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Abstract
The ability to solve complex tasks relies on the adaptive changes occurring in the spatio-temporal
organization of brain activity under different conditions. Altered flexibility in these dynamics can lead to
impaired cognitive performance, manifesting for instance as difficulties in attention regulation, distraction
inhibition, and behavioral adaptation. Such impairments result in decreased efficiency and increased effort in
accomplishing goal-directed tasks. Therefore, developing quantitative measures that can directly assess the
effort involved in these transitions using neural data is of paramount importance. In this study, we propose a
framework to associate cognitive effort during the performance of tasks with electroencephalography (EEG)
activation patterns. The methodology relies on the identification of discrete dynamical states (EEG
microstates) and optimal transport theory. To validate the effectiveness of this framework, we apply it to a
dataset collected during a spatial version of the Stroop task. Our findings reveal an increased cost linked to
cognitive effort, thus confirming the framework's effectiveness in capturing and quantifying cognitive
transitions. By utilizing a fully data-driven method, this research opens up fresh perspectives for
physiologically describing cognitive effort within the brain.

Author Summary
In our daily lives, our brains manage various tasks with different mental demands. Yet, quantifying how
much mental effort each task demands is not always straightforward. To tackle this challenge, we developed
a way to measure how much cognitive effort our brains use during tasks directly from
electroencephalography (EEG) data, which is one of the most used tools to non-invasively measure brain
activity. Our approach involved the identification of distinct patterns of synchronized neural activity across
the brain, named EEG microstates. By employing optimal transport theory, we established a framework to
quantify the cost associated with cognitive transitions based on modifications in EEG microstates. This
allowed us to link changes in brain activity patterns to the cognitive effort required for task performance. To
validate our framework, we applied it to EEG data collected during a commonly employed cognitive task
known as the Stroop task. This task is recognized for challenging us with varying levels of cognitive demand.
Our analysis revealed that as the task became more demanding, there were discernible shifts in the EEG
microstates. Importantly, these shifts in neural activity patterns corresponded to higher costs associated with
cognitive transitions. Our approach offers a promising methodology to assess cognitive effort using neural
data, contributing to our comprehension of how the brain manages and adapts to varying cognitive
challenges.

Introduction
The complex activity patterns that support perception, cognition, and behavior in the healthy brain arise from
the interactions of neuronal populations across various spatial and temporal scales [Liégeois et al., 2019]. At
the macroscale, brain activity is characterized by spatially distributed groups of regions that exhibit
temporally correlated activity and co-activate during behavioral tasks, thus acting as functional networks.
Recently, it has been shown that such functional networks may reflect the long-time average of rapidly
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switching metastable patterns (also called “metastable substates” or “dynamical states”), which are
consistently observed with different imaging methods [Calhoun et al., 2014; Preti et al., 2017; Kringelbach et
al., 2020; Rajkumar et al., 2021; Coquelet et al., 2022]. In the M/EEG literature, these patterns are termed
“microstates” and are highly reproducible across studies and clustering techniques [Michel et al., 2018; Von
Wegner et al., 2018; Tarailis et al., 2023].

As our environment is constantly evolving, with new stimuli and challenges emerging regularly, our brain
must remain flexible and adaptable to respond effectively to these changes. A crucial component that drives
such reconfiguration is “executive functioning” or “cognitive control” [Botvinick et al., 2001; Braver, 2012;
Friedman et al., 2017]. This construct refers to the set of processes and mechanisms that enable
goal-directed behavior in the face of changing circumstances [Banich, 2019; Miller & Cohen, 2001;
Botvinick et al., 2001; Posner & Snyder, 1975]. When confronted with challenging situations, cognitive
control allows the brain to regulate attention, inhibit irrelevant information, and shift cognitive resources to
prioritize relevant tasks or goals [Ochsner et al., 2005].

Concurrently, it has been shown that the dynamical properties of the metastable substates during different
active conditions are modulated compared with the resting state. Such adaptation has been demonstrated in a
large variety of conditions such as cognitive loads [Capouskova et al., 2022], sleep-awake cycle [Deco et al.,
2019], habituation of cognitive tasks [Szymula et al., 2020], and is reflected in the overall reconfiguration of
functional connectivity [Kitzbichler et al., 2011; Hutchinson et al., 2013; Gonzalez-Castillo et al., 2018].
Importantly, alterations in the dynamic of brain states were found in psychiatric [Michel et al., 2018; da Cruz
et al., 2020] and neurological disorders [Favaretto et al., 2022] and during normal aging [Moretto et al.,
2022]. Therefore, developing quantitative measures for quantifying the cost of such reconfiguration in the
brain is crucial for explaining the impairments and guiding the possible effects of therapeutic interventions
[Deco et al., 2018].

