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Abstract

Modeling the binding between proteins and other molecules is pivotal to drug discovery.
Geometric deep learning is a promising paradigm for protein-ligand/protein-protein binding
energy prediction, but its accuracy is limited by the size of training data as high-throughput
binding assays are expensive. Herein, we propose an unsupervised binding energy prediction
framework, named DSMBind, which does not need experimental binding data for training.
DSMBind is an energy-based model that estimates the likelihood of a protein complex via SE(3)
denoising score matching (DSM). This objective, applied at both backbone and side-chain
levels, builds on a novel equivariant rotation prediction network derived from Euler’s Rotation
Equations. We find that the learned log-likelihood of protein complexes is highly correlated
with experimental binding energy across multiple benchmarks, even matching the performance
of supervised models trained on experimental data. We further demonstrate DSMBind’s
zero-shot binder design capability through a PD-L1 nanobody design task, where we randomize
all three complementarity-determining regions (CDRs) and select the best CDR sequences
based on DSMBind score. We experimentally tested the designed nanobodies with ELISA
binding assay and successfully discovered a novel PD-L1 binder. In summary, DSMBind offers
a versatile framework for binding energy prediction and binder design. Our code is publicly
available at github.com/wengong-jin/DSMBind.

1 Introduction

The binding between proteins and other molecules forms the basis of many biological processes. Accurate
prediction of binding energy enables us to rapidly design new drugs for therapeutic targets and identify
mutations that disrupt protein-protein interaction. However, binding energy prediction remains challenging
due to lack of experimental data in terms of quantity and variety. Protein-protein complexes in Protein
Data Bank (PDB) covers a variety of protein interaction types, but most of them do not have labeled
binding affinity. To study new types of protein interactions, we need to generate binding data through
phage display [26] or ribosome display [4], which is time-consuming and labor-intensive. Models trained on
such data data [11, 13, 26] are generally not applicable to other protein targets because its training data
is collected for one specific protein. Ideally, we want an unsupervised learning approach that generalizes
across protein and does not depend on expensive binder screening procedure.

Existing unsupervised binding energy prediction approaches, however, are either too expensive or inaccurate.
Traditional physics-based models [28] use molecular dynamics to calculate the binding energy of a protein
complex. However, it usually takes 4-6 hours to run molecular dynamics for one molecule. Thus, they are
rarely used in large-scale virtual screening projects needed for drug discovery. More recently, unsupervised
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protein language models (PLMs) [10, 27] reveal that the learned likelihood of protein sequences are useful
for predicting protein mutation effects. Unfortunately, PLMs only work for protein sequences and are
not applicable to protein-ligand binding (small molecules). Moreover, we find the likelihood of protein
sequences has a poor correlation with binding energy across multiple benchmarks. We speculate that
the likelihood of protein structures is a better binding predictor because protein binding depends on the
geometric shape of two proteins [8].

In this work, we propose DSMBind, an unsupervised binding energy prediction framework for both small
molecules and proteins. The basic idea is to learn an energy-based model (EBM) [20] that maximizes the
log-likelihood (or minimizing the energy) of crystal structures in a training set. We train our model with
a novel SE(3) denoising score matching (DSM) algorithm that extends the Gaussian DSM algorithm [36]
used in standard diffusion models [9, 37]. In each training step, we first perturb a protein complex (crystal
structure) by randomly rotating one of the proteins (or ligands) and its side-chain atoms. Next, we use
the DSM objective to shape the energy function so that its gradient recovers the injected rotation noise.
This gradient matching procedure minimizes the Fisher divergence between the learned and true binding
energy function [25]. At test time, we use the learned energy to compare different proteins or ligands to
design the best binder for a given target.

We validate DSMBind on three computational benchmarks related to protein-ligand binding prediction,
protein-protein binding mutation effect prediction, and antibody-antigen binding prediction. We compare
DSMBind with state-of-the-art binding prediction models including protein language models (ESM) [10, 27],
physics-based models [1, 6], and supervised deep learning models [23, 24, 47] trained on experimental
binding affinity data in the public domain. We also explore alternative EBM training objectives (e.g.
Gaussian DSM and contrastive learning) to verify the advantage of our SE(3) DSM objective. We find
that DSMBind outperforms most of the unsupervised baselines and sometimes matches the performance of
supervised models despite not being trained on any binding affinity data. We further showcase DSMBind’s
zero-shot design capability through a PD-L1 nanobody design task. We experimentally evaluated 48
nanobodies designed by DSMBind, where one of them showed positive, PD-L1 specific binding in ELISA.

