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Abstract 
Plants have evolved to anticipate and adjust their growth and development in response to 

environmental changes. To mitigate the negative influence of global climate change on crop 15 

production, understanding the key regulators of plant performance is imperative. EARLY 

FLOWERING 3 (ELF3) is such a regulator involved in the circadian clock and 

thermomorphogenesis. Arabidopsis thaliana ELF3 contains a prion-like domain (PrD) that 

functions as a thermosensor, enabling its liquid-liquid phase separation at high ambient 

temperatures. To understand the conservation of this function across the plant kingdom, we 20 

traced the evolutionary emergence of ELF3 with a focus on the PrD, which confers liquid-liquid 

phase separation. We observed that the presence of the domain within ELF3, mainly contributed 

by the length of polyglutamine (polyQ) repeats, is largely restricted to Brassicales. This suggests 

that ELF3’s thermosensory function is a rather recent and secondary acquirement that was added 

to its main function. By analyzing 319 natural Arabidopsis thaliana accessions, we detected a 25 

wide range of polyQ length variation in ELF3. However, polyQ length is only weakly associated 

with geographic origin, climate conditions, and classic temperature-responsive phenotypes. 

Consequently, we conclude that although the emergence of PrD is not likely to be a key driver of 

environmental adaptation, it adds an extra layer to ELF3’s role in thermomorphogenesis. 

 30 
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Introduction 
Plants, like other organisms on Earth, experience both predictable and unpredictable 35 

environmental changes. While the regular light/dark and warm/cool cycles can be anticipated by 

the plants’ internal circadian clock, unpredictable global climate change is demanding their ability 

to acclimate for evolutionary adaptation. Understanding the key players involved in these 

processes will help to increase the fitness in crops and mitigate the negative influence of climate 

change. 40 

 

As plants are more frequently encountering predictable environmental changes, circadian 

anticipation is a fundamental attribute contributing to plant performance. The plant circadian clock 

is composed of multiple interconnected transcriptional-translational feedback loops (Huang and 

Nusinow, 2016; Nohales and Kay, 2016). These loops can be classified in a time-of-day 45 

dependent manner based on the phase of involved clock components. The morning loop contains 

CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) 

which positively regulate the expression of PSEUDO-RESPONSE REGULATOR 9 (PRR9) in the 

morning and PRR7 in the afternoon (Farré et al., 2005; Nakamichi et al., 2010), while repressing 

two additional afternoon-phased genes, PRR5 and GIGANTEA (GI) (Lu et al., 2012; Kamioka et 50 

al., 2016). PRR9, PRR7, and PRR5 later repress the expression of CCA1 and LHY, allowing the 

induction of evening-phased genes (Nakamichi et al., 2010; Adams et al., 2015). At dusk, 

accumulation of TIMING OF CAB EXPRESSION 1 (TOC1) suppresses GI, which subsequently 

triggers the activation of TOC1 (Kim et al., 2007). In addition, three evening-phased proteins 

EARLY FLOWERING 3 (ELF3), EARLY FLOWERING 4 (ELF4), and LUX ARRYTHMO (LUX) 55 

accumulate and form a protein complex known as the evening complex (EC) (Hsu et al., 2013). 

The EC directly represses the transcription of PRR9, PRR7, and GI, resulting in the accumulation 

of CCA1 and LHY before dawn (Nusinow et al., 2011; Herrero et al., 2012; Ezer et al., 2017). With 

this endogenous network, external cues (known as Zeitgeber) can be used as timing input to 

precisely generate internal biological rhythms. However, not all circadian clock components can 60 

serve as a Zeitnehmer with the ability to receive the timing information from the Zeitgeber. Recent 

studies identified ELF3 and GI as essential Zeitnehmers for clock entrainment to photoperiod 

signals (Anwer et al., 2020), whereas ELF3 alone can function as a temperature Zeitnehmer, 

sensing warm/cool cycles (Zhu et al., 2022).    

 65 

While the circadian clock confers the ability to handle daily environmental fluctuations, plants still 

encounter challenges from climate change, for instance the rise in ambient temperatures. Plants 
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can acclimate to elevated temperatures through various adjustments in their morphology and 

development, collectively known as thermomorphogenesis (Delker et al., 2014; Quint et al., 2016). 

In Arabidopsis thaliana seedlings, these adjustments include elongated hypocotyls and hyponasty 70 

(leaf upward bending), which are known to improve cooling capacity (van Zanten et al., 2009; 

Crawford et al., 2012). As a central regulator of thermomorphogenesis signaling, 

PHYTOCHROME INTERACTING FACTOR 4 (PIF4) accumulates at warm temperatures and 

activates auxin biosynthesis genes, promoting cell elongation in petioles and hypocotyls, leaf 

hyponasty, as well as flowering (Franklin et al., 2011; Kumar et al., 2012; Park et al., 2019). In 75 

this thermomorphogenesis pathway, the function of PIF4 is gated by temperature sensing 

systems and the circadian clock. The photoreceptor phytochrome B (phyB) was the first identified 

plant temperature sensor (Jung et al., 2016; Legris et al., 2016). Warm temperature accelerates 

the dark/thermal reversion of phyB from its active Pfr form to its inactive Pr form (reviewed in 

Delker et al., 2017). The active Pfr form of phyB mediates PIF4 degradation by stabilizing ELF3 80 

(Nieto et al., 2015). ELF3 contains a prion-like domain (PrD) which also functions as a 

thermosensor, enabling liquid-liquid phase separation (LLPS) of ELF3 from its dilute phase into 

liquid droplets (dense phase) at high temperatures (Jung et al., 2020). The dense phase 

aggregation of ELF3 coordinates with its restricted mobilization to the nucleus (Ronald et al., 2021; 

Ronald et al., 2022), which potentially relieves the direct interaction with PIF4 (Nieto et al., 2015) 85 

and the transcriptional repression of PIF4 by the EC (Box et al., 2015; Raschke et al., 2015). With 

its multiple functions connecting temperature sensing, circadian clock, and thermomorphogenesis, 

ELF3 has been described as a key plasticity gene contributing to plant acclimation (Blackman, 

2017; Laitinen and Nikoloski, 2019). 

 90 

Expanding knowledge generated from Arabidopsis thaliana to crops is necessary to achieve crop-

level adaptations and yield stability under global climate change (Challinor et al., 2014). Natural 

variation or loss-of-function in ELF3 generally affects circadian clock regulated photoperiodic 

flowering in various crop species, including rice (Matsubara et al., 2012; Saito et al., 2012; 

Andrade et al., 2022), barley (Faure et al., 2012; Zakhrabekova et al., 2012; Zahn et al., 2023), 95 

wheat (Alvarez et al., 2016; Alvarez et al., 2023; Mizuno et al., 2023; Wittern et al., 2023), soybean 

(Lu et al., 2017; Bu et al., 2021; Fang et al., 2021), and chickpea (Ridge et al., 2017). This allows 

the cultivation of crops under altered photoperiods, important for crop domestication and spatial 

distribution. Besides the clock function, ELF3 is involved in barley morphological and 

developmental acclimations to high ambient temperatures (Ford et al., 2016; Ejaz and von Korff, 100 

2017; Zhu et al., 2023), suggesting conserved roles in temperature responsiveness. However, 
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unlike Arabidopsis thaliana, the monocot grass Brachypodium distachyon does not have a 

temperature-responsive PrD in ELF3 (Jung et al., 2020). Therefore, the conserved functions of 

ELF3 in relation to temperature sensing remain unclear, particularly in monocots.  

 105 

In Arabidopsis thaliana ELF3, the temperature sensing PrD harbors natural variation in the length 

of a polyglutamine (polyQ) stretch caused by expanded cytosine-adenine-adenine (CAA) repeats 

(Undurraga et al., 2012). In a manner similar to how ELF3 aggregates in response to high 

temperatures (Jung et al., 2020), it has been observed that in humans, polyQ-extended proteins 

tend to aggregate in degenerated neurons, leading to the development of polyQ diseases (Fan et 110 

al., 2014). This consistency suggests that polyQ determines the thermosensing function of 

Arabidopsis thaliana ELF3-PrD. However, the potential effects and evolutionary significance of 

ELF3-polyQ variation in plants are still unknown, even in the model Arabidopsis thaliana.  

 

In this study, we attempt to shed some light on the evolutionary trajectory of ELF3. To assess this 115 

in a systematic manner, we traced the evolutionary emergence of ELF3 across the plant kingdom, 

with a focus on PrD existence. Based on 319 Arabidopsis thaliana accessions, we sought to 

examine the correlation between ELF3-polyQ variation and geographic origins, local 

environments, as well as temperature-responsive phenotypes. Lack of reliable phenotype-polyQ 

correlations together with the almost exclusive presence of the ELF3-PrD within the Brassicales 120 

order suggest that PrD domains may have been acquired orthogonally to various genes/proteins 

to complement their original function. In case of ELF3, PrD acquisition may have served as a 

lineage-specific adaptation to diverse environments. 