In recent years, much attention has been captured by the network controllability framework for measuring
the brain transition cost [Tang et al., 2018; Lynn et al., 2019]. Control theory based tools offer a mechanistic
explanation for how the brain moves between cognitive states drawn from the structural network
organization. In addition, control theory provides a quantitative way of computing the control cost as the
amount of energy needed to steer a system along a desired trajectory. Despite its potential and broad
spectrum of applications, it has some strong limitations [Tu et al., 2018; Suweis et al., 2019]. For instance, it
relies on the assumption of linearity in the dynamics. However, linear models fail to capture non-linear
[Friston, 2001] and higher-order [Herzog et al., 2022] phenomena ubiquitously encountered in brain
dynamics. Moreover, stochasticity is not considered, but it is essential for accurately describing many aspects
of brain function [Deco et al., 2009].

A promising approach for circumventing these limitations in quantifying the cost of control consists of
reframing the task into a Schrödinger bridge problem [Pavon et al., 2021; Chen et al., 2021]. More
specifically, given an initial and a target probability distribution, the Schrödinger bridge problem asks for the
most likely path or "bridge" that connects the two probability distributions given the spontaneous stochastic
dynamics of the system. The transition cost is then estimated as the Kullback-Leibler divergence, which
measures distances in the probability distribution space, between the baseline trajectory and the bridge.
Intuitively, it measures the cost of “transporting” one distribution into another by a stochastic process that
satisfies some given constraints. Indeed, the Schrödinger bridge problem has been proven to be formally
equivalent to an (entropy-regularized) optimal transport problem [Chen et al., 2016; Peyrè et al., 2019].

Recently, such an approach was applied to an fMRI dataset of participants performing several cognitive tasks
[Kawakita et al., 2022]. The authors show that the transition cost from the resting condition to the various
tasks varies significantly, thus proposing this approach might be suitable for describing neurophysiological
data. However, the tasks were qualitatively different and difficult to compare, thus there were no strong prior
expectations of the task difficulty and the expected cognitive demand. Additionally, the reliability of
individual differences in task-based fMRI activity is known to be quite poor [Elliot et al., 2020], especially in
the absence of long time series, as typically occurs in fMRI data, thus hindering the possibility of a
subject-level analysis. Hence, in [Kawakita et al., 2022] time series data from individual subjects were
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combined to create a unified meta-subject dataset. Therefore, the analysis was exploratory and the reliability
of such a metric remains limited. Moreover, in many contexts of cognitive interests, fMRI is not a suitable
tool to measure neural correlates of behavior. For instance, one of its primary constraints is its inherent
limitation to cognitive tasks that do not involve significant physical movement. This is a notable drawback,
as many cognitive processes and behaviors inherently entail motor actions.

In this work, we bridge this gap by generalizing the above method to electroencephalography (EEG) signals,
which moreover measure neural activity more directly than fMRI. Specifically, we analyze an EEG dataset
on participants performing a spatial Stroop task. The Stroop task is a standard experimental paradigm in
cognitive psychology that investigates different aspects of cognitive control and executive functions,
including selective attention, response inhibition, and interference resolution, by assessing the interference
effect from conflicting stimulus features [Stroop, 1935]. In its spatial variant [Ambrosini & Vallesi, 2017;
Viviani et al., 2022; Viviani et al., 2023], participants are typically presented with arrows pointing in
different directions (e.g., top left or bottom right) and are asked to indicate the direction of the arrow through
a spatially compatible button press. However, the pointing direction may conflict with its spatial location. For
example, an arrow pointing to the top left corner might appear on the bottom right side of the screen.
Typically, participants are slower and less accurate in incongruent conditions (i.e., when the spatial location
of the arrow conflicts with the direction it is pointing to) than in congruent conditions (i.e., when spatial
location and pointing direction coincide). This interference effect, referred to as the “Stroop effect”, is
believed to reflect the difficulty in suppressing the automatic processing of the spatial location of the
stimulus in favor of the task-relevant information (the arrow direction), with the consequent activation of a
wrong response code that then needs to be suppressed. Commonly, it is computed as the difference in the
response time (RT) between incongruent and congruent trials. Cognitive control demands can be further
manipulated by varying the proportion of congruency (PC), namely the proportion of congruent trials in a
given task block [Visalli et al., 2022]. Indeed, in high-PC blocks, conflict is less likely, and cognitive control
demands are lower, whereas, in low-PC blocks, trials are mostly incongruent, and cognitive control is more
required [Bugg, 2014; Gonthier et al., 2016]. Therefore, due to our well-defined quantitative prior
expectation of cognitive demands, this dataset is ideally suited for assessing the effectiveness of the proposed
framework to estimate brain transition costs.

Here, we first characterize the dynamics with a microstate analysis, which reveals that different conditions
modulate the distribution of microstates. Specifically, we observe a distinct topography that is more
prominent during the task, while two other topographies are enhanced and reduced, respectively, solely
during the presentation of incongruent stimuli. Next, we calculate the transition cost for each participant from
the resting state to the various conditions. We observe a higher cost for incongruent stimuli. Importantly, this
cost is significantly influenced by the level of cognitive control. Moreover, we find a correlation between
variations in the cost and RTs, showing that a reduced cost is associated with improved task performance.
Overall, these results highlight the value of characterizing brain dynamics and transition costs in
understanding cognitive processes and offer insights into the relationship between neural activity patterns,
cognitive effort, and behavioral performance.

Results

Framework for computing the control cost

In this work, we delved into an EEG dataset recently collected (see “Dataset” section; Fig. 1a). This dataset
encompasses EEG recordings collected from a cohort of 44 participants during both resting and task-oriented
sessions. Specifically, the task involved a spatial Stroop task designed with blocks featuring three distinct PC
values (25%, 50%, and 75%) to systematically manipulate different levels of cognitive control engagement,
which were characterized as High, Medium, and Low, respectively.
Consequently, this setup provided multiple pre-established levels of cognitive demand expectation.
EEG activity was characterized utilizing a microstate analysis (see “EEG microstate-based analysis” section;
Fig. 1b). After identifying the most reliable templates for group maps, we proceeded to assess their
occurrences and transitions in each participant during both the resting and task conditions.
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Utilizing their dynamics, we derived an estimation of the control cost employing the Schrödinger bridge
framework (see “Brain transition cost” section, Fig. 1c). In essence, this cost was calculated as the disparity
between the spontaneous microstate dynamics during the resting phase and the bridge, which corresponds to
the most likely pathway linking the distributions of microstates observed during resting and task-oriented
conditions.

Figure 1. Summary of the framework for the computation of the brain transition cost from EEG data.
(a) The EEG activity of 44 participants was acquired at rest and while performing a spatial Stroop task. The
participants were presented either with a congruent (C) or incongruent (I) stimulus. The proportion of
congruency was modulated within three blocks (Low: 75% C, 25% I; Medium: 50% C, 50% I; High: 25% C,
75% I). (b) EEG activity was characterized by employing a microstate analysis. The modified k-means
clustering found nine most representative topologies, which we named from A to I. (c) Schrödinger bridge
framework for computing brain transition cost. Given the microstate occurrence probability at rest (π0) and
while performing a task (πT), the cost is computed as the Kullback-Leibler divergence between the
spontaneous (resting) dynamics, described by joint probability for two consecutive steps (Qij), and the
Schrödinger bridge, i.e., the most probable path that links the resting and task distribution, subject to the
given constraints.

Microstate reconfiguration during task

The group-level clustering revealed nine optimal microstate classes, which explained almost 80% of the
variance of the dataset (Fig. S1). Five of these group maps resembled the usual microstates template
ubiquitously found in the literature [Michel et al., 2018], and we labeled them accordingly (from A to E).
The remaining ones were not present in such templates but were found in our experiments, thus we labeled
them arbitrarily respecting the axial symmetry (F, G and H, I) (Fig. 1b). Such templates might be specific to
the cognitive control task as found in other task-related microstate analyses [Minguillon et al., 2014].
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Before entering into applying the control cost framework, we needed to verify whether microstate
occurrences during the task were modulated with respect to the baseline (Fig. 2). To achieve this, we utilized
a mixed linear model for each microstate, incorporating congruency, control level, and their interaction as
fixed factors (Tab. S1). As a dependent variable, we computed the change in the probability of occurrence
across different conditions compared to the resting state. Consequently, the intercept denoted an overall
modulation from the resting state to task performance. We found that microstate A is significantly suppressed
during the execution of the tasks. As a tentative speculation, such depression might be related to alpha
suppression or the deactivation of the default mode network. On the other hand, microstate E was more
enhanced during incongruent stimuli, possibly linked to the activation of executive network nodes, while
microstate F was suppressed, which could be related to the default mode network disengagement for a more
demanding task condition. Instead, the remaining microstates did not show significant differences among the
different conditions after correction for multiple tests (see Fig. S2, Fig. S3).

Figure 2. Microstate occurrence distinguishes tasks from resting. Microstate A is specific for resting
(p(intercept)<0.001), while microstates E (p(congruency)<0.001) and F (p(congruency)=0.02) are specific
for the resolution of the interference. Boxplots indicate the distribution of the difference in the probability of
occurrence during each task and the resting state, obtained from 44 individuals. Blue (orange) scale
represents congruent (incongruent) stimuli. The saturation of the blue (orange) scale represents the level of
control demands. To assess the modulation of occurrence during each condition, we employed a linear mixed
model with congruency, control level, and their interaction as fixed factors (see Sec. 3.1, Table S1). The stars
correspond to the p-values of the post hoc t-tests reported in Figure S2.

Transportation cost matrix

A key quantity, that we inferred from the EEG time series and their microstates, was the transportation cost
matrix (Fig. 3a). Such a matrix, in an optimal transport problem, provides information about the costs
associated with transporting goods or resources from one location to another. In our framework, it defines the
cost associated with increasing or decreasing the occurrence of one microstate from the source to the target
distribution, and it has a clear intuition: the transportation cost is minimized along the more favorable
transitions (i.e., more probable) during rest.
For each participant, the transportation cost was obtained from the joint probability distribution of
co-occurrence for two consecutive steps during resting. As shown in Fig. 3b, we found that such distribution
is asymmetric, indicating a preference or bias in transitioning from one state to another with respect to the
opposite direction. Such asymmetric transitions indicate potential fluxes and net flows within the system,
which in turn can contribute to the overall production of entropy at a macroscopic level [Lynn et al., 2021].
Therefore, our results hint at a macroscopic entropy production of the brain, even at rest. Moreover, the
self-transition probabilities are quite large, indicating that the system tends to persist in its current state over
time, thereby confirming the metastable nature of the microstates.
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Figure 3. Estimating the transportation cost matrix from microstate joint probability of consecutive
timesteps at rest. (a) Transportation cost matrix, averaged over the 44 participants, representing the cost for
the brain to transition from state i to state j. (b) Network describing the transitions among microstates during
resting. We show only the significant asymmetric transitions (t-test, p<0.05).

Transition cost reflects task demand

Subsequently, we investigated for each participant the costs associated with transitioning from a resting state
to different conditions within the Stroop task. To quantify these costs, we utilized the Schrödinger bridge
framework and calculated the associated Kullback-Leibler divergence (Fig. 4a). Our results unveiled a
significant influence of both stimulus type and proportion congruency on the computed transition costs, with
a marginal significance also on the interaction, as evidenced by the two-way analysis of variance (ANOVA)
test (p(congruency)=0.034, p(control level)=0.024, p(congruency*control level)=0.049). To delve deeper into
these effects, Bonferroni corrected post hoc t-tests were performed. We found significant differences between
congruent stimuli with higher and lower proportion congruency (p<0.001). Moreover, in the case of lower
proportion congruency, we found a significant difference between the two kinds of stimuli (p=0.019).

To examine the potential relationship between transition costs and subjective performance, we conducted a
correlation analysis between the computed costs and reaction times (Fig. 4b; Fig. S4). Specifically, we
calculated the difference in costs and reaction times between congruent and incongruent conditions,
considering each level of control. We computed the Pearson correlation for each participant and subsequently
applied a z-transformation. Our results revealed a significant positive correlation within this distribution
(t-test, p=0.023), indicating that higher transition costs were associated with longer reaction times and
potentially indicative of performance.

Figure 4. Brain transition cost correlates with task demand and performance. (a) The distribution of
transition costs for each stimulus is significantly modulated by the stimulus type, that is congruent (C) vs.
incongruent (I) (p(congruency)=0.034), by the level of cognitive control (high, medium, low; p(control
level)=0.024) and by their interaction (p(congruency*control level)=0.049). (b) The increased cost from
congruent to incongruent stimuli (Δ Cost) significantly correlates with the increase in reaction time (Δ RT).
For each participant, we computed the (z-transformed) Pearson correlation (t-test, p=0.023).
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Discussion
In this study, we have employed a stochastic control framework to measure the brain transition cost in an
existing EEG dataset. Through our investigation, we have confirmed a correlation between cost and
cognitive demand observed during a spatial Stroop task. To our current knowledge, this is the first
application of such a framework to EEG data, thus providing a computational pipeline to quantify cognitive
demand in EEG experiments.

To estimate brain transition costs from the Schrödinger bridge framework, we used a probabilistic approach
that resorts to a reduction of dimensionality. A growing body of literature suggests that brain activity, across
different scales, exhibits organization within a low-dimensional manifold. The trajectories of neural activity
can thus be described as discrete transitions between a few metastable attractors, which capture a significant
portion of the overall activity variance. In particular, the analysis of EEG activity is increasingly conducted
using the microstates approach. This method reduces the recorded electrical signal into non-overlapping and
distinct topographies [Michel et al., 2018; Von Wegner et al., 2018]. Although individual topographies have
been associated with partial activations or deactivations of canonical resting-state networks [Custo et al.,
2014; Custo et al., 2017] and specific spectral bands [Férat et al., 2022; Mikutta et al., 2023], the functional
and cognitive role of the microstates has not yet been fully established [Tarailis et al., 2023].

Specifically within our dataset, we found distinct occurrences of microstates across different conditions.
Notably, certain microstates differentiated between tasks and resting states, while others were specific to
incongruent stimuli. Furthermore, these microstates were influenced by the (assumed) level of control within
a block. Consequently, they may be linked to specific brain regions involved in inhibitory control and
conflict resolution [Heidlmayr et al., 2020]. Moreover, their modulation could be associated with the
dynamic reorganization of functional networks, as previously observed [Spielberg et al., 2015; Braun et al.,
2015]. Confirmation of these hypotheses and further investigation into the microstates can be achieved
through source localization, which will be explored in future works.

Overall, a higher cost may be related to a larger network reconfiguration. Indeed, a larger cognitive demand
induces a more global alteration in brain activity, which is needed to make functional networks transiently
adopt a more efficient but less economical configuration [Kitzbichler, 2011]. However, the specific
mechanisms governing these shifts between states of the brain remain unclear [Lee et al., 2012; Zagha et al.,
2014]. Moreover, whether such cognitive cost may represent an increase in metabolic consumption is still to
be investigated [Hanh et al., 2020]. It is important to mention that in a stochastic linear setting, the
Schrödinger bridge control cost is formally equivalent to the “classical” control cost (i.e., the expectation of
the time integral of squared control signal) [Beghi, 1996; Chen et al., 2016; Kawakita et al., 2022], which has
a clear physical interpretation.

Our approach integrates into the current literature on the brain’s neural control [Ashourvan et al., 2017; Tang
et al., 2018; Lynn et al., 2019; Tu et al., 2018; Suweis et al., 2019; Singleton et al., 2022; Scheid et al., 2021;
Deco et al., 2019; Lee et al., 2012; Zagha et al., 2014]. The core foundation of all these models involves a
metric that quantifies the amount of effort required for a dynamical system to traverse its state space across
diverse conditions. The existing methodologies typically rely on the full knowledge of the underlying
structural connectome and an explicit representation of the dynamics. Under the assumption of linear
dynamics, it is possible to estimate this metric efficiently by utilizing an explicit analytical formula [Tang, et
al., 2018; Kamiya et al., 2023]. However, these approaches overlook the intricate nonlinear characteristics of
brain dynamics, and may not be computationally feasible for large networks [Tu et al., 2018]. On the
contrary, to extend this framework to biophysically detailed dynamical models, extensive numerical
simulations become a necessary recourse [Deco et al., 2019]. Instead, our approach offers the advantage of
estimating the reconfiguration cost directly from neurophysiological recordings, eliminating the need for a
structural network or mathematical modeling of the whole brain dynamics. Additionally, its flexibility allows
for versatile application across various imaging techniques [Kawakita et al., 2022]. However, its applicability
to EEG data holds particular importance due to its widespread usability, cost-effectiveness compared to
techniques such as fMRI or MEG, and non-invasiveness compared to intracranial recordings.
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It would be interesting to explore whether pathological conditions could influence the control cost. For
instance, in the case of stroke, there have been documented changes in the microstates [Hao et al, 2022;
Rubega et al., 2022] and, more generally, in the dynamics of metastable states [Favaretto et al., 2022].
Furthermore, different conditions may affect distinct regions of the brain, resulting in alterations across
various domains [Corbetta et al., 2015]. Consequently, it is reasonable to assume that the cognitive cost will
be particularly higher for tasks impaired due to specific neural alterations. Therefore, investigating individual
differences in microstate transition cost in different groups (e.g., strokes), or applying it to tasks where the
evaluation of cognitive demands is not known, are all interesting avenues to pursue in future research.

Materials and Methods

Dataset
We re-analyzed the continuous EEG data collected in a recent study from our lab [Tafuro et al., 2020]. In that
study, we aimed to investigate the neural correlates of cognitive control in resolving the interference between
competing responses. To this aim, we recorded EEG in 44 participants in a 4-min resting state session and
while they performed a spatial Stroop task requiring mouse responses and comprising blocks with three PC
values (25%, 50%, and 75%) to manipulate different levels of cognitive control engagement (respectively,
High, Medium, and Low; Fig. 1a; see Tafuro et al., 2020, for details about the task and procedure). A
standard ICA-based preprocessing was performed to correct for eye movements, blinks, and muscular
activity based on scalp topography, dipole location, evoked time course, and the power spectrum of the
components [Tafuro et al., 2020].

EEG microstate-based analysis
Preprocessed EEG data were further bandpass filtered (1-40 Hz), downsampled at 125 Hz, and temporally
smoothed with a Gaussian kernel (5 timesteps) [Chen et al., 2021].
Microstate analyses followed the modified k-means clustering algorithm [Murray et al., 2008; Poulsen et al.,
2018]. Local maximal values (peaks) of the global field power (GFP) were extracted from each EEG
recording. GFP was calculated as the standard deviation of the amplitude across all channels at each time
point. EEG maps at GFP peaks are reliable representations of the topographic maps because of their high
signal-to-noise ratio [Koenig et al., 2002].
We randomly extracted the same number (1500) of maps from each participant, that were concatenated and
subjected to clustering. The optimal number of clusters (K*=9) was determined using the cross-validation
criterion, which minimizes the variance of the residual noise (see Supporting information - Text S1). The
centroids of the K* clusters identify the group-specific microstate templates (Fig. 1b).
The common templates were then fitted back to the preprocessed EEG recordings. The EEG map at each
time point was labeled according to the map with minimum Euclidean distance, equivalent to the highest
absolute spatial correlation. Thereafter, EEG maps were converted into microstate sequences (kt). For each
EEG recording, we characterized the probability distribution of microstate occurrence (π). In addition, we
compute the joint probability distribution Qij for two consecutive steps i and j during the resting period (i.e.,

.𝑄
𝑖𝑗

= 𝑃𝑟𝑜𝑏[𝑘
𝑡−1

= 𝑖;  𝑘
𝑡

= 𝑗])

Brain transition cost
To quantify the cost of transitioning from resting to task, we applied the Schrödinger bridge problem
[Leonard, 2013] (Fig. 1c). We assumed that at rest the brain follows a (stochastic) baseline activity between
the microstates. To reach the desired target, the brain had to modulate its dynamics. The Schrödinger bridge
problem finds the most likely path linking the initial and target distribution given the prior stochastic
evolution of the system by minimizing the Kullback-Leibler divergence between the two distributions,
subject to the aforementioned constraints [Kawakita et al., 2022].
In mathematical terms, we defined π0 and πT as the initial (resting) and target (task) probability distribution.
The prior evolution of the system is encoded in the joint probability distribution at rest, Qij. The transition
cost could thus be quantified as
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Indeed, the Schrödinger bridge problem can be recast as an entropy-regularized optimal transport problem
[Beghi, 1996]. Intuitively, to supply the needed cognitive demand, the brain has to modulate its dynamics,
which results in a modulation of microstate occurrence. In other words, the occurrence of some microstates
would be enhanced, while others would be suppressed. Thus, the brain has to “transport” some mass (i.e.,
microstate occurrence) into another. How much mass is moved from each supply (i.e., resting) location to
each demand (i.e., task) location is defined as the “transportation plan” and is encoded in the matrix Pij. The
transportation cost matrix C then represents the cost of transporting one unit of mass along each
supply-demand pair. Solving the optimal transport problem means finding the transportation plan Pij that
minimizes the total cost (with an entropic regularization term) while satisfying constraints like the given
initial, supply, and final, demand distributions and non-negativity constraints (i.e., ensuring that negative
values are not allowed in the transportation plan).
This is a strongly convex optimization problem, therefore the existence and uniqueness of the optimal
solution are guaranteed. Such an optimal solution can be iteratively determined in an efficient way using the
Sinkhorn algorithm [Cuturi, 2013].

Data availability
The preprocessed data and the code that support the findings of this study are available at
https://github.com/gbarzon/brain_control_cost.
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