summary statistics. After the animals were divided into two groups, GWAS 326 
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was run for each of them again. Then, after obtaining the summary statistics, two groups of samples 327 

are merged into the meta-analysis. As shown in Figure 5, lambda values for the same samples were 328 

increased after pooling into a meta-analysis. Moreover, an increase in the number of animal groups 329 

pooled into meta-analysis led to higher genomic inflation (Figure 5). Considering that many factors 330 

that could lead to an increase in lambda values were present in our study, including the polygenic 331 

nature of the milk production traits, large sample sizes, potential underestimated relationships 332 

between animals, and in the end, the use of meta-analysis, we consider the values we obtained on 333 

meta-analyzed traits (1.764-1.928) acceptable even though they exceeded the generally accepted 334 

threshold of 1.  335 

Candidate genes for milk yield 336 

The novel candidates that appeared to be the most relevant for further validation experiments due 337 

to their role in organism will be discussed here, while the list of all novel candidate genes and their 338 

roles connected with milk production traits are listed in Table 3. Except for the functional 339 

involvement of the candidate genes with milk production traits, and the fact that some of them are 340 

reported in other mammal species for the same or similar traits, variants found in candidate genes 341 

need experimental validation to be considered causative. For this purpose, prioritization of 342 

genome-wide significant variants according to external evolutionary and functional information 343 

[59] is suggested as the next step, followed by sequencing and gene editing experiments. 344 

As for the new associations, we identified 9 genes that, to our knowledge, were not previously 345 

described in cattle for milk yield or related traits. On chromosome 2, we identified two intergenic 346 

variants whose positions fall between the FEV and CDK5R2 genes. While FEV was reported 347 

earlier [69], CDK5R2 has not been associated with milk traits in cattle yet. CDK5R2 (Cyclin 348 
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Dependent Kinase 5 Regulatory Subunit 2 (p39)) acts as one the activators of the CDK5 gene [70] 349 

that has numerous important roles in the nervous system [71]. Talouarn et al. [72] identified the 350 

variants in the region of this gene to be associated with milk yield in French dairy goats. CDK5R2 351 

was previously associated with somatic cell count (SCC) in dairy cattle [73], and meat color traits 352 

in Nellore cattle [74], and crossbred and purebred pigs [75]. The variant in this gene has been 353 

associated with teat length in Chinese Holstein, in the study of Wu et al. [76]. Given the previous 354 

association with milk yield in the goat population, as well as with udder-related traits in cattle, this 355 

gene presents a strong candidate for further research.  356 

A downstream variant of the PRDM1 gene on BTA9 at 43,842,866 bp, was significantly associated 357 

with MY. PRDM1 (PR Domain Zinc Finger Protein 1), or BLIMP1 (B-Lymphocyte-Induced 358 

Maturation Protein 1) was described as an essential factor for mammary development in mouse 359 

studies [77]. Ahmed et al. [77] discovered that a group of luminal alveolar progenitor cells, 360 

expressing BLIMP1, were essential for mammary gland development. BLIMP1 is required for 361 

ductal morphogenesis in puberty and alveolar maturation in pregnancy and lactation, with its 362 

inactivation causing inadequate milk secretion [77]. In another study [78] BLIMP1 was described 363 

as necessary for the delay of the intestinal epithelium maturation from suckling to adult-type 364 

intestinal epithelium, with mutant mice showing growth disturbances and increased mortality.  365 

One intron variant in the FBXL19 gene was associated with MY. FBXL19 (F-Box And Leucine 366 

Rich Repeat Protein 19) regulates cell migration and proliferation [79, 80] and acts as a major 367 

regulator of adipogenesis [81]. Adipose tissue is a source of energy for various organs and tissues, 368 

as well as for the mammary gland especially during lactation when it serves as a source for fatty 369 

acids synthesis [82]. Adipogenesis is essential for the efficiency of milk production in dairy cows, 370 

as well as reproduction [83] making this gene an interesting candidate for milk production traits. 371 
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Candidate genes for fat yield 372 