 

Results 125 

Evolutionary emergence of ELF3 and its prion-like domain 
In Arabidopsis thaliana, the major functions of ELF3 in circadian clock regulation require the 

involvement of its EC partners ELF4 and LUX (Nusinow et al., 2011; Ezer et al., 2017). Regarding 

the emergence of the EC, previous studies revealed a homologue of ELF3 in charophyte 

Klebsormidium nitens, whereas potential homologues of ELF4 and LUX were identified even in 130 

the more distantly related chlorophytes like Chlamydomonas reinhardtii (Linde et al., 2017). To 

obtain a general picture about the evolution of ELF3 and its duplicate ESSENCE OF ELF3 

CONSENSUS (EEC) (Liu et al., 2001), whose function remains unknown, across the plant 

kingdom, we first determined the copy number of the EC components ELF3, ELF4, and LUX, as 

well as EEC in 42 plant genomes ranging from unicellular green algae to flowering plants (Table 135 
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1). An ELF3 homologue was identified in the charophyte Chara braunii, confirming the origin of 

ELF3 in Charophyta (Linde et al., 2017).  Interestingly, in contrast to the identification of the EC 

components back to Charophyta, EEC homologues emerged later and are restricted to eudicots 

(Table 1), suggesting that a duplication event of ELF3 in the last common ancestor of the eudicots 

gave rise to EEC in this lineage.  140 

 

To trace the evolution and divergence of ELF3 and EEC in more detail, the protein homologues 

of ELF3 and EEC were identified from 274 plant genomes (Supplemental Table S1) and their 

phylogenetic relationships were reconstructed. The sequences from similar angiosperm groups 

(e.g., basal angiosperms, monocots, eudicots, and core eudicots) mostly clustered together in the 145 

phylogenetic tree (Fig. 1; Supplemental Fig. S1). As expected, ELF3 and EEC were separated 

into two different clades, with EEC being restricted to core eudicots. In orders such as Buxales, 

Trochodendrales, Proteales, and Ranunculales, which are eudicots but not core eudicots, only 

ELF3 homologues were detected, positioned in a clade with ELF3 from basal angiosperms and 

monocots (Supplemental Fig. S1). Interestingly, this clade is more closely related to the EEC 150 

clade than to the ELF3 clade from core eudicots. To understand sequence features that 

distinguish ELF3 and EEC, we next selected 32 species (8 Poales and 24 core eudicots that have 

both ELF3 and EEC homologues, including 7 Brassicales species) for multiple sequence 

alignment. As reported previously (Liu et al., 2001), four highly conserved regions (I-IV) were 

detected within ELF3 and EEC in these species (Fig. 2). Meanwhile, Poales (monocots) ELF3 155 

contained a unique region (VII) and shared a conserved region (VI) with core eudicots EEC in the 

amino-terminal, potentially separating them from the core eudicots ELF3. Notably, both EEC and 

ELF3 from Brassicales have several unique features (regions V, VI, VIII, IX, and X) compared to 

the other core eudicots (Fig. 2), in line with the inspection of the branch lengths of Brassicales 

ELF3 and the next closely related core eudicots in the phylogenetic tree (Supplemental Fig. S1). 160 

These findings indicate that the Brassicales ELF3 sequences have only recently specified and 

are all rather closely related to each other. 

 

Arabidopsis thaliana ELF3 is known to harbor a prion-like domain (PrD) which is required for 

phase separation of ELF3 in response to temperature changes (Jung et al., 2020). To understand 165 

whether the PrD is conserved in identified ELF3/EEC homologues, we next performed a Prion-

Like Amino Acid Composition (PLAAC) search on all sequences and obtained scores (PrD score 

and Log-likelihood ratio, LLR) indicating the probability of the presence of prion subsequences 

(Lancaster et al., 2014). Compared to the PrD score, LLR does not impose a hard cutoff. For 
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instance, the PrD of Arabidopsis thaliana ELF3 exhibited an identical PrD score and LLR of 31.53, 170 

containing two subsequence regions (Fig. 1; Supplemental Figs. S1-2). When considering the 

hard cutoff (PrD score), the PrD prediction identified ELF3 sequences mostly from core eudicots 

(Fig. 1; Supplemental Fig. S1). In addition, ELF3 homologues in the bryophytes Physcomitrium 

patens and Sphagnum fallax, as well as the monocot Sorghum bicolor were predicted to have a 

PrD with a relatively low but positive PrD score. Nevertheless, with exception of Sorghum bicolor 175 

but consistent with a previous report on Brachypodium distachyon (Jung et al., 2020), monocots 

generally lack such a domain in their ELF3 copy. High PrD scores were detected almost 

exclusively in Brassicales ELF3, with several species (Capsella grandiflora: 59.89, Arabidopsis 

lyrata: 58.27, Capsella rubella: 57.52, Alyssum linifolium: 49.96, Arabidopsis halleri: 46.36, 

Descurainia sophioides: 45.54, Brassica rapa: 32.62, and Isatis tinctoria: 32.09) displaying an 180 

even higher score than Arabidopsis thaliana, suggesting potentially conserved temperature 

sensing functions of PrDs across Brassicales. Moreover, despite four highly conserved regions 

between ELF3 and EEC, the third conserved region (III) was situated in the gap of the predicted 

PrD (Fig. 2; Supplemental Fig. S2) and the polyQ stretch diverged between Brassicales ELF3 

and all the other sequences (Fig. 2). As a result, none of the sequences in the EEC clade was 185 

predicted to have a PrD (Fig. 1). These data show isolated cases of PrD emergence in selected 

species, but a broad expansion of this domain seems restricted to ELF3 homologues across 

Brassicales. 

 

Polyglutamine repeats contribute to the PrD of Brassicales ELF3 190 

As the prediction of PrD was mainly restricted to Brassicales ELF3, we investigated whether the 

potential PrDs of these species are conserved at the sequence level. We constructed a 

phylogenetic tree with Brassicales ELF3 only, separating different families (Fig. 3). As main 

features of PrD or prion proteins (Harrison and Gerstein, 2003), we observed a considerable 

proportion of asparagine (N) and glutamine (Q) in ELF3-PrD regions based on the sequence 195 

alignment (Fig. 3). As previously reported (Undurraga et al., 2012), Arabidopsis thaliana ELF3 

contained a polyglutamine (polyQ) stretch (with over seven consecutive Qs) in its PrD. Although 

such a polyQ stretch is specific to Brassicaceae ELF3 and absent from other Brassicales, its 

length correlated positively with the PrD score (Supplemental Fig. S3). For example, Capsella 

grandiflora with the highest PrD score (59.885) also displayed the longest polyQ stretch (33Q, 200 

including four histidine gaps) (Figs. 1, 3; Supplemental Fig. S1). In contrast, the number of 

asparagines was less variable in the PrD and did not correlate with the PrD score (Supplemental 

Fig. S3). Hence, although positive PrD scores were also detected in Brassicales families 
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Cleomaceae and Salvadoraceae, the ELF3-PrD characteristics as measured by the prediction 

tools used in this study are mainly contributed by the length of polyQ observed in the family 205 

Brassicaceae. It is important to note here that the Arabidopsis thaliana accession Col-0 used in 

this phylogenetic tree has 7 Qs in its polyQ stretch, which is sufficient to confer temperature 

sensing PrD function (Jung et al., 2020). Provided that the polyQ stretch contributes to the 

temperature sensing function (Jung et al., 2020), other Brassicaceaes with longer polyQ stretches 

are likewise expected to display temperature-responsive phase separation function conserved in 210 

their respective ELF3 proteins.  

 

Evolution of Arabidopsis thaliana ELF3 and polyQ 
Although data are lacking from most Brassicaceaes, natural variation of ELF3-polyQ length has 

been investigated in several collections of Arabidopsis thaliana accessions (Tajima et al., 2007; 215 

Undurraga et al., 2012).  Likewise, the 1001 Genomes (Alonso-Blanco et al., 2016) provide 

polymorphism information in ELF3, but the polyQ length cannot be identified due to unknown 

nucleotides in the region, probably caused by common problems of short-read sequencing 

approaches in highly repetitive regions. Therefore, we dideoxy-sequenced the corresponding 

region in an additional 204 accessions obtained from the 1001 Genomes collection and corrected 220 

their ELF3 sequences accordingly. As a result, together with previously reported data (Tajima et 

al., 2007; Undurraga et al., 2012), corrected ELF3 sequence information was available for further 

analyses for a total of 319 Arabidopsis thaliana natural accessions (Fig. 4A). Among these 

accessions, ELF3-polyQ length displayed a nearly normal distribution with 16Q being the most 

frequent, although 15Q and 17Q were rather rare (Fig. 4B). The polyQ length ranged from 7Q to 225 

29Q with a slightly skewed distribution towards <16Q. These data suggest that PrDs are 

conserved across Arabidopsis thaliana accessions, as PrD function was originally described for 

the accession with the shortest polyQ stretch (Col-0 with 7Q; Jung et al., 2020).  

 

Based on the coding sequence of ELF3 in 319 accessions, we first tested whether Arabidopsis 230 

thaliana ELF3 is under any directional selection pressure. Sliding window analyses were 

performed for sequence polymorphism (πa/πs), as well as sequence divergence (Ka/Ks) using 

nine Brassicaceae ELF3 as an interspecific group. While πa/πs refers to the intra-species genetic 

variation of ELF3 between 319 accessions, Ka/Ks applies to the inter-species variation (Fay and 

Wu, 2003). Across the coding region of ELF3, few πa/πs and Ka/Ks peaks (> 1) were observed, 235 

with one Ka/Ks peak within the PrD region, indicating that these sites may be under positive 

selective pressure (Supplemental Fig. S4A). The highest peaks of both πa/πs and Ka/Ks were 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570556doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570556
http://creativecommons.org/licenses/by-nd/4.0/


detected at the same site outside the PrD. However, this could be explained by a relatively low 

synonymous substitution rate (Ks) at the site, as the overall nonsynonymous substitution rate (Ka) 

and nucleotide diversity (π) were very low in ELF3 (Supplemental Fig. S4A, B). The latter 240 

suggests that apart from the polyQ variation, ELF3 is highly conserved among Arabidopsis 

thaliana accessions. And indeed, mostly null, or negative values of Tajima’s D were detected 

across the coding region, with an overall value of -2.45 (P<0.001) (Supplemental Fig. S4C). The 

negative Tajima’s D indicates that Arabidopsis thaliana ELF3 might have experienced a recent 

selective sweep.  245 

 

Although only limited ELF3 sequence variation was detected in Arabidopsis thaliana accessions, 

we next asked whether it might be associated with polyQ variation, which would suggest that 

polyQ variation could be regarded as the driver of general sequence variation within ELF3. We 

therefore constructed a phylogenetic tree using the obtained 319 ELF3 sequences with the 250 

expanded CAA repeats (encoding polyQ stretch) removed. Consistent with the population genetic 

data (Supplemental Fig. S4), ELF3 sequences outside of the polyQ stretch were highly conserved, 

as several groups of sequences were identical (shown as collapsed nodes in the phylogenetic 

tree in Fig. 4C).  In case the length of the polyQ stretch would be a driver of ELF3 diversification 

within the worldwide Arabidopsis thaliana germplasm, other polymorphisms outside the polyQ 255 

stretch would likely have co-evolved or hitchhiked and we would expect an accumulation of 

polyQs of similar length in specific branches of the generated phylogeny. However, we observed 

wide distributions of polyQ length within these collapsed nodes, suggesting that the general 

clustering of sequences in the phylogenetic tree was not based on the polyQ length. This indicates 

that even if polyQ variation might be of evolutionary relevance, it is not the driving force of ELF3 260 

evolution in Arabidopsis thaliana. 

 

Arabidopsis thaliana ELF3-polyQ variation is not likely associated with geographic origins 
Based on previously published results on ELF3-polyQ function and variation (Undurraga et al., 

2012; Jung et al., 2020), it has been suggested that such variation is an evolutionary adaptation 265 

to diverse latitudes and/or climates (Wilkinson and Strader, 2020; Xu et al., 2021). To test this 

hypothesis, we first plotted all obtained accessions according to their ELF3-polyQ length and 

geographic origins (coordinates) on a map focusing on European regions (where most accessions 

were collected). We did not detect specific distribution patterns of ELF3-polyQ length, as 

accessions collected from nearby sites regularly vary in polyQ length (Fig. 5A). For instance, two 270 

accessions with 26Q from Spain (ID: 9584, Supplemental Table S2) and Central Europe (ID: 7520) 
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were both mixed with accessions with relatively short polyQ stretches. However, when 

considering all accessions, although weak, there is a negative correlation between polyQ length 

and latitude (Fig. 5B), as well as a positive correlation between polyQ length and elevation/altitude 

(Fig. 5C). This can be explained by the detection of accessions with long ELF3-polyQ stretches 275 

in non-European regions (Supplemental Fig. S5). For example, all four accessions from 

Azerbaijan had 22-23Q (ID: 9069, 9070, 9089, and 9091), one accession carrying the longest 

polyQ was from the Indian Ladakh plateau (29Q, ID: 8424), and one with 27Q was from Japan 

(ID: 7207) (Supplemental Table S2; Supplemental Fig. S5). Nevertheless, since accessions with 

long polyQ stretches are also present in the European region with relatively high latitude and low 280 

altitude, the overall association between polyQ variation and geographic data is not convincing.   

To further validate this conclusion, we investigated potential correlations between polyQ length 

and local climate data with a focus on temperature- and precipitation-related factors. While we 

detected a few weak correlations (significant, but mostly < 0.2) with selected precipitation-related 

parameters and a single temperature-related parameter (isothermality, ratio of diurnal variation to 285 

annual variation in temperatures, p = 0.014), the vast majority of parameters did not affect polyQ 

length (Supplemental Fig. S6).  Taken together, based on the global scale of the 319 Arabidopsis 

thaliana accessions and the environmental data included in this survey, we did not observe 

convincing arguments for an important role of ELF3-polyQ length variation as a driver of 

evolutionary adaptation to local climates. However, we acknowledge that the available climatic 290 

data do not possess sufficient spatial resolution to reflect microclimates at specific locations. 

 

Arabidopsis thaliana ELF3-polyQ variation is not associated with temperature-responsive 
phenotypes 
As a multifunctional protein, ELF3 plays prominent roles in both circadian clock regulation and 295 

thermomorphogenesis. Previous studies reported a significant correlation of ELF3-polyQ length 

with circadian rhythm parameters in natural Arabidopsis thaliana accessions (Tajima et al., 2007) 

as well as transgenic lines (Undurraga et al., 2012). However, such associations were weaker 

regarding growth and developmental phenotypes at normal or elevated temperatures, which 

might depend on the genetic background of the transgenic lines (Undurraga et al., 2012; Press et 300 

al., 2016; Jung et al., 2020). 

 

To investigate potential associations between ELF3-polyQ variation and temperature responsive 

phenotypes in natural Arabidopsis thaliana accessions, growth assays were performed under 

normal (20°C) and elevated (28°C shift) temperatures. Hypocotyl length was measured as a 305 
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classic readout to represent temperature responsiveness. For the growth assays, 253 accessions 

were selected as a subset of the previously described 319 accessions with a similar distribution 

of polyQ variation (Fig. 4B; Fig. 6A). Greater and more divergent normalized hypocotyl length was 

observed after a temperature shift to 28°C compared to those kept at 20°C. However, the polyQ 

length did not correlate with normalized hypocotyl length at neither 20°C nor 28°C (Fig. 6B), nor 310 

with the temperature response of hypocotyl elongation (fold-change, Fig. 6C). Similarly, no 

association pattern could be detected using a three-dimensional visualization of polyQ length and 

normalized hypocotyl length at 20°C and 28°C (Fig. 6D). In addition, we performed correlation 

analysis based on previously reported flowering time data from 274 Arabidopsis thaliana 

accessions at 10°C and 16°C (Alonso-Blanco et al., 2016). However, similar to hypocotyl 315 

elongation, temperature-responsive flowering time was not associated with polyQ length 

(Supplemental Fig. S7). Consistent with previous reports using transgenic lines from two different 

genetic backgrounds (Press et al., 2016; Jung et al., 2020), these weak or absent associations 

suggest that potentially existing effects of polyQ length are either not prominent or masked by the 

genetic backgrounds, if existing at all. 320 

 

Discussion 
Sensing changes in ambient temperature is the first step in plant thermomorphogenesis. Among 

the known plant temperature sensors, the PrD in Arabidopsis thaliana ELF3 mediates liquid-liquid 

phase separation (LLPS) to form aggregates at elevated temperatures (Jung et al., 2020). 325 

However, it was unknown whether and how the PrD is conserved in ELF3 across the plant 

kingdom. In this study, which spans genome scans of species across all major branches of the 

plant tree of life, we observed that the PrD, mainly contributed by the length of polyQ, emerged 

and expanded primarily in Brassicales. ELF3’s molecular functions in temperature-responsive 

aggregation are therefore not expected to be conserved in other species. However, even in 330 

species with an ELF3 copy lacking a PrD, loss of ELF3 or natural variation therein may affect 

thermoresponsive growth phenotypes, as shown for example for barley (Ejaz and von Korff, 2017; 

Zhu et al., 2023). This suggests that ELF3 function in thermomorphogenesis does not depend on 

PrD conferred thermosensory activity. Based on natural Arabidopsis thaliana accessions, we 

found that the ELF3-polyQ variation is not likely to be associated with geographic origin, climatic 335 

conditions, or classic temperature-responsive phenotypes.  

Although the temperature sensing concept of ELF3-PrD was mainly described in the model plant 

Arabidopsis thaliana, it was hypothesized that it represents an evolutionary adaptation to different 

climates. This hypothesis was also raised because the predicted ELF3-PrD is either much smaller 
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in or absent from species adapted to warmer climates such as Solanum tuberosum or 340 

Brachypodium distachyon, respectively (Jung et al., 2020). However, based on the same PrD 

prediction method analyzing ELF3 homologues across the plant kingdom, we found that ELF3 

from non-Brassicales species rarely contained a polyQ stretch or a predicted PrD (Figs. 1-3). As 

replacing Arabidopsis thaliana ELF3 with Brachypodium distachyon ELF3 abolished its 

temperature responsiveness (Jung et al., 2020), these results suggest that the temperature 345 

sensing ability of ELF3-PrD is only applicable to a limited number of plant species, mostly 

Brassicaceae. Nevertheless, as expected, the probability of PrD existence in Brassicaceae family 

significantly correlates with polyQ length which varies within the family as well as within 319 

natural Arabidopsis thaliana accessions (Figs. 2-4; Supplemental Fig. S3). To better understand 

the evolutionary advantage and potential functions of polyQ variation, we closely assessed polyQ 350 

variation between Arabidopsis thaliana accessions. Although polyQ length presents the major 

sequence variation among different accessions (Supplemental Fig. S4), we failed to detect 

promising associations with coordinate-based geographic origins (Fig. 5). While we are aware 

that even nearby locations can differ drastically for selected climate factors, our data show that 

on the scale of this study there are no convincing arguments for an important function of ELF3-355 

polyQ variation in an evolutionary adaptation to varying latitudes or ambient temperatures 

(Wilkinson and Strader, 2020; Xu et al., 2021).  

Furthermore, no significant correlations between polyQ length and temperature-responsive 

hypocotyl or flowering phenotypes were detected in temperature assays using Arabidopsis 

thaliana accessions (Fig. 6; Supplemental Fig. S7). This could mean that some of the phenotypes 360 

(e.g., temperature-induced hypocotyl elongation) widely assessed by the thermomorphogenesis 

research community (and this study) are irrelevant in nature. Nevertheless, it is also consistent 

with a previous report which found little evidence that the polyQ stretch in transgenic lines differing 

in polyQ length plays a specific role in various thermal responses beyond modulating general 

ELF3 function (Press et al., 2016). As Col-0, the accession with the shortest polyQ stretch, has 365 

an obviously functional PrD (Jung et al., 2020), it can be concluded that the temperature sensing 

properties of the ELF3-PrD mainly depend on the ‘qualitative’ existence of polyQ, rather than its 

‘quantitative’ length. However, the potential effects of polyQ length on the aggregation properties 

under high temperatures cannot be ruled out. For example, the detected accessions with long 

polyQ stretches in non-European regions may have evolutionary relevance (Supplemental Fig. 370 

S5). Such effects may be masked and/or diluted to non-detectability when global scale 

populations are assessed as in our study. However, when conservation of a specific polyQ length 

is primarily restricted to local populations and not specific climatic or geographic (e.g., latitude) 
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factors, it is more likely that recent common ancestry of individuals of these populations is 

underlying this correlation and not an adaptive functional specificity conveyed by the length of 375 

polyQ.  

 

From a physical chemistry point of view, the aggregation properties of polyQ peptides depend on 

both polyQ length and temperature (Walters and Murphy, 2009; Böker and Paul, 2022). The 

longer the peptide (= the polyQ stretch), the lower the transition temperature required for its 380 

aggregation. For example, based on computer simulations, a polyQ peptide self-aggregates at a 

physiological temperature (around 37°C) when its chain length is more than 25Q, whereas shorter 

single chains remain disordered at the same temperature (Böker and Paul, 2022). This is 

supported by a recent simulation study using ELF3-PrD, concluding that increasing polyQ length 

promotes self-aggregation (Lindsay et al., 2023). However, whether this also applies to the 385 

thermodynamics of the entire ELF3 protein harboring polyQ and PrD needs to be investigated at 

a molecular level in planta. 

 

Before being revealed as a key player in temperature sensing and thermomorphogenesis, ELF3 

was initially identified as a component of the circadian clock (McWatters et al., 2000; Covington 390 

et al., 2001). Interestingly, polyQ variation in ELF3 displayed more prominent correlations with 

circadian rhythm parameters than with temperature-responsive phenotypes (Fig. 6; Supplemental 

Fig. S7) (Press et al., 2016; Jung et al., 2020). For example, polyQ length was negatively 

correlated with circadian phase and period in natural Arabidopsis thaliana accessions (Tajima et 

al., 2007), whereas in transgenic lines, increase (23Q) or decrease (7Q and 10Q) in polyQ length 395 

resulted in higher relative amplitude error (RAE) of circadian rhythms compared to the most 

frequent polyQ length (16Q) (Undurraga et al., 2012). These results suggest that the polyQ stretch 

(and probably the PrD as a whole) mainly contributes to circadian clock functions, with 

temperature sensing being possibly only a secondary function. This hypothesis may also apply to 

ELF3 itself, as the emergence and duplication of ELF3 occurred much earlier with the other EC 400 

components (Table 1), compared to the emergence of its PrD in Brassicales (Figs. 1-3).  

 

Indeed, temperature is just one of the aspects that affect LLPS behavior (reviewed by Xu et al., 

2021). Besides environmental factors, LLPS also highly depends on the concentration and 

identities of macromolecules to form membraneless compartments. These compartments include 405 

cytoplasmic single-domain aggregations (e.g., purified ELF3-PrD at high temperatures) (Jung et 

al., 2020), as well as nuclear bodies containing photoreceptors (so-called photobodies) or 
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circadian clock components (Ronald and Davis, 2019). These LLPS events all seem to be related 

to cellular localization of proteins: in a light- and temperature-dependent manner, the 

photoreceptor phyB reversibly accumulates in photobodies in subnuclear compartments 410 

(Yamaguchi et al., 1999; Hahm et al., 2020; Chen et al., 2022); in a time-of-day-dependent 

manner, circadian clock regulators such as ELF3, TOC1 (Wang et al., 2010), ELF4, and GI (Kim 

et al., 2007; Herrero et al., 2012) (co)localize to nuclear bodies. Interestingly, recent reports 

revealed that cellular localization of ELF3 responds to both ambient high temperature (Ronald et 

al., 2021)and light quality Ronald et al., 2022), further suggesting that the LLPS behavior of ELF3 415 

may not be PrD-dependent or limited to a temperature response.  

 

Conclusions 
Collectively, our study suggests that although presence of PrD adds supplementary temperature 

sensing functions to ELF3, its regulatory role in thermomorphogenesis does not depend on this 420 

domain, and thereby its thermosensory function. Across different branches of the plant kingdom, 

ELF3 likely and primarily confers thermosensory-independent functions to thermomorphogenesis 

signaling. In that sense, the PrD can be regarded as a lineage-specific add-on that does not 

significantly affect temperature responsiveness on an evolutionary scale across lineages. 

 425 

 

Materials and methods 
Plant materials and growth conditions 
Natural accessions of Arabidopsis thaliana obtained from Nottingham Arabidopsis Stock Centre 

(NASC) are listed in Supplemental Table S2. For screening of 253 accessions, seeds were 430 

surface-sterilized by washing with 70% ethanol for 3 min, and with 4% NaClO (with 0.3% TritonX) 

for 8 min using an orbital shaker. Seeds were then rinsed with sterile water three times for 10 min 

each and stratified in sterile water for 3 d at 4°C in darkness. Sterilized seeds were allowed to 

germinate on solid Arabidopsis thaliana solution (ATS) nutrient medium with 1% (w/v) sucrose 

(Lincoln et al., 1990). Seedlings were grown on vertically oriented plates in long days (LDs, 16 h 435 

light: 8 h dark) with 90 μmol m–2s-1 photosynthetically active radiation using white fluorescent 

lamps (T5 4000K). Seedlings were grown at constant 20°C for 4 d, and were either shifted to 

28°C or kept at 20°C for an additional 4 d. Seedlings were imaged and the length of the hypocotyl 

was measured using RootDetection 0.1.3 beta (http://www.labutils.de/rd.html). The experiments 

were performed separately in nine sequential batches and Col-0 (Accession ID: 6909, 440 
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Supplemental Table S2) was included in each batch (n = 6-32). To compare the data obtained 

among different batches, the hypocotyl length of each accession was calculated by normalizing 

the absolute value to the median hypocotyl length of Col-0 at 20°C for each batch. Flowering time 

at 10°C (FT10) and flowering time at 16°C (FT16) data of 274 accessions were obtained from the 

1001 Genomes (Alonso-Blanco et al., 2016). 445 

 

DNA sequencing 
From the 1001 Genomes (https://1001genomes.org), ELF3 coding sequences of 319 Arabidopsis 

thaliana accessions were obtained. As these sequences contained a large proportion of unknown 

nucleotides in ELF3 regions encoding polyQ, polyQ variation of 115 accessions was corrected 450 

with previously published dideoxy sequencing data (Tajima et al., 2007; Undurraga et al., 2012). 

In addition, the PrD regions were dideoxy sequenced and corrected in ELF3 of the other randomly 

selected 204 additional accessions (Supplemental Table S2). The PrD regions including polyQ 

were amplified using DreamTaq DNA polymerase (Thermo Fisher Scientific, Waltham, USA) and 

submitted to Eurofins Genomics (Ebersberg, Germany) for dideoxy sequencing. The PCR and 455 

sequencing primers were forward: 5’-ACAAAGGGGTGACTCGGAGA-3’ and reverse: 5’-

GTCACTCCTCCCCCATCTCT-3’. 

 

Phylogenetic analysis 
Copy numbers of ELF3, EEC, ELF4, and LUX in 42 plant species was obtained using HMMER 460 

(Finn et al., 2011) and BLASTp (Altschul et al., 1990) searches based on the Arabidopsis thaliana 

protein and coding sequences. ELF3 and EEC copies were classified using InterProScan (Jones 

et al., 2014). In addition, Arabidopsis thaliana ELF3 (AT2G25930) and EEC (AT3G21320) protein 

sequences were used to identify their homologous genes from available plant genomes in 

Phytozome v12.1, v13 (Goodstein et al., 2012), and OneKP databases (Carpenter et al., 2019; 465 

One Thousand Transcriptome Initiative, 2019). In total, 435 sequences were obtained from 274 

plant genomes (Supplemental Table S1). The angiosperm groups were classified based on the 

Angiosperm Phylogeny Website (v14, http://www.mobot.org/MOBOT/research/APweb/). 