2 Results

2.1 Learning binding energy from crystal structures via energy-based models
and SE(3) denoising score matching

The conceptual framework of DSMBind is illustrated in Fig. 1a and its network architecture is depicted in
Fig. 1b. Briefly, the input to DSMBind is a protein-ligand or protein-protein complex, including both
backbone and side-chain atoms. Each atom in the complex is associated with a feature vector Ak and a 3D
coordinate vector Xk. The feature vector of a protein atom has two components: its amino acid sequence
embedding learned by ESM-2 [22] and a one-hot encoding of its atom type. We pass the atom features and
3D coordinates to a SE(3)-invariant neural network encoder [30] to learn a latent representation hk for
each atom (Fig. 1b). This representation encodes the geometric structure and the chemical environment
of an atom. Finally, we predict the interaction energy Eij between two atoms i and j based on their
latent representations and a feed-forward neural network. The binding energy is defined as the sum of all
pairwise interactions E(X) =

P
i,j:d(i,j)<D Eij for atom pairs within distance threshold D.

The training set of DSMBind is a set of crystal structures (protein-ligand or protein-protein complexes)
collected from Protein Data Bank (PDB). DSMBind is different from standard supervised learning
approaches because most of these training complexes do not have binding affinity labels. To address this
challenge, we reformulate binding affinity prediction as a generative modeling task. Specifically, we train
an energy-based model (EBM) to maximize the likelihood of crystal structures in the training set. In
EBMs, the likelihood of a complex is defined as p(X) = exp(�E(X))/Z, where E(X) is the energy of a
complex and Z =

P
x exp(�E(X)) is a normalizing constant. The maximum likelihood objective forces
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a) Learning binding energy via denoising score matching (DSM) b) Energy-based model (EBM) architecture

c) SE(3) DSM (backbone rotation/translation) d) SE(3) DSM (side-chain rotation) 
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Fig. 1: Overview of the unsupervised DSMBind algorithm.
a) DSMBind is an energy-based model (EBM) trained by SE(3) denoising score matching (DSM) to
maximize the likelihood of crystal structures in a training set. During training, we perturb a protein
complex by randomly rotating one of the proteins and its side-chain atoms. SE(3) DSM enforces the
gradient rXE✓(X) (X is a matrix of atom coordinates) to follow the gradient of the random perturbation
noise so that the crystal structure is a local minima.
b) The EBM architecture of DSMBind. It uses a SE(3)-invariant network to encode all amino acid features
and coordinates into geometric embeddings. The binding energy of an input complex is defined as the
sum of inner products between geometric embeddings.
c) The backbone perturbation step in SE(3) DSM. We randomly rotate one of the proteins as a rigid
body and use the model gradient rXE✓(X) (atom force) to infer the rotation and translation noise.
d) The side-chain perturbation step in SE(3) DSM. We randomly rotate all side-chain atoms simultaneously
and use the model gradient rXE✓(X) (atom force) to infer the rotation noise for each residue.
e) We use DSMBind to predict protein-ligand binding, PPI mutation effect (��G), and antibody-antigen
binding. We also use DSMBind to de novo design nanobodies that bind to PD-L1 by searching billions of
CDR sequences.
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the model to assign a lower energy to crystal structures than alternative poses. Our key hypothesis is
that the learned energy E(X) will be correlated with experimental binding energy through this generative
modeling task. It is motivated by recent progress in protein language models which reveals the correlation
between the log-likelihood of protein sequences and protein mutational effects [27, 29].