Eight novel candidate genes were associated with FY in our study. The majority were involved 373 

with various lipid metabolism functions, therefore, we will describe only a few in the main text, 374 

while the description of the rest of the genes and their functions is available in Table 3.  375 

One intergenic region between the STK25 and BOK was significantly associated with fat yield on 376 

BTA3. While BOK, a member of the family of BCL-2 proteins which are involved in many cellular 377 

processes [84], couldn’t be linked to milk production traits, STK25 attracted our attention as a 378 

candidate for fat yield and composition. STK25 (serine/threonine protein kinase 25) belongs to the 379 

germinal center kinase III subfamily of Ste20 (sterile 20) proteins that exhibit various cell 380 

functions (reviewed in [85]). STK25 was shown to regulate lipid catabolism in liver cells in humans 381 

and the release of non-esterified fatty acids (NEFA) from lipid droplets [86]. High levels of NEFA 382 

seem to stimulate the expression of the CIDEA gene, and consequently increase fatty acid synthesis 383 

de novo and milk fat secretion [87]. CIDEA was recently described as a regulator of de novo fatty 384 

acid synthesis in cattle as well [88]. In general, high levels of NEFA are associated with ketosis 385 

and fatty liver, poor reproductive performance, and negative energy balance in early lactation 386 

(reviewed by [89]). Another study indicated a plausible role of this gene in the regulation of lipid 387 

and glucose metabolism in the skeletal muscle of rodents and humans [90]. Altogether, STK25 388 

seems to have an important role in lipid metabolism and therefore is recommended for further 389 

investigation. 390 

On BTA16, one intron variant was found in KLHL12, a gene described as essential for the secretion 391 

of apolipoprotein B100 (apoB100) very low-density lipoprotein (VLDL) particles in rat hepatoma 392 

cell line [91]. ApoB100, a major component of VLDL, is essential for the transport of triglycerides, 393 
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the main component of milk fat, from the liver to peripheral tissues [92, 93]. Decreased levels of 394 

apoB100 in cattle have been reported in cows with metabolic disorders such as ketosis, milk fever, 395 

and displaced abomasum [94, 95]. KLHL12 (Kelch-like Family Member 12) is a member of the 396 

Kelch-like family (KLHL) of proteins with important functions in the ubiquitination of proteins as 397 

reviewed by Shi et al. [96]. When it comes to known roles of the KLHL12, it has been reported as 398 

a negative regulator of the Wnt signaling pathway [97], important for various cell functions in both 399 

adult and embryonal tissue homeostasis (reviewed in [98]). It also seems to have a key role in 400 

collagen secretion [99]. Everything considered, this gene could potentially affect not only milk 401 

production traits due to its role in triglyceride transport but health traits as well, and because of 402 

this further validation is needed. 403 

Candidate genes for protein yield 404 

For protein yield, many known candidate genes, as well as the pleiotropic effects of some genes 405 

were confirmed (see Additional file 1: Table S7), while 18 genes from 12 chromosomes are 406 

reported here, for the first time (Table 3). As for the genes with pleiotropic effects, three intergenic 407 

variants were positioned between the FEV and CDK5R2 on BTA2, a gene that we found to be a 408 

novel candidate for MY in the previous paragraph. The five variants on BTA3 were located in or 409 

downstream of the STK25 gene, showing the effects of this new candidate gene on both fat and 410 

protein yield. Then, on BTA9, 21 variants were located in or in proximity to PRDM1, identified 411 

in both MY and PY GWAS. The majority of PRDM1-associated variants were intergenic, 412 

however, variant rs136669229 (p = 1.009x10-10) was identified as missense, causing the Valine to 413 

Phenylalanine amino acid change, however, there was no difference in protein structure prediction. 414 

On BTA16, one intron variant was located within the KLHL12 gene, whose function is described 415 
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in detail in the FY section. Finally, we identified an intron variant in the FBXL19 gene, our 416 

candidate gene for MY. 417 

In the proximity of STT3A on BTA9, one variant was significantly associated with PY. STT3A 418 

(STT3 Oligosaccharyltransferase Complex Catalytic Subunit A) encodes the protein which is a 419 

part of the central enzyme complex in glycosylation [84]. Glycosylation is a post-translational 420 

protein modification that takes place in the endoplasmic reticulum (ER) and is essential for 421 

numerous cellular functions [100]. The two main types of glycosylation are N and O-glycosylation. 422 

N-glycosylation consists of the attachment of an oligosaccharide N-Acetylglucosamine to 423 

Asparagine residues and occurs in both eukaryotes and prokaryotes [101, 102]. The most important 424 

step in N-glycosylation is catalyzed by the oligosaccharyltransferase (OST) complex, consisting 425 

of different subunits of which the STT3 subunit is the most important [103]. In the study of human 426 

milk lactoferrin glycosylation [104], the expression of STT3 in milk somatic cells decreased from 427 

day 4 to day 15 of lactation, leading to changes in the overall level of glycosylation [104]. 428 

Lactoferrin is a milk-derived glycoprotein with many important roles in organism including 429 

immunomodulatory and anti-inflammatory, anticancer, and antimicrobial functions [105]. 430 

Therefore, the STT3A gene might affect the protein yield, and possibly play a role in mastitis given 431 

the antibacterial function [105] of lactoferrin. 432 

An intron variant was found within the RB1 (retinoblastoma 1) gene on BTA12. RB1 is known for 433 

its role in regulating the metabolism of glycolipids in the liver, muscle, and adipose tissues and 434 

improving fat and protein metabolism disorders [106]. A study on RB1 knockout-mouse showed 435 

the potential involvement of RB1 in the gut microbiota and intestinal free fatty acids profiles [107], 436 

altogether making this gene a strong candidate for further research. 437 

 438 
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Downstream analyses 439 

In the KEGG enrichment analysis, a large number of trait-associated genes were found within 440 

various pathways and biological processes. However, we restricted our analysis only to genes 441 

containing one of the top SNPs (Table 3). The highest number of genes (7) were involved in the 442 

PI3K-Akt signaling pathway, one of the most important signaling pathways that affect many 443 

biological functions, including cell metabolism, growth, migration, proliferation, and survival 444 

[108, 109]. Hou et al. [110] showed that EEF1D regulates milk lipid secretion and mammary gland 445 

development through interaction with various pathways, including PI3K-Akt. Genes involved in 446 

this pathway (Table 1) were all previously reported as candidates for milk production and 447 

composition traits (see Additional file 1: Table S7). Other pathways and terms involved with milk 448 

composition, synthesis, and secretion or mammary development processes included biosynthesis 449 

of amino acids, biosynthesis of cofactors, prolactin signaling pathway [111], ErbB signaling 450 

pathway [112], Hedgehog signaling pathway [113], fatty acid metabolism, Hippo signaling 451 

pathway [114] and ECM-receptor interaction [115]. The term “biosynthesis of amino acids” 452 

included the gene PKLR, a known candidate gene for milk yield and composition traits [116], with 453 

a role in the regulation of triglyceride levels and fatty acid synthesis [117]. KEGG category 454 

“biosynthesis of cofactors” contained three genes, across the three traits. Of these genes, FLAD1 455 

was associated with MY in our study and was previously reported as a candidate gene for milk 456 

calcium content and lactose percentage [118, 119]. Expression of gene GMPPA, whose variants 457 

were associated with FY, was positively correlated with bovine milk fat globule size in the study 458 

of Huang et al. [120]. This pathway was also enriched with VKORC1L1, a gene involved in vitamin 459 

K metabolism [121], across two traits. Although this gene couldn’t be linked to milk production, 460 

it was described as a candidate gene for subclinical ketosis in Holstein in the study of Soares et al. 461 
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[122]. Interestingly, it has an important role in adipogenesis, with VKORC1L1 mutated mice 462 

having smaller length and weight than wild type [123], making the possible role in milk fat 463 

metabolism plausible. Prolactin signaling pathway was enriched with genes TH, STAT5A, 464 

STAT5B, and STAT3 for MY. Prolactin (PRL) is a gene well-known for its role in mammary 465 

development and lactation in many mammal species, as well as in cattle [111, 124]. STAT5A, 466 