Sequence alignments were performed with MUSCLE (Edgar, 2004) in AliView (Larsson, 2014) 

and visualized using the R package ggmsa (Zhou et al., 2022). 470 

Maximum likelihood phylogenetic analysis of the sequence alignment was performed using IQ-

Tree (Nguyen et al., 2015) with 10,000 replications of ultrafast bootstrap on the CIPRES Science 

Gateway (Miller et al., 2012). The JTT+F+R10 model was selected as the best-fit amino acid 

substitution model according to Bayesian Information Criterion for the phylogenetic analysis of 
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ELF3 in green plants. The JTT+R3 model was selected for the phylogenetic analysis of 475 

Brassicales ELF3. All identified ELF3 and EEC sequences were subjected to PLAAC (Lancaster 

et al., 2014) to identify probable PrD regions with a default minimum domain length of 60 amino 

acids. Background amino acids frequencies were based on Arabidopsis thaliana sequences.  For 

each sequence, the COREscore (PrD score) and Log-likelihood ratio (LLR, without a hard cut-off 

compared to the PrD score) were retrieved to represent the probability of presence of a PrD 480 

(Supplemental Table S1). To generate a phylogenetic tree of Arabidopsis thaliana ELF3 

independent of polyQ, the CCA repeats (polyQ stretch) and the stop codon (as well as the 

sequence after a premature stop codon in one accession, ID: 9089, Supplemental Table S2) were 

removed from the corrected 319 ELF3 coding sequences. Sequence alignment and phylogenetic 

analysis were performed as described above. The MG+F3X4 model was selected as the best-fit 485 

codon model. Phylogenetic trees were visualized and annotated in iTOL (Letunic and Bork, 2007). 

 

Population genetic analysis 
Sequence polymorphism (πa/πs), nucleotide diversity (π), and Tajima’s D (Tajima, 1989) of ELF3 

were calculated among 319 Arabidopsis thaliana accessions, as well as sequence divergence 490 

(Ka/Ks) of ELF3 between Arabidopsis thaliana and other Brassicaceaes, using sliding window 

analyses (width: 30 bp, step: 3 bp) in DnaSP v6 (Rozas et al., 2017). The ELF3 sequences of 

nine Brassicaceae species (Arabidopsis lyrata, Arabidopsis halleri, Brassica oleracea, Boechera 

stricta, Capsella rubella, Crambe hispanica, Descurainia sophioides, Eutrema salsugineum, and 

Thlaspi arvense) were used as an interspecific group for Ka/Ks analysis. 495 

 

Association analysis 
Geographic distribution of Arabidopsis thaliana accessions was mapped based on the 

coordinates using R packages geodata and ggrepel. The local environment data of 317 

accessions were obtained from the Arabidopsis CLIMtools (Ferrero-Serrano and Assmann, 2019). 500 

Pairwise correlation analysis was performed with the polyQ length and visualized using the R 

package corrplot. Distributions and Pearson correlations of polyQ length and phenotypic data 

were computed and visualized using packages ggpubr and plot3D in R.  
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Supplemental Fig. S1. Phylogeny of ELF3 and EEC across the plant kingdom (full tree). 
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Supplemental Fig. S4. Population genetic signatures of Arabidopsis thaliana ELF3. 520 
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Figure legends 
Fig. 1. Phylogeny of ELF3 and EEC across the plant kingdom. Phylogenetic tree was constructed 780 
with the full-length amino acid sequences obtained from 274 plant genomes, using maximum 
likelihood IQ-Tree JTT+F+R10 model with 10,000 replications of ultrafast bootstrap (bootstrap 
values >= 80 are shown as grey circles). ELF3 and EEC clades of core eudicots are marked 
based on the position of Arabidopsis thaliana ELF3 and EEC, respectively. Coloured ranges are 
based on species group and clade. Sequences with positive PrD scores (PLAAC derived) are 785 
marked with black circles with three threshold groups. The center of the circle is placed at the end 
of the corresponding branch. The number of ‘equal-daylight’ algorithm iteration was set to 1 to 
increase branch visibility. Full rooted phylogenetic tree with labels is shown in Supplemental Fig. 
S1.  

 790 

Fig. 2. Conserved and distinct features of ELF3 and EEC. Multiple amino acid sequence 
alignment of ELF3/EEC homologues in eight monocots: from top Oryza sativa (2), Paspalum 
vaginatum (2), Setaria viridis (2), Zea mays (2), Sorghum bicolor (2), Triticum aestivum, Hordeum 
vulgare, and Brachypodium distachyon; 17 core eudicots: Cicer arietinum (2 ELF3), Medicago 
truncatula (2 ELF3), Glycine max (2 ELF3), Phaseolus vulgaris, Alnus serrulata, Carya 795 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570556doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570556
http://creativecommons.org/licenses/by-nd/4.0/


illinoinensis, Castanea pumila, Manihot esculenta, Populus trichocarpa, Salix purpurea, Citrus 
clementina, Toxicodendron radicans, Bixa orellana, Gossypium barbadense (2 EEC), Fouquieria 
macdougalii, Cucumis sativus, and Eucalyptus grandis; seven Brassicales species: Alyssum 
linifolium, Capsella rubella, Arabidopsis thaliana, Malcolmia maritima, Eutrema salsugineum, 
Crambe hispanica (2 EEC and 2 ELF3), and Brassica oleracea (2 EEC and 2 ELF3). 800 
Hydrophobicity is used for amino acids colour scheme and the colour intensity is based on the 
sequence conservation. Regions I-IV represent four highly conserved regions between ELF3 and 
EEC, whereas regions V-X represent those with special features between ELF3 and EEC, and/or 
between species groups. The PrD regions are based on the PLAAC analysis of Arabidopsis 
thaliana ELF3 (Supplemental Fig. S2), including a polyQ stretch. 805 

 

Fig. 3. PolyQ stretch in Brassicales ELF3. Phylogenetic tree was constructed with the full-length 
amino acid sequences (44 Brassicales and 8 Poales species) using maximum likelihood IQ-Tree 
JTT+R3 model with 10,000 replications of ultrafast bootstrap (bootstrap values >= 80 are shown 
as grey circles). The Poales species were used for rooting and collapsed. The labels are coloured 810 
according to the species family. The multiple sequence alignment represents part of the PrD 
including the polyQ stretch, with a frequency plot indicating sequence identity. Amino acids 
asparagine (N) and glutamine (Q) are coloured within the alignment.  

 

Fig. 4. Natural variation of ELF3-polyQ in Arabidopsis thaliana accessions. (A) An overview of 815 
accessions with known polyQ length in ELF3. The numbers in parenthesis are the not-matching 
counts from different sources. In total 319 accessions included in the 1001 Genomes collection 
were used in this study. (B) Density plot represents the distribution of polyQ length. The dashed 
line represents the mean polyQ length. (C) Phylogeny of Arabidopsis thaliana ELF3 independent 
of polyQ variation. Phylogenetic tree was constructed with the coding sequences (CAA repeats 820 
removed) using maximum likelihood IQ-Tree MG+F3X4 model with 10,000 replications of ultrafast 
bootstrap (bootstrap values >= 80 are shown as grey circles). Identical sequences are collapsed 
into one node. The pie chart shows the polyQ length of each leaf or node. The size of the pie 
chart is related to the number of leaves in each node. The accession ID, node ID, corresponding 
accession name, and polyQ length are listed in Supplemental Table S2. 825 

 

Fig. 5. Geographic distribution of Arabidopsis thaliana ELF3-polyQ variation. (A) The polyQ length 
of each accession was mapped with the coordinates of their geographic origins. The continent is 
coloured based on the elevation information. The map focuses on the European region (only 
accessions within the area bounded by longitudes -10 to 30 and latitudes 35 to 65 are displayed), 830 
whereas the worldwide map is shown in Supplemental Fig. S5. (B, C) Pearson correlation of the 
polyQ length with latitude (B) or elevation (C) data. The accession ID, polyQ length, and 
corresponding geographic data are listed in Supplemental Table S2. 

 

Fig. 6. Association of ELF3-polyQ variation with temperature-responsive hypocotyl elongation. (A) 835 
Distribution of polyQ length in 253 Arabidopsis thaliana accessions used for growth assays 
(Supplemental Table S2). (B, C) Distribution of normalized hypocotyl length at 20°C or after 
temperature shift to 28°C (B), fold change temperature response (C), and their correlation with 
polyQ length. Normalized hypocotyl length represents the normalization of absolute length to 
median value of accession Col-0 at 20°C of each experiment. Vertical dashed lines in the 840 
distribution plots represent mean values. Arithmetic means of each accession shown as rugs 
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below the distribution were used for Pearson correlation analysis. Colours of the stacked bars, 
rugs, and dots in (C) represent polyQ length as shown in (A). (D) Three-dimensional visualization 
of potential association among polyQ length, and normalized hypocotyl length at 20°C and 28°C. 
θ and π represent the rotation angles of the plot.  845 

 

Supplemental Fig. S1. Phylogeny of ELF3 and EEC across the plant kingdom (full tree). 
Phylogenetic tree was constructed with the full-length amino acid sequences obtained from 274 
plant genomes, using maximum likelihood IQ-Tree JTT+F+R10 model with 10,000 replications of 
ultrafast bootstrap (bootstrap values >= 80 are shown as grey circles). ELF3 and EEC clades of 850 
core eudicots are marked based on the position of Arabidopsis thaliana ELF3 and EEC, 
respectively. The labels are coloured according to species group and clade. PLAAC derived 
scores are shown as stacked bar charts outside of the tree. Leaf names and scores are listed 
corresponding to the branch ID in Supplemental Table S1.  

 855 

Supplemental Fig. S2. The PrD of Arabidopsis thaliana ELF3. The visual output of the PLAAC 
analysis (Alberti et al., 2009) of Arabidopsis thaliana ELF3 with a default minimum domain length 
of 60 amino acids consists of three corresponding plots and the annotated amino acid sequence. 
On top, the sliding averages of per-residue log-likelihood ratios for the prion-like (red line) and 
background state (black line) are plotted. The next panel shows the probability of each residue 860 
belonging to the HMM state ‘PrD.like’ (red) and ‘background’ (black); the tracks ‘MAP’ and ‘Vit’ 
illustrate the Maximum a Posteriori and the Viterbi parses of the ELF3 protein into these two states. 
The lower panel shows sliding averages over a window of width 60 of predicted disorder (grey) 
as FoldIndex (Prilusky et al., 2005). The -PLAAC track (red) are these sliding averages scaled by 
using base -4 and reserved in sign. The green track is the re-implementation of PAPA (Toombs 865 
et al., 2010; 2012) which is multiplied by -4 so that lower scores are more predictive of prion 
propensity, and so that the range is more comparable to the other tracks. A dashed green line 
represents a similarity rescaled version of the cutoff PAPA > 0.05 (Lancaster et al., 2014). 