Traditionally, EBMs are trained with approximate maximum likelihood objectives that estimate the
normalizing constant Z by noise contrastive estimation (a.k.a contrastive learning). More recently,
diffusion-based generative models have shown that EBMs can be efficiently learned with denoising score
matching (DSM) that avoids the estimation of Z. The basic idea of DSM is to minimize the Fisher
Divergence, i.e., the discrepancy between the score of our model �rXE(X) and the score of the data
distribution �rXEdata(X). Since we only have access to samples from the data distribution, DSM
approximates the data distribution pdata(X) by adding random noises to each sample (crystal structure in
PDB). During training, we perturb a protein complex by adding two levels of noise: 1) randomly rotating
and translating a ligand/protein with respect to its center mass (Fig. 1c) and 2) randomly rotating all
side-chain atoms by changing their torsion angles (Fig. 1d). Next, we input the perturbed complex to
our model and calculate the model gradient �rxE(X) by back-propagation. From a physics perspective,
the gradient �rxE(X) is equivalent to the force received by each atom. We use the force to predict
the rotation, translation, and side-chain rotation noise via the Euler’s Rotation Equation (Method 4.1).
Lastly, we calculate the DSM loss as the mean square error between the score of random perturbation
noise and predicted rotations and translations.

The technical innovations of DSMBind are twofold. First, we develop a novel SE(3) DSM objective that
uses rigid transformation noise instead of Gaussian noise to ensure the perturbed complex is structurally
meaningful. Gaussian DSM has been the standard DSM method in many applications (e.g. image
generation), but adding Gaussian noise may create nonsensical ligand poses such as non-planar benzene
rings or weird torsion angles. Second, we implement SE(3) DSM with a new equivariant rotation prediction
algorithm derived from the Euler’s Rotation Equation. Its main role is to predict the rotational noise
from the gradient of an energy function in order to recover the original crystal structure. Compared with
physics-based methods, DSMBind uses neural networks to learn a data-driven binding energy function and
runs orders of magnitude faster. Different from PLMs, it maximizes the likelihood of protein structures
instead of protein sequences and pays more attention to the binding interface structure.

In summary, DSMBind learns a generative model for protein-ligand or protein-protein complexes and
associates their log-likelihood to binding affinity. Next, we compare the performance of DSMBind with
state-of-the-art supervised and unsupervised approaches on multiple benchmarks related to protein-ligand
and protein-protein binding (Fig. 1e).

2.2 Using DSMBind for protein-ligand binding prediction

One of the challenges in drug discovery is to design small molecules drugs with high binding affinity to
a target protein. This process can be substantially accelerated if we can accurately predict the binding
affinity of a protein-ligand complex (Fig. 2a). Thanks to the large number of binding affinity data deposited
in the PDBBind database [40], there has been a surge of supervised deep learning methods [15, 16, 23, 47]
trained on the PDBBind data to predict protein-ligand binding. However, the binding affinity labels in
this database are noisy because they are a mixture of different measurement types (IC50, Ki, Kd, EC50,
etc) and not necessarily comparable to each other. Therefore, unsupervised models trained on clean
crystal structures may be a better approach than supervised models trained on noisy affinity labels.

To validate this hypothesis, we need to compare both approaches on an independent test set with clean
binding affinity labels. To this end, we adopt the free energy perturbation (FEP) benchmark [32] developed
by Merck as our test set. It is composed of eight assays (eight protein targets) and 264 compounds in
total. Each complex structure in this test set is prepared by Glide core-constrained docking (examples
shown in Extended Data Fig. 1). Importantly, the binding affinity labels within each assay have the
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Fig. 2: Protein-ligand binding prediction results.
a) The workflow of DSMBind for protein-ligand binding prediction. The input to DSMBind is a docked
protein-ligand complex and its output is a binding energy score for that complex.
b) TSNE visualization of ligand structures in the PDBBind training set and the FEP test set.
c) The average Spearman correlation between predicted and true binding affinity for supervised and
unsupervised deep learning models.
d) The Spearman correlation of different methods for each protein target in FEP. e) Comparison between
DSMBind and physics-based models (Glide, MM/GBSA, and FEP+) in terms of accuracy (Spearman
correlation) and inference speed. DSMBind runs orders of magnitudes faster than the baselines.
f) Visualization of atomic interaction in a protein-ligand complex, which highlights ⇡-⇡ interaction
between residue 356 and ligand atoms 14-22. g) The heatmap of predicted pairwise atomic interaction
energy between residues and ligand atoms. DSMBind recognizes the ⇡-⇡ interaction and assigns a strong
interaction energy between residue 356 and ligand atoms 14-22.
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same measurement type. The distribution of ligand structures in the FEP test set is shown in Fig. 2b.
Ligands within each assay are relatively close to each other because they share a similar scaffold. For each
protein, we calculate the Spearman ranking correlation (Rs) between model prediction and experimental
binding affinity and report the average Rs for each method. We also report Pearson correlation (Rp) for
all methods (Extended Data Fig. 3) and find that both metrics are very similar in most cases.

In terms of baselines, we consider four supervised models (KDeep [16], TankBind [23], IGN [15], and
PLANET [47]) that use different geometric deep learning architectures. According to a recent survey [47],
these models represent the current state-of-the-art protein-ligand binding prediction models. They are
trained on approximately 18000 binding affinity data points from the entire PDBBind database. We use
their released model checkpoint to calculate their performance on our test set. To validate the advantage
of our SE(3) DSM approach, we also compare DSMBind with two alternative unsupervised EBM training
objectives (contrastive learning [3] and Gaussian DSM [36]). The training set of DSMBind and the
unsupervised baselines comes from the PDBBind refined subset. It has 4806 high-quality protein-ligand
complexes (with resolution less than 3.5Å). We do not utilize their binding affinity values during training.

The results on the FEP benchmark are shown in Fig. 2c (on average) and Fig. 2d (by target). KDeep and
TankBind achieve similar performance (Rs = 0.390 and 0.376) while IGN and PLANET perform much
worse (Rs = 0.202 and 0.314). DSMBind achieves an average Rs of 0.388 (with five different random
seeds), which is better than TankBind and IGN and almost the same as KDeep. The best DSMBind
model (chosen by the validation set performance) achieves an Rs of 0.422 and outperforms KDeep. We
visualize the correlation between the DSMBind predicted energy and true binding affinity for each target
in Extended Data Fig. 2. To confirm our hypothesis that PDBBind labels are noisy, we fine-tune the best
DSMBind model on the entire PDBBind database. This fine-tuned model yields clearly worse performance
(Rs = 0.366), though it uses the same encoder architecture.

In addition, we find that SE(3) DSM performs better than the unsupervised baselines like contrastive
learning and Gaussian DSM (Rs = 0.367 and 0.342). Indeed, using rotation noise is better than Gaussian
noise because it creates more realistic decoys. Besides machine learning approaches, we also compare
DSMBind with physics-based methods: Glide XP [7], Prime MM/GBSA [28], and Schrodinger FEP+ [42].
These methods are extremely expensive due to molecular dynamics simulations. The inference speed of
MM/GBSA and FEP+ are 4-20 compounds per day, which is too slow for any large-scale virtual screening
projects in industry. In terms of accuracy, the DSMBind model performs better Glide XP and MM/GBSA
but still worse than FEP+ (Fig. 2e). Nonetheless, DSMBind’s throughput is 8 million compounds per
day, which is orders of magnitudes faster than MM/GBSA and FEP+. Overall, DSMBind offers a better
speed-accuracy tradeoff than traditional physics-based approaches and achieves the best performance
among the machine learning-based methods.

Lastly, we visualize the learned energy function to understand what the model has learned. For illustration,
we randomly picked a protein-ligand complex and parsed its biophysical interactions using the OpenEye
software. The diagram in Fig. 2f shows one of its main binding interactions is the ⇡-⇡ interaction between
residue 356A (ARG) and a double ring system (atoms 14-22). To see if our model recognizes this important
interaction, we plot the heatmap of predicted interaction energy (Fig. 2g). Each row and column refers to
a ligand or protein atom, respectively. Each entry Eij is the predicted interaction energy between two
atoms (the darker the stronger). Indeed, this ⇡-⇡ interaction is highlighted in the heatmap (darker color
means stronger interaction). This pattern is consistent across multiple test cases (Extended Data Fig. 2),
which indicates that our DSMBind energy function has captured some biochemical knowledge, despite
being trained in a data-driven manner.

2.3 Using DSMBind for PPI mutation effect prediction

Motivated by the encouraging performance of protein-ligand binding, we speculate that DSMBind is
also capable of predicting protein-protein binding. We validate our claim using SKEMPI 2.0 [14], a
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Fig. 3: PPI mutation effect prediction results.
a) The workflow of DSMBind for ��G prediction. DSMBind predicts the binding energy of a wildtype
protein-protein complex Ewild and its mutant Emut. We defined ��G = Emut � Ewild.
b) The average Spearman correlation between predicted and true ��G on the SKEMPI benchmark.
For a fair comparison with DSMBind, we mainly consider unsupervised baselines including physics-based
models and protein language models.
c) A box plot of the Spearman correlation between predicted and true ��G across all protein complexes,
antibody-antigen complexes, and TCR-pMHC complexes.
d) The Spearman correlation between predicted and true ��G for single-point and multi-point mutations
(instances with one or multiple mutations).
e) The Spearman correlation between predicted and true ��G by amino acid substitution pairs. The
predicted ��G has positive correlation in most cases (red color) but fails on certain mutation types (e.g.,
V!W, S!V).
f) Visualization of pairwise ��G for protein complex 1BRS with two mutations. DSMBind correctly
predicts that H ! A has strong effect (dark red color, ��GH!A = 4.47) while Y ! F has negligible
effect (light red color, ��GY!F = -0.09).
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well-established public PPI mutation effect prediction benchmark. The task is to predict binding affinity
changes (��G) given protein mutations (Fig. 3a). This test set is composed of 348 protein complexes
and approximately 6000 ��G data points. It covers different kinds of protein-protein interaction, e.g.,
antibody-antigen and TCR-pMHC interaction. This benchmark has been frequently used to train ��G
prediction models, which have been successfully applied to affinity maturation [34]. Our goal is to build
an unsupervised model for ��G prediction using a large set of unlabelled protein-protein complexes.

To construct the training set for DSMBind, we retrieved all the protein complexes in PDB and removed all
homomer complexes or those with more than eight chains. The final training set has approximately 27000
non-redundant protein-protein complexes without any affinity labels. At test time, we use DSMBind to
predict the energy of mutant Emut and wildtype Ewild complexes and take their difference (Emut �Ewild)
as our ��G prediction. In practice, we care about the relative ranking between different mutations within
one protein complex. Thus, we calculate the Spearman correlation between the predicted ��G and
experimental ��G for each complex and report the average Rs for each method. It is more appropriate
to measure Rs per complex because the ��G labels are coherent within each complex.

In terms of baselines, we mainly compare with unsupervised models like physics-based methods or protein
language models (PLMs) since supervised neural network models [24, 34]) are trained on the SKEMPI
database. We consider two physics-based energy functions (Rosetta [1] and FoldX [6]) commonly used for
��G calculation. The PLM baselines include ESM-1v [27] and ESM-IF [10]. ESM-1v is a sequence-based
language model trained on 98 million protein sequences in Uniref90. It can accurately predict single-protein
��G without any supervision from deep mutational scan data. The input to ESM-1v is the concatenation
of two protein sequences and we calculate the log-likelihood difference between mutated and wild-type
amino acids as ��G. ESM-IF is a language model conditioned on protein backbone structure (also known
as inverse folding). The input to ESM-IF is the crystal structure of a protein complex and it predicts
��G in the same way as ESM-1v. We also report the performance of additional PLM baselines (e.g.,
ESM-2 [22], MSA Transformer [31], Tranception [29], and MIF [45]) and their Pearson correlation in
Extended Data Fig. 4. We find that ESM-1v and ESM-IF perform the best on this benchmark among all
the PLM baselines.

As shown in Fig. 3b, DSMBind achieves an average Rs of 0.403 (across five random seeds), outperforming
all the unsupervised baselines on the SKEMPI test set. The physics-based models perform slightly worse
than DSMBind, where FoldX achieves an average Rs of 0.407. Contrastive learning and Gaussian DSM
perform slightly worse than our SE(3) DSM (Rs = 0.364). The two protein language models perform
much worse than physics-based models and DSMBind. This result is not surprising because PLMs only
model the likelihood of protein sequences. While DSMBind and ESM-IF both model protein complex
structures, ESM-IF does not model the conformational flexibility of proteins because the structure is fixed
in the inverse folding task. In contrast, DSMBind learns to model protein flexibility at both backbone
and side-chain levels.

To analyze the strength and weakness of DSMBind, we first stratify its performance based on protein
types. The most common protein complex types in SKEMPI are antibody-antigen (56 complexes, 16% of
the entire dataset) and TCR-pMHC interaction (40 complexes, 12% of the entire dataset). Other kinds
of interaction are merged into one category due to sparsity (few complexes). As shown in Fig. 3c, the
performance of DSMBind is stable across multiple protein types. On the other hand, FoldX performs
substantially worse on antibody-antigen complexes but better than DSMBind on other interaction types.
Second, we stratify its performance based on the number of mutations. We divide the test set into two
groups: complexes with single-point mutation (4351 instances) and multi-point mutations (1370 instances).
In Fig. 3d, we find that most methods perform better on multi-point mutations, especially DSMBind (Rs

= 0.36 and 0.50). Third, we stratify its accuracy by amino acid substitution pairs. As shown in Fig. 3e,
the predicted ��G has positive Spearman correlation for most cases but fails on certain amino acid
substitutions (e.g., from valine to tryptophan).

Lastly, we visualize the learned energy function to understand what DSMBind has learned. For illustration,
we visualize the heat map of predicted energy difference between a mutant and a wild type structure (PDB:
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Fig. 4: Antibody-antigen binding results.
a) The workflow of DSMBind for antibody-antigen binding prediction. Its input is an antibody-antigen
complex cropped to its binding interface (antibody CDRs and antigen epitope). Its output is a binding
energy score for that complex.
b) The crystal structure of trastuzumab-HER2 complex and the superimposed structures of designed
trastuzumab CDR3 variants.
c) The Spearman correlation between predicted and true binding affinity on the SAbDab test set.
d) The AUC score of different models on the HER2 antibody design dataset.

1BRS). Each row and column in Fig. 3f refers to a residue in one of the two proteins, where mutated
residues are labeled. Each entry in the heat map is the difference of Eij (interaction energy between the
residues i and j) before and after mutation. We can see that the difference is primarily located in the
mutated residues. Moreover, the model thinks the mutation H ! A has strong effect (dark red color)
while Y ! F has negligible effect (light red color). This prediction agrees with experimental results
recorded in SKEMPI (��GH!A = 4.47 and ��GY!F = -0.09). We provide more examples in Extended
Data Fig. 5 to illustrate the rationale behind model predictions. In summary, these results highlight the
power of unsupervised learning in modeling protein-protein binding.

2.4 Using DSMBind for antibody-antigen binding prediction

Antibody design is crucial for many disease areas like cancer and infectious diseases. This problem is
particularly challenging due to limited binding affinity data in the public domain. For example, the
Structural Antibody Database (SAbDab) [33] has over 3500 non-redundant antibody-antigen complex
structures, but only 566 of them have binding affinity labels. The SKEMPI database has only 56 antibody-
antigen complexes with ��G labels. Given these observations, our goal is to develop an unsupervised
antibody-antigen binding energy prediction model and apply it to design new antibody binders.

To this end, we train DSMBind on 3416 antibody-antigen complexes from SAbDab and evaluate it on a set
of 566 complexes with affinity labels. We remove all antibody/antigen sequences from the training set if
they appear in the test set. Similar to previous sections, we report the Spearman correlation between true
binding affinity and model prediction. We compare DSMBind with the same set of unsupervised baselines
in the previous experiment, with an additional baseline based on AlphaFold2 (AF2) [17]. Recently,
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Bennett et al. [2] have shown that AF2’s predicted aligned error (PAE) is an useful indicator of protein
binding and it has been adopted by RFDiffusion [43] to design protein binders. Herein, we compare
DSMBind with AF2 to understand its performance in antibody-antigen binding. Given that there is few
neural network models on antibody-antigen binding affinity prediction, we implement our own supervised
baseline based on the same FANN encoder architecture as DSMBind and ESM-2 sequence embeddings.
To maximize its performance, we pre-train it on all the binding affinity data in SKEMPI and fine-tune it
on the antibody-antigen binding affinity data in SKEMPI (Method 4.9).

As shown in Fig. 4c, DSMBind achieves an average Rs of 0.374, significantly outperforming the physics-
based models, protein language models, and AF2. ESM-1v and ESM-IF have almost zero correlation
because modeling protein sequence likelihood is not sufficient for binding prediction. Moreover, antibody
CDR (complementarity-determining region) loops are highly diverse (especially CDR3 on the heavy
chain) and most CDR residues are not evolutionarily conserved. This presents additional challenges to
PLMs because they rely on evolutionary information to predict protein binding. AF2’s performance is
better than protein language models but still worse than DSMBind. DSMBind also outperforms the
supervised baseline (Rs=0.350) because there is limited binding affinity data for antibodies. We visualize
the correlation between DSMBind prediction and experimental affinity in Extended Data Fig. 6a and the
performance of additional supervised baselines in Extended Data Fig. 6c.

Next, we evaluate DSMBind on an HER2 antibody design dataset [35] to see if it can identify novel
antibody sequences that have better affinity than known binders. This dataset has 424 designed variants
of trastuzumab with experimentally measured binding affinity to the HER2 antigen. Each design has
a different heavy chain CDR3 sequence (with length from 11 to 14) and their sequence profile is shown
in Extended Data Fig. 6b. The structure of trastuzumab-HER2 complex has been crystallized (Fig. 4b,
PDB: 1n8z) and the affinity of trastuzumab is already quite strong (KD = 0.2nM). Therefore, only
four of the designed antibodies showed better affinity than the original trastuzumab. The task here is
to see if DSMBind is able to distinguish the successful designs (KD < 0.2nM) from the failed designs
(KD > 0.2nM). Since the task is binary classification, we report the area under receiver operator curve
(AUROC) as our evaluation metric.

To show the robustness of DSMBind, we report its average AUROC across all random seeds and all
model hyperparameters (without any fine-tuning). To generate the antibody-antigen complexes for the
designed antibodies, we use ESMFold [22] to predict the structure of each antibody and superimpose
it onto the original trastuzumab structure (template-based docking, Method 4.9). As shown in Fig. 4d,
DSMBind achieves 0.71 AUROC on the HER2 dataset, significantly outperforming physics-based models
(AUROC=0.52), protein-language models (AUROC=0.33-0.43), and supervised models (AUROC=0.48).
Though AF2’s performance is relatively close to DSMBind (AUROC=0.69), DSMBind runs orders of
magnitude faster than AF2 (0.1 second versus 10 second per instance), which is crucial for large-scale
antibody virtual screening. We plot the AUROC curve of DSMBind in Extended Data Fig. 6b.

2.5 Using DSMBind for PD-L1 nanobody design

The use of antibodies/nanobodies to target immune checkpoints, particularly PD-1/PD-L1, has made a
profound impact in the field of cancer immunotherapy [5, 46]. Herein, we apply DSMBind to a PD-L1
nanobody design task to explore its zero-shot design capability. Unlike antibodies, nanobodies have only
three CDRs because they do not have a light chain. Therefore, we seek to computationally design CDR1,
CDR2, and CDR3 sequences, since nanobody-antigen binding is usually determined by CDRs only.

Our design workflow is illustrated in Fig. 5a. Given a nanobody with random CDR sequences, we predict
its 3D structure with ESMFold [22] and apply template-based docking to predict a PD-L1-nanobody
complex for each sequence. The template structure is a crystallized PD-L1-nanobody complex in PDB (ID:
5jds). The docked structure is then passed to the DSMBind model to calculate the binding energy of a
nanobody. The throughput of this pipeline is approximately one second per sequence due to the expensive
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Fig. 5: Zero-shot PD-L1 nanobody design results.
a) The workflow of DSMBind for PD-L1 nanobody design. Given a nanobody with random CDR1/2/3
sequences, we predict its 3D structure with ESMFold and apply template-based docking to predict a
PD-L1-nanobody complex. The docked structure is passed to DSMBind to calculate its binding energy.
b) In our accelerated workflow, we train a faster “student” model that predicts the DSMBind score directly
from CDR sequences. We use this student model to rank one billion nanobody candidates, select the top
10000 sequences, and re-calculate its actual DSMBind score through folding and docking. The final top 24
nanobodies are tested in a wet lab.
c) ELISA binding assay results of R16, M24, and PBST (negative control). R16 and M24 binds PD-L1 at
200nM concentration (p-value < 0.005 when compared with PBST).
d) The predicted structure of designed nanobodies R16 and M24, along with their CDR sequences.
e) CDR sequence identity between R16/M24 and all antibodies in SAbDab.
f) Background binding of R16, M24, and PBST (ELISA OD 450nm) suggests that M24 binding is PD-L1
specific (low background binding).
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protein folding process. To accelerate this workflow, we train a faