New Results
Generating realistic artificial Human genomes using adversarial autoencoders
View ORCID ProfileCallum Burnard, View ORCID ProfileAlban Mancheron, William Ritchie
doi: https://doi.org/10.1101/2023.12.08.570767
Callum Burnard
1Institut de Génétique Humaine, CNRS and Université de Montpellier, Montpellier, France
2Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, CNRS and Université de Montpellier, Montpellier, France
Alban Mancheron
2Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, CNRS and Université de Montpellier, Montpellier, France
William Ritchie
1Institut de Génétique Humaine, CNRS and Université de Montpellier, Montpellier, France
Article usage
Posted December 09, 2023.
Generating realistic artificial Human genomes using adversarial autoencoders
Callum Burnard, Alban Mancheron, William Ritchie
bioRxiv 2023.12.08.570767; doi: https://doi.org/10.1101/2023.12.08.570767
Subject Area
Subject Areas
- Biochemistry (13378)
- Bioengineering (10184)
- Bioinformatics (32566)
- Biophysics (16771)
- Cancer Biology (13858)
- Cell Biology (19672)
- Clinical Trials (138)
- Developmental Biology (10629)
- Ecology (15735)
- Epidemiology (2067)
- Evolutionary Biology (20044)
- Genetics (13236)
- Genomics (18373)
- Immunology (13476)
- Microbiology (31554)
- Molecular Biology (13158)
- Neuroscience (68725)
- Paleontology (509)
- Pathology (2129)
- Pharmacology and Toxicology (3676)
- Physiology (5737)
- Plant Biology (11788)
- Synthetic Biology (3309)
- Systems Biology (8040)
- Zoology (1817)