 

Supplemental Fig. S3. ELF3-PrD is mainly contributed by a polyQ stretch. The phylogenetic tree 870 
was constructed including all full-length amino acid sequences with positive PrD scores, using 
maximum likelihood IQ-Tree JTT+R3 model with 10,000 replications of ultrafast bootstrap 
(bootstrap values >= 80 are shown as grey circles). PrD score is shown as bar chart. Pearson 
correlation of PrD score and the number of asparagine (N) or glutamine (Q) in the region.  

 875 

Supplemental Fig. S4. Population genetic signatures of Arabidopsis thaliana ELF3. (A-C) 
Sequence polymorphism and divergence (A), nucleotide diversity (B), and Tajima’s D (C) of full-
length ELF3 coding sequence were calculated from 319 Arabidopsis thaliana accessions 
(Supplemental Table S2) using sliding window analyses (width: 30 bp, step: 3 bp). The ELF3 
sequences of nine Brassicaceae species (Arabidopsis lyrata, Arabidopsis halleri, Brassica 880 
oleracea, Boechera stricta, Capsella rubella, Crambe hispanica, Descurainia sophioides, 
Eutrema salsugineum, and Thlaspi arvense) were used as an interspecific group for Ka/Ks 
analysis. Shaded areas represent the predicted regions encoding PrD (Supplemental Fig. S2), 
based on the sequence alignment using Arabidopsis thaliana ELF3.  

 885 
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Supplemental Fig. S5. Worldwide distribution of Arabidopsis thaliana ELF3-polyQ variation. 319 
Arabidopsis thaliana accessions (Supplemental Table S2) were plotted on a world map with 
corresponding polyQ length. Accessions with special focus are marked with accession ID and 
their geographic origins. 

 890 

Supplemental Fig. S6. Arabidopsis thaliana ELF3-polyQ length is not associated with local 
environmental data. Pairwise correlation was determined between polyQ length, and temperature 
(T) or precipitation (Pre) related parameters. Pearson correlation coefficients were tested for 
significance and only significant coefficients with P < 0.05 are not crossed. The obtained CHELSA 
(Climatologies at high resolution for the earth’s land surface areas) climate data is described at 895 
gramene.org/CLIMtools/arabidopsis_v2.0/environments.html. 

 

Supplemental Fig. S7. Association of ELF3-polyQ variation with temperature-responsive 
flowering. (A) Distribution of polyQ length in 274 Arabidopsis thaliana accessions used for the 
analysis (Supplemental Table S2). (B, C) Distribution of flowering time at 10°C or 16°C (B), fold 900 
change temperature response (C), and their correlation with polyQ length. Vertical dashed lines 
in the distribution plots represent mean values. Colours of the stacked bars, rugs, and dots in (C) 
represent polyQ length as shown in (A). (D) Three-dimensional visualization of potential 
association among polyQ length, and flowering time at 10°C and 16°C. θ and π represent the 
rotation angles of the plot. 905 
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Table 1 Gene homologues of the evening complex and EEC in various plant 
genomes. Groups Species Orders ELF

3 
EE
C 

ELF
4 

LUX 
Chlorophytes Chlamydomonas reinhardtii Chlamydomonadale

s 
0 0 0 1 

Charophytes 

Chara braunii Charales 1 0 1 1  
Klebsormidium nitens Klebsormidiales 1 0 2 1  
Mesotaenium 
endlicherianum 

Zygnematales 1 0 2 1  
Penium margaritaceum Desmidiales 1 0 4 1  
Spirogloea muscicola Spirogloeales 1 0 3 1  

Bryophytes Physcomitrium patens Funariales 4 0 1 4  
Marchantia polymorpha Marchantiales 1 0 1 1  

Lycophytes Selaginella moellendorffii Selaginellales 2 0 4 1  
Ferns Ceratopteris richardii Polypodiales 4 0 8 6  
Gymnosperm
s 

Ginkgo biloba Ginkgoales 3 0 2 1†  
Angiosperms Amborella trichopoda Amborellales 1 0 2 1  

Monocots 

Musa acuminata Zingiberales 4 0 5 3  
Brachypodium distachyon Poales 1 0 3 1  
Dioscorea cayenensis Dioscoreales 2* 0 2 1  
Hordeum vulgare Poales 1 0 2 1  
Oryza sativa Poales 2 0 3 1  
Panincum hallii var. hallii Poales 2 0 3 1  
Setaria italica Poales 2 0 2 1  
Triticum aestivum Poales 1 0 6 3  
Zea mays Poales 2 0 3 2  

Eudicots 

Beta vulgaris Caryophyllales 1 0 3 2  
Daucus carota Apiales 1 0 4 3  
Helianthus annuus Asterales 2 1 10 7  
Arabidopsis halleri Brassicales 1 1 5 2  
Arabidopsis lyrata Brassicales 1 1 5 2  
Arabidopsis thaliana Brassicales 1 1 5 2  
Brassica oleracea Brassicales 2 3 13 2  
Cucumis sativus Cucurbitales 1 1 3 2  
Manihot esculenta Malpighiales 1 1 6 2  
Glycine max Fabales 2 1 8 2  
Lupinus angustifolius Fabales 2* 1* 7 2  
Medicago truncatula Fabales 2 1 4 1  
Phaseolus vulgaris Fabales 1 1 6 1  
Vigna angularis Fabales 2* 1* 6 1  
Gossypium raimondii Malvales 1 3 12 3  
Theobroma cacao Malvales 1 1 4 1  
Prunus persica Rosales 1 1 3 1  
Populus trichocarpa Malpighiales 1 1 7 2  
Solanum lycopersicum Solanales 3 1 7 2  
Solanum tuberosum Solanales 3 1 7 2  
Vitis vinifera Vitales 1 1 4 1  

* In different species of the same genus 
† Potential homologue 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570556doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570556
http://creativecommons.org/licenses/by-nd/4.0/


ELF3 clade EEC clade

Tree scale: 1

Coloured ranges

core eudicots - ELF3

core eudicots - EEC

core eudicots - exceptions

eudicots

monocots

basal angiosperms

gymnosperms

lycophytes and ferns

bryophytes

chlorophytes

Bootstrap

80

85

90

95

100

0~20 > 4020~40

PrD scores

Fig. 1. Phylogeny of ELF3 and EEC across the plant kingdom. Phylogenetic tree was 
constructed with the full-length amino acid sequences obtained from 274 plant 
genomes, using maximum likelihood IQ-Tree JTT+F+R10 model with 10,000 
replications of ultrafast bootstrap (bootstrap values >= 80 are shown as grey circles). 
ELF3 and EEC clades of core eudicots are marked based on the position of Arabidopsis 
thaliana ELF3 and EEC, respectively. Coloured ranges are based on species group and 
clade. Sequences with positive PrD scores (PLAAC derived) are marked with black 
circles with three threshold groups. The center of the circle is placed at the end of the 
corresponding branch. The number of ‘equal-daylight’ algorithm iteration was set to 1 to 
increase branch visibility. Full rooted phylogenetic tree with labels is shown in 
Supplemental Fig. S1.  
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Fig. 2. Conserved and distinct features of ELF3 and EEC. Multiple amino acid 
sequence alignment of ELF3/EEC homologues in eight monocots: from top Oryza sativa 
(2), Paspalum vaginatum (2), Setaria viridis (2), Zea mays (2), Sorghum bicolor (2), 
Triticum aestivum, Hordeum vulgare, and Brachypodium distachyon; 17 core eudicots: 
Cicer arietinum (2 ELF3), Medicago truncatula (2 ELF3), Glycine max (2 ELF3), 
Phaseolus vulgaris, Alnus serrulata, Carya illinoinensis, Castanea pumila, Manihot 
esculenta, Populus trichocarpa, Salix purpurea, Citrus clementina, Toxicodendron 
radicans, Bixa orellana, Gossypium barbadense (2 EEC), Fouquieria macdougalii, 
Cucumis sativus, and Eucalyptus grandis; seven Brassicales species: Alyssum 
linifolium, Capsella rubella, Arabidopsis thaliana, Malcolmia maritima, Eutrema 
salsugineum, Crambe hispanica (2 EEC and 2 ELF3), and Brassica oleracea (2 EEC 
and 2 ELF3). Hydrophobicity is used for amino acids colour scheme and the colour 
intensity is based on the sequence conservation. Regions I-IV represent four highly 
conserved regions between ELF3 and EEC, whereas regions V-X represent those with 
special features between ELF3 and EEC, and/or between species groups. The PrD 
regions are based on the PLAAC analysis of Arabidopsis thaliana ELF3 (Supplemental 
Fig. S2), including a polyQ stretch. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570556doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570556
http://creativecommons.org/licenses/by-nd/4.0/


Amino acid sequence (aa)

Sequence identity

Br_Arabidopsis_lyrata_1

Br_Arabidopsis_halleri_1

Br_Arabidopsis_thaliana_1

Br_Capsella_grandiflora_1

Br_Capsella_rubella_1

Br_Boechera_stricta_1

Br_Malcolmia_maritima_1

Br_Alyssum_linifolium_1

Br_Descurainia_sophioides_1

Br_Lepidium_sativum_1

Br_Rorippa_islandica_1

Br_Iberis_amara_1

Br_Lunaria_annua_1

Br_Brassica_oleracea_1

Br_Brassica_rapa_1

Br_Crambe_hispanica_2

Br_Eruca_vesicaria_1

Br_Cakile_maritima_1

Br_Isatis_tinctoria_1

Br_Myagrum_perfoliatum_1

Br_Caulanthus_amplexicaulis_1

Br_Brassica_oleracea_2

Br_Brassica_rapa_2

Br_Sinapis_alba_1

Br_Brassica_nigra_1

Br_Crambe_hispanica_1

Br_Stanleya_pinnata_1

Br_Schrenkiella_parvula_1

Br_Thlaspi_arvense_1

Br_Eutrema_salsugineum_1

Br_Iberis_amara_2

Br_Euclidium_syriacum_2

Br_Diptychocarpus_strictus_1

Br_Euclidium_syriacum_1

Br_Arabis_alpina

Br_Cleome_violacea_1

Br_Polanisia_dodecandra_1

Br_Gynandropsis_gynandra_1

Br_Salvadora_sp

Br_Gyrostemon_ramulosus_1

Br_Reseda_odorata

Br_Carica_papaya

Br_Moringa_oleifera_1

Br_Tropaeolum_peregrinum LQG--TPPLG-PN-YF-PPYGM--P--IMNPTISG-------------------------------------PSVDQ-MNHF-SQ-PGSHFHGSNLS--GVVNS-NM---QHPSSCNLPTQ
LPG--APPVG-HC-YF-PPYGM--P--VMNPTISG-------------------------------------SAVEQ-MNQF-PG-PVSHGHTGNLSG-GGANF-SM---QQQSSCNLPIQ
LPG--APPVG-HS-YF-PSYGM--P--IMSPSFSG-------------------------------------SAVEQ-MNPF-ST-PGGHGHIANLSG-GGA---------KQSSCNLSTQ
-IN--APTGG-HGYYF-PPYGTL-P---MNP------------------------------------------------------------------------------------------
-VG--YPATG-QG-YF-PACGI--P--GMSPYFSG-------------------------------------QPTEQ-INPF-GH-PDT----------PLSAL-NM---QQQSSCKLPAG
-FG--FP-PG-LS-YF-PPYGV--P--ATNPNFAG-----------------------------------Q-QPIEQ-MNQF-GY-PG------SIP---GAAM-TA---QQQSSCNFSNS
-VG--FPSPG-PG-YF-PPYAM--P--TMNPNLSSQ---------------------------------HQ-QHQEQ-MNQF-GI-PNP----------PFANM-N----TQQSSCNFPSS
-IG--FPSPG-PG-YF-PPYAM--P--TMNPNFSG-----------------------------------Q-QHTEQ-VNQF-DH-PG-----------------NT---QQQSSCNFPNS
-AG--FPSPG-PG-YF-PPYAM--P--TMNPIFSG-----------------------------------Q-QHIEQ-MSQF-GH-PG------NPP---SAAM-ND---QQQSSCNFPSS
-VG--FPS------YF-PPYGM--P----NP--SW----------------------------------QQ-PPTEQTVNQF-SH-PG------NLH---NPAM-NTQQQQQQSSCNFPPN
-VG--FPS------YFPPPYPM--P------NYAW----------------------------------QQ-PPSEQTMNQF-SQ--------------------SA---QNQSSCNFPPN
-VG--FPP------YYPPPYPM--P------NYSW----------------------------------QQPPPSEQTMNQF-SH------------------------SQQQSSCNYPPN
-VGFPFPSPG-NA-YF-PPYGMM-P-NMMHPYCSSQ---------------------------QQQQ--QQ-QANEQ-MNQF-GH-NG-------------SAL-NT---QQQP-------
-VG--FPS----------PYG------MMNPYCSS------------------------------QQ--QQ-QPNEQ-MDQF-NH-LG------NLH--NVSAS-NT---QQPSSVNEAAT
-MG--FPSPG-NG-YF-PPYGMM-P-TMMNPYCSG------------------------------QQ--QQ-QPNEQ-MNQF-VH-PG------NFQ--NASAL-NT---QQESSVHEEAP
-MG--LASLG-NG-YF-PPYGIM-PHTMMNTYCSG-----------------------------QQQ--QQ-QPNEH-MNQF-GH-SV------NLQ--NASGL-NN---QQQSSVNEEAA
-VG--FPPPG-NG-YF-PPYGIM-P-TMMNPYCSG-------------------------------Q--QQ-QPNEQ-MNQF-GH-PG------NLQ--NASAL-NT---QQQSSMNVAAP
-VG--FPSPG-NG-YF-PPYGIM-P-TMMNPYCSG------------------------------QQ--QQ-QPNEQ-MNQF-GH-PG------NLQ--NASAL-NT---QQQSSVNEAAS
-VG--FPSPG-NG-YF-PPYGI------MNPYGSG----------------------------------QQ-QHNEQ-MNQF-VH-PG------NLQ--YASAV-NT---QQQSSANEESS
-VG--FPSPA-NG-YF-PPYGIM-P-TMMNPYGPGQ---------------------------QQQQ--QQ-QPNEQ-MNQF-VH-PG------NLQ--YASAV-NT---QQPSSVNEEIS
--------PG-NG-YF-PPYGIM-P-TMMNPYGSG-----------------------------QQQ--QQ-QPNEQ-MNQF-VH-PG------NLQ--YASAV-NT---QQQSSVNEAIS
-V-------G-NG-YF-PPYG------MMNPYGSG-----------------------------HQQ--QQ-QPSEQ-MNQF-VH-P----------------V-NT---QQQSSVNEAIS
-V-------G-NG-YF-PPYG------MMNPYGSG-----------------------------HQQ--QQ-QPNEQ-MNQF-VH-P----------------V-NT---QQQSSVNEAIS
-MG--FPSPG-NG-YF-PPYGLM-P-TMINPYYSGQ----------------------------QQQ--QQ-QSNEQ-MDQF-GHQPG------SFQ--NASAL-NT---QQQSSVNEAAS
--------PG-NG-YF-PPYGIMPP-TMMNPYYSGQ-------------------------QQQQQQ--QH-QPNEQ-M--------------------NASPL-NT---QQQSSVNEAAA
--------PG-NG-YF-PPYGIMPP-TMMNPYYSGQ------------------------NQQQQQQ--QH-QPNEQ-MNQF--------------Q--NASAL-NI---QQQSSLNEAAA
-MG--FPSHGNNG-YF-PPYGIM-P-TMMNPYYPG-------------------------------Q--QQ-QPNEQ-MSQFGGH-PG------NLQ--DN----NT---QQQSSLNEAAS
-MG--FTSHG-NG-YF-PPYGIM-P-TMMNPYYSG----------------------------------QQ-QPNEQ-MNQF-GH-PG------NFQ--DASALNNT---QQQSSVNKAAS
-MG--FPSHG-NG-YF-PPYGIM-P-TMMNPYYSGQ----------------------------QPP--PH-QSNEQ-MNQF-GH-PG------NLQ--DPSALNNT---QQQSS---AAS
-MG--FPSHG-NG-YF-PPYGGI----MMNPYYSGQ----------------------------QQQ--QQ-QPNEQ-MNN------------------------NI---QQQSSVNEATS
-MG--FPSHG-NG-YF-PPYGGI----MMNPYYSG----------------------------------QQ-QPSEQ-MNN------------------------NI---QQQSSVNEATS
-VG--FPSPG-TS-YF-PPYGIM-P-TAMNPYCSG------------------------------QQ--QQ-QPNEQ-MNQF-GH-CG------NLH--NASSVLNT---QQQSS-----S
-TG--FPSPG-NG-YF-PPYGSM-P-TMMNPYH-------------------------------QQQ--QQ-QPNEQ-MNQF-GY-SG------NLQNQNASAL-NT---QQESSANEAPA
-MG--FPPPG-NG-YF-PPYGIM-P-TMMNPYGSC-----------------------------QQQ--QQ-QPNEQ-MNQF-GY-SG------NIQ--N-----NT---QQQSSINEAAP
-MG--FPPPG-NG-YF-PPYGMM-P-TMMNPYYSC------------------------------QQ--QQ-QANEQ-MNQL-GH-SG------SFQ--------KV---HQQSTVNEPTV
-MG--FPPPG-NG-YF-PPYEMM-P-TMMNPYCSGQ----QQQQQQQQQQQQQ------QQQQQQQQ--QS-PPNEQ-MNQF-EH-SG------NLQ--------NI---QQQRSANEAAA
-MG--FPPPG-NG-YF-PPYGMM-P-TMMNPYCSGQQ---QQQQQQQQQQQQQ------QQQQQQQQ--QS-PPNEQ-MNQF-EH-SG------NLQ--------NI---QQQRSANEAAA
-MG--FPPPG-NG-YF-PPYGIM-P-TMMNPYGSVQ----------------------------QQQ--QQ-PPNEQ-MNQF-GH-PG------NLQ--------NT---QQQSSVNEAAP
-IG--FPPPG-NG-YF-PPYGIM-P-TMMNPYCSGQ------------------------QQHHHQQ--QQ-QPNEQ-MNQF-GY-PG------NLQ--------NT---QQQSSVIEAAA
-MG--FPPPG-NG-YF-PPYGII-P-TMMNPYCSSQQQQQQQQQQQQQQQQQQHQQHQHQQQQQHQQ--QQ-QSNEH-MNQF-GY-SG------NLQ--------NG---QQQSSVNEVTG
-MG--FPPPG-NG-YF-PPYGIM-P-TMMNPYCSSQQQQQQQQQQQQQQQQQQHQQHQHQQQQQQQQQHQQ-QSNEH-MNQF-GY-SG------NLQ--------NG---QQQSSVNEVTA
-MG--FPPPG-NG-YF-PPYGMM-P-TIMNPYCSSQ----------------------------QQQ--QQ-QPNEQ-MNQF-GH-PG------NLQ--------NTQ-QQQQRSDNEPAP
-MG--FPPPG-NG-YF-PPYGMM-P-TMMNPYCSGQ---------------QQ------QQQQQQQQ--QQ-QPNNQ-MNQF-GH-PG------NLQ--------NTQ-QQQQSSINEAAP
-MG--FPPPG-NG-YF-PPYGIM-P-TMMNPYCSGQQQQQQQQQQQQQQQQQQ------QQQQQQQQ--QQ-QPNDQ-MNQF-GH-HG------NLQ--------NT--QQQQSSVNAAAA

680 690 700 710 720 730 740 750 760 770 780 790 800

Tree scale: 1

Coloured ranges

Brassicaceae

Cleomaceae

Salvadoraceae

Gyrostemonaceae

Resedaceae

Caricaceae and Moringaceae

Tropaeolaceae

Bootstrap

80

85

90

95

100

Amino acids

N Q

Fig. 3. PolyQ stretch in Brassicales ELF3. Phylogenetic tree was constructed with the 
full-length amino acid sequences (44 Brassicales and 8 Poales species) using
maximum likelihood IQ-Tree JTT+R3 model with 10,000 replications of ultrafast 
bootstrap (bootstrap values >= 80 are shown as grey circles). The Poales species were 
used for rooting and collapsed. The labels are coloured according to the species family. 
The multiple sequence alignment represents part of the PrD including the polyQ stretch, 
with a frequency plot indicating sequence identity. Amino acids asparagine (N) and 
glutamine (Q) are coloured within the alignment.  
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Fig. 4. Natural variation of ELF3-polyQ in Arabidopsis thaliana accessions. (A) An 
overview of accessions with known polyQ length in ELF3. The numbers in parenthesis 
are the not-matching counts from different sources. In total 319 accessions included in 
the 1001 Genomes collection were used in this study. (B) Density plot represents the 
distribution of polyQ length. The dashed line represents the mean polyQ length. (C) 
Phylogeny of Arabidopsis thaliana ELF3 independent of polyQ variation. Phylogenetic 
tree was constructed with the coding sequences (CAA repeats removed) using 
maximum likelihood IQ-Tree MG+F3X4 model with 10,000 replications of ultrafast 
bootstrap (bootstrap values >= 80 are shown as grey circles). Identical sequences are 
collapsed into one node. The pie chart shows the polyQ length of each leaf or node. 
The size of the pie chart is related to the number of leaves in each node. The accession 
ID, node ID, corresponding accession name, and polyQ length are listed in 
Supplemental Table S2 . 
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Fig. 5. Geographic distribution of Arabidopsis thaliana ELF3-polyQ variation. (A) The 
polyQ length of each accession was mapped with the coordinates of their geographic 
origins. The continent is coloured based on the elevation information. The map focuses 
on the European region (only accessions within the area bounded by longitudes -10 to 
30 and latitudes 35 to 65 are displayed), whereas the worldwide map is shown in 
Supplemental Fig. S5. (B, C) Pearson correlation of the polyQ length with latitude (B) or 
elevation (C) data. The accession ID, polyQ length, and corresponding geographic data 
are listed in Supplemental Table S2 . 
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Fig. 6. Association of ELF3-polyQ variation with temperature-responsive hypocotyl 
elongation. (A) Distribution of polyQ length in 253 Arabidopsis thaliana accessions used 
for growth assays (Supplemental Table S2 ). (B, C) Distribution of normalized hypocotyl 
length at 20°C or after temperature shift to 28°C (B), fold change temperature response 
(C), and their correlation with polyQ length. Normalized hypocotyl length represents the 
normalization of absolute length to median value of accession Col-0 at 20°C of each 
experiment. Vertical dashed lines in the distribution plots represent mean values. 
Arithmetic means of each accession shown as rugs below the distribution were used for
Pearson correlation analysis. Colours of the stacked bars and dots in (C) represent 
polyQ length as shown in (A). (D) Three-dimensional visualization of potential 
association among polyQ length, and normalized hypocotyl length at 20°C and 28°C. θ 
and π represent the rotation angles of the plot.  
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Supplemental Fig. S1. Phylogeny of ELF3 and EEC across the plant kingdom (full 
tree). Phylogenetic tree was constructed with the full-length amino acid sequences 
obtained from 274 plant genomes, using maximum likelihood IQ-Tree JTT+F+R10 
model with 10,000 replications of ultrafast bootstrap (bootstrap values >= 80 are shown 
as grey circles). ELF3 and EEC clades of core eudicots are marked based on the 
position of Arabidopsis thaliana ELF3 and EEC, respectively. The labels are coloured 
according to species group and clade. PLAAC derived scores are shown as stacked bar 
charts outside of the tree. Leaf names and scores are listed corresponding to the 
branch ID in Supplemental Table S1 .  
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Supplemental Fig. S2. The PrD of Arabidopsis thaliana ELF3. The visual output of the 
PLAAC analysis (Alberti et al., 2009) of Arabidopsis thaliana ELF3 with a default 
minimum domain length of 60 amino acids consists of three corresponding plots and the 
annotated amino acid sequence. On top, the sliding averages of per-residue log-
likelihood ratios for the prion-like (red line) and background state (black line) are plotted. 
The next panel shows the probability of each residue belonging to the HMM state 
‘PrD.like’ (red) and ‘background’ (black); the tracks ‘MAP’ and ‘Vit’ illustrate the 
Maximum a Posteriori and the Viterbi parses of the ELF3 protein into these two states. 
The lower panel shows sliding averages over a window of width 60 of predicted disorder 
(grey) as FoldIndex (Prilusky et al., 2005). The -PLAAC track (red) are these sliding 
averages scaled by using base -4 and reserved in sign. The green track is the re-
implementation of PAPA (Toombs et al., 2010; Toombs et al., 2012)  which is multiplied 
by -4 so that lower scores are more predictive of prion propensity, and so that the range 
is more comparable to the other tracks. A dashed green line represents a similarity 
rescaled version of the cutoff PAPA > 0.05 (Lancaster et al., 2014). 
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Supplemental Fig. S3. ELF3-PrD is mainly contributed by a polyQ stretch. The 
phylogenetic tree was constructed including all full-length amino acid sequences with 
positive PrD scores, using maximum likelihood IQ-Tree JTT+R3 model with 10,000 
replications of ultrafast bootstrap (bootstrap values >= 80 are shown as grey circles). 
PrD score is shown as bar chart. Pearson correlation of PrD score and the number of 
asparagine (N) or glutamine (Q) in the region.  
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Supplemental Fig. S4. Population genetic signatures of Arabidopsis thaliana ELF3. (A-
C) Sequence polymorphism and divergence (A), nucleotide diversity (B), and Tajima’s D 
(C) of full-length ELF3 coding sequence were calculated from 319 Arabidopsis thaliana 
accessions (Supplemental Table S2) using sliding window analyses (width: 30 bp, step: 
3 bp). The ELF3 sequences of nine Brassicaceae species (Arabidopsis lyrata, 
Arabidopsis halleri, Brassica oleracea, Boechera stricta, Capsella rubella, Crambe 
hispanica, Descurainia sophioides, Eutrema salsugineum, and Thlaspi arvense) were 
used as an interspecific group for Ka/Ks analysis. Shaded areas represent the predicted 
regions encoding PrD (Supplemental Fig. S2), based on the sequence alignment using 
Arabidopsis thaliana ELF3.  
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Supplemental Fig. S5. Worldwide distribution of Arabidopsis thaliana ELF3-polyQ 
variation. 319 Arabidopsis thaliana accessions (Supplemental Table S2 ) were plotted on 
a world map with corresponding polyQ length. Accessions with special focus are 
marked with accession ID and their geographic origins. 
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Supplemental Fig. S6. Arabidopsis thaliana ELF3-polyQ length is not associated with 
local environmental data. Pairwise correlation was determined between polyQ length, 
and temperature (T) or precipitation (Pre) related parameters. Pearson correlation 
coefficients were tested for significance and only significant coefficients with P < 0.05 
are not crossed. The obtained CHELSA (Climatologies at high resolution for the earth’s 
land surface areas) climate data is described at 
gramene.org/CLIMtools/arabidopsis_v2.0/environments.html. 
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Supplemental Fig. S7. Association of ELF3-polyQ variation with temperature-
responsive flowering. (A) Distribution of polyQ length in 274 Arabidopsis thaliana 
accessions used for the analysis (Supplemental Table S2 ). (B, C) Distribution of 
flowering time at 10°C or 16°C (B), fold change temperature response (C), and their 
correlation with polyQ length. Vertical dashed lines in the distribution plots represent 
mean values. Colours of the stacked bars, rugs, and dots in (C) represent polyQ length 
as shown in (A). (D) Three-dimensional visualization of potential association among 
polyQ length, and flowering time at 10°C and 16°C. θ and π represent the rotation 
angles of the plot. 
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