STAT5B, and STAT3 genes belong to the STAT family of transcription factors that participate in 467 

the PRL receptor (PRLR) signaling pathway [111] and were previously associated with milk 468 

composition traits in GWAS in Holstein cattle [125]. STAT5A and STAT5B were also enriched in 469 

the ErbB signaling pathway for MY. The members of the ErbB family of tyrosine kinase receptors 470 

regulate mammary gland development and have an important role in lactation [126]. The 471 

Hedgehog signaling pathway is required for normal development of various mammalian organs. 472 

Although the research results on its role in mammary gland development have been inconsistent, 473 

the latest insights showed that it has an important role in mammary ductal morphogenesis [113]. 474 

Gene found in this category for FY included PTCH1, a known regulator of mammary ductal 475 

morphogenesis [127] that has never been associated with milk production traits in cattle thus far. 476 

SCD, a gene reported to participate in fatty acid synthesis in Italian Holstein and Simmental GWAS 477 

[128] was enriched in the fatty acid metabolism pathway as well for FY, which is in line with the 478 

aforementioned findings. Another gene enriched in the term “fatty acid metabolism” for FY was 479 

HSD17B12, previously reported as a candidate gene for fat yield [125]. The hippo signaling 480 

pathway regulates various biological processes in the organism, including potential role in 481 

pregnant and lactating mammary gland [114]. This pathway was enriched for the NKD2, gene 482 

described as a candidate gene for MY, FY, and PY in German Black Pied cattle [129]. Extracellular 483 

matrix (ECM) components are involved in mammary gland development processes as reviewed 484 
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by Xu et al. [130]. Genes involved in this pathway, THBS3 and LAMA5, were associated with MY. 485 

Both were previously reported as milk production and milk composition candidates [55, 131] and 486 

were found to be significantly enriched in the PI3K-Akt signaling pathway, as well. Many genes 487 

showed pleiotropic effects by involvement with the same terms across the three traits, which is in 488 

agreement with our candidate gene analysis, and previous research of other authors, as cited above. 489 

The percentage of trait variance explained by the 50 most significant and 50 random variants from 490 

each chromosome, or so-called SNP-based heritability [132] was calculated to see how much of 491 

the genetic variance is attributable to top SNPs chosen for candidate gene research. To avoid 492 

overestimation of variance previously reported when using GREML [133], a GRM set up from 493 

50K SNP chip data was included in the model, to account for further polygenic variance. Top 494 

SNPs explained much more variance than random ones (Table 2) indicating the potential presence 495 

of causal variants among those and underpinning the infinitesimal model. To eliminate multiple 496 

variants in high LD to each other that represent the same QTL, we pruned out the SNPs taking into 497 

account correlations between genotype allele counts [43]. Surprisingly, results differed depending 498 

on the trait; for MY, variants that were left after pruning explained more variance than the initial 499 

set of top SNPs. We expected that because the pruned variants spread over more QTL and should 500 

thus capture more variance. For FY and PY, however, pruned variants explained less variance than 501 

top SNPs. This could potentially be related to allelic heterogeneity in DGAT1 because it can be 502 

assumed that the multiple variants capture more segregating variants [52]. 503 

Conclusions 504 

After performing large-scale GWAS we identified 30 new candidate genes for three milk 505 

production traits; MY (9), FY (8), and PY (18), of which 6 genes (CDK5R2, STK25, PRDM1, 506 
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KLHL12, RNF152, and FBXL19) showed pleiotropic effects. These novel, functionally plausible 507 

candidates have not been reported for these traits so far. Variants located within or close to these 508 

genes explained a comparatively large proportion of genetic variance. In order to be able to fully 509 

exploit the power of GWAS, sequence data of very large samples are required, as shown in our 510 

study. Our findings add to existing knowledge of milk production traits architecture and 511 

convincingly demonstrate the power of our data set and strategy. Future studies incorporating 512 

health traits and their relationship with milk production may leverage the power of this data to add 513 

to the improvement of animal welfare. 514 
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Figure 1. Manhattan plot for milk yield 1081 
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The top genome-wide SNP (p = 7.04x10-737) for MY was located on BTA14. However, RStudio used for the creation 1083 

of this plot was not able to show p-values < 10x10-325, reporting them as “0”. Therefore, ylim had to be set lower, to 1084 

provisional ylim of 390, in order to present all significant variants 1085 

 1086 

Figure 2. Manhattan plot for fat yield 1087 

 1088 

The top genome-wide SNP (p = 7.18x10-380) for FY was positioned on BTA14. However, RStudio used for the creation 1089 

of this plot was not able to show p-values < 10x10-325, reporting them as “0”. Therefore, ylim had to be set lower, to 1090 

provisional ylim of 390, in order to present all significant variants 1091 

 1092 

Figure 3. Manhattan plot for protein yield 1093 
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 1094 

 1095 

Figure 4. Venn diagram of MY, FY, and PY showing concordant and discordant candidate genes 1096 
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Figure 5. Genomic inflation factors of MY measured on direct GWAS summary statistics and after 1098 

meta-analysis 1099 

 1100 

To check the cause of genomic inflation in meta-analysis summary statistics, one of the animal groups on which we 1101 

ran direct GWAS was divided into two groups. For each of the two groups, GWAS was run again, and summary 1102 

statistics were merged into the meta-analysis. Lambda values obtained on meta-analysis summary statistics were 1103 

higher (λ= 1.20) than ones measured for the same individuals on direct GWAS summary statistics (λ= 0.96). To further 1104 

check the extent of inflation caused by meta-analysis, the same group of animals was divided again, this time, into 1105 

four groups. GWAS was run for each of the groups and results were merged into the meta-analysis. Lambda values 1106 

were even higher this time (λ= 1.57). The figure was created with BioRender.com 1107 

 1108 

Figure 6. Enrich KEGG dot plot of 18 most significant pathways for MY, FY, and PY 1109 
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 1110 

 1111 

Tables 1112 

Table 1 Over-represented genes associated with top variants for MY, FY, and PY 1113 
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Term 

 

MY FY PY 

PI3K-Akt signaling 

pathway 

EFNA1, EFNA3, 

EFNA4, THBS3, 

LAMA5, GHR, IGF2 

  

Biosynthesis of amino 

acids 

PKLR 

 

  

Maturity onset diabetes 

of the young 

PKLR   

Biosynthesis of 

cofactors 

FLAD1 

 

GMPPA, VKORC1L1 VKORC1L1 

Chemical 

carcinogenesis - 

receptor activation 

MGST1, STAT5B, 

STAT3, STAT5A 

MGST1, MIRLET7E RB1, ARRB2 

Metabolism of 

xenobiotics by 

cytochrome P450 

MGST1 MGST1  

Chemical 

carcinogenesis - DNA 

adducts 

MGST1 MGST1  

Drug metabolism - 

other enzymes 

MGST1 

 

MGST1  

Drug metabolism - 

cytochrome P450 

MGST1 MGST1  

Chemokine signaling 

pathway 

STAT5B, STAT3, 

CXCL16, CCR10 

 CXCL16, ARRB2 

 

Prolactin signaling 

pathway 

STAT5B, STAT3, 

STAT5A, TH 

 

  

ErbB signaling 

pathway 

STAT5B, STAT5A 

 

  

Cytokine-cytokine 

receptor interaction 

CD70, CXCL16, 

CCR10, GHR 

  

Alcoholic liver disease 

 

 TRA2B, SCD, LPIN1  

Motor proteins 

 

 TUBA4A, DYNLRB2, 

TUBA1D 
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Viral protein 

interaction with 

cytokine and cytokine 

receptor 

CCR10   

Hedgehog signaling 

pathway 

 PTCH1  

Fatty acid metabolism 

 

 HSD17B12, SCD  

Steroid hormone 

biosynthesis 

 HSD17B12 

 

 

Proximal tubule 

bicarbonate reclamation 

  SLC4A4, SLC9A3 

Bile secretion  

SLC4A4 

 SLC4A4, SLC9A3 

Hippo signaling 

pathway 

  NKD2 

 

ECM-receptor 

interaction 

THBS3, LAMA5   

 1114 

Table 2 Genetic variance explained by top and random variants for MY, FY, and PY 1115 

Trait 

 

VTOP SETOP VRANDOM SERANDOM 

MY 0.086677 0.012530  0.003195 

0.015675 

0.005690 

0.005522 

0.008892 

0.002656 

0.003461 

0.002973 

0.002872 

0.003040 

FY 0.070413 0.010478  0.003675 

0.001819 

0.004907 

0.001645 

0.003471 

0.002497 

0.002540 

0.002939 

0.002567 

0.002572 

PY 0.066613 0.009325 0.003456 0.002645 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 6, 2023. ; https://doi.org/10.1101/2023.12.06.570350doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.06.570350


57 
 

0.007485 

0.003309 

0.001254 

0.002862 

0.002946 

0.002646 

0.002492 

0.002649 

VTOP = genetic variance explained by top genome-wide significant variants from autosomal chromosomes 1116 

SETOP = standard error of top variants 1117 

VRANDOM = genetic variance explained by random 50 variants from all autosomal chromosome 1118 

SERANDOM = standard error of random variants 1119 

 1120 

Table 3 New candidate genes for milk production traits 1121 

TRAIT 

 

CHR GENE FUNCTION 

MY 2 CDK5R2 

 

Described in the main text 

7 ADGRE1 Eight intergenic variants were identified between VAV1 and ADGRE1. 

ADGRE1 was found to be highly expressed in the macrophage cells in the 

lactating murine mammary gland [134]. It was detected in periparturient 

dairy cows' visceral adipose tissue, in a study by Michelotti et al. [135] 

that investigated differences between adipose tissue cells in their 

contribution to the development of metabolic diseases in cattle in the 

period before and after calving. Association analysis in pigs showed a 

significant association of this gene with eicosenoic acid content [136] 

9 

 

PRDM1 Described in the main text 

16 CASZ1 24 intron variants were located within the CASZ1 gene. In the differential 

methylation analysis in dairy goats [137] this gene was reported to be 

downregulated in the lactation period, relative to the dry period. Another 

study [138] reported copy number variation (CNVR) in the same gene to 

be connected with milk traits of local sheep breed. In cattle, it has been 

associated with longevity [139], however, this is the first time that this 

gene has been associated with milk traits in cattle 

19 CAVIN1 

 

Two intergenic variants were located in the proximity of CAVIN1, a gene 

belonging to the group of cavin proteins, that play an important role in 

caveolae formation [140]. Caveolae are plasma membrane domains with a 

crucial role in lipid regulation in various cell types [141]. CAVIN1 
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knockout mice lacked caveolae and exhibited various metabolic disorders 

including hyperlipidemia and glucose intolerance [142] 

19 

 

CCR10 One variant upstream of the CCR10 gene was found to be significantly 

associated with milk yield. Experiments on mice lacking CCR10 [143] 

showed that CCR10 is essential for efficient localization and accumulation 

of IgA antibody-secreting cells in lactating mammary glands. 

Interestingly, CCR10 acts as a receptor for CCL28 [144], known QTL for 

milk composition traits, lactation persistency [145, 146], fat and protein 

percentage, and milk yield [147] 

24 

 

RNF152 The intergenic variant was located between RNF152 and PIGN. In the 

study on transgenic mice, RNF152 was downregulated during involution 

day 6 [148]. It was also described as a candidate gene for average daily 

gain and average daily feed intake in crossbred pigs [149], backfat 

thickness, and other production and growth-related traits in Korean Duroc 

pigs [150] 

25 FBXL19 

 

Described in the main text 

25 PAGR1 

 

One variant upstream of PAGR1, a gene that has an essential role in 

adipogenesis [151] was significantly associated with MY  

FY 3 STK25 Described in the main text 

 

3 DUSP12 Two intergenic variants were positioned close to the DUSP12 gene on 

BTA3. Previously, this gene was found to be upregulated in the liver of 

offspring of dams supplemented with essential fatty acids, compared to 

dams fed with saturated fatty acids [152]. In another study, DUSP12 was 

proposed as a regulator of hepatic lipid metabolism [153], suggesting 

possible involvement with milk fat composition 

8 PTCH1 

 

 

 

 

 

 

One intergenic variant was located between PTCH1 and 

ENSBTAG00000049821 on BTA8. PTCH1 (Patched 1) regulates ductal 

morphogenesis in mammary epithelium and stroma, and ductal elongation 

and ovarian hormone responsiveness in the pituitary gland, as shown in 

the study of Moraes et al. [127]. It was also associated with body depth 

and strength in the Holstein bulls fine-mapping study [154]. In our case, it 

was enriched in the Hedgehog signaling pathway 

12 LRCH1 Two intron variants on BTA12 were associated with the LRCH1 gene, 

which has a role in lipid regulation, including the promotion of 

lipopolysaccharide (LPS) binding and its delivery to lipid rafts [155] 

16 KLHL12 Described in the main text 
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16 LGR6 On the same chromosome, one intron variant was found in LGR6, the gene 

that was found to be related to lactation in the study of Zhang et al. [156]. 

Blaas et al. [157] found LGR6 to be involved with various functions in 

postnatal mammary gland development, making it a strong candidate for 

further research 

17 MED13L On BTA17, one intergenic variant was found between MED13L and 

ENSBTAG00000052624. While functions of ENSBTAG00000052624 

haven’t been described yet, MED13L was associated with milk yield and 

somatic cell score (SCS) in a dairy sheep [158], therefore indicating a 

similar role in other mammals 

23 MCCD1 One variant upstream of gene MCCD1 was associated with FY, and 

although little is known about MCCD1 function, this gene was previously 

associated with fat and protein percentage in dairy sheep GWAS [159] and 

with the regulation of fatty acid synthesis in patients with renal cancer 

[160] 

PY 2 CDK5R2 Described in the MY section 

 

3 FARP2 On BTA3, 15 variants were found within or downstream of the FARP2 

gene. In multi-trait GWAS on body composition traits [161] FARP2 was 

described to be associated with body composition traits and as being able 

to bind to phospholipids and cytoskeleton 

3 STK25 Described in the main text 

 

3 CRCT1 One intergenic variant on BTA3 was positioned between 

ENSBTAG00000050431 and CRCT1. While little is known about 

ENSBTAG00000050431, CRCT1 was previously described as a new 

candidate gene for body fat percentage in humans [162] and might have a 

role in developing mammary gland, as shown in cattle [163] 

4 SUGCT Within the SUGCT gene, three intron variants were found. SUGCT-

knockout mice exhibited an imbalance in lipid and acylcarnitine 

metabolism [164] 

7 MIDN One intron variant was located in the MIDN gene which has a role in 

regulating cholesterol/lipid metabolism in the liver [165] 

9 LIN28B The two variants on BTA9 were identified in or in proximity with LIN28B. 

LIN28A and its homolog LIN28B were reported to enhance de novo fatty 

acid synthesis and metabolic conversion of saturated to unsaturated fatty 

acids [166] 

9 PRDM1 Described in the main text 
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9 PREP Next, 14 variants were identified close to the PREP (prolyl endopeptidase) 

gene on BTA9. Previously, it was shown that PREP knockout mice 

exhibited changes in hepatic lipid metabolism [167] 

9 CRYBG1 One intron variant on BTA9 was identified on CRYBG1, a gene that was 

shown to participate in the regulation of fat-cell differentiation [168] 

12 RB1 Described in the main text 

 

16 KDM5B Two intron variants on BTA16 were found within KDM5B, a gene that 

was identified as a regulator of lipid metabolism reprogramming in breast 

cancer cells [169] 

16 KLHL12 Described in the main text 

 

18 CBLN1 The intergenic variant was located in proximity to CBLN1, a member of 

the C1q family of proteins that has been reported to have a lipid-binding 

ability [170] 

23 ZNF391 On BTA23, two variants were close to the ZNF391 gene, previously 

associated with the marbling score in Hanwoo beef cattle [171] and 

somatic cell count in dairy cattle [73]. In dairy sheep GWAS [172] this 

gene was connected with milk traits  

24 RNF152 Described in the MY section 

 

25 FBXL19 Described in the main text 

 

29 STT3A Described in the main text 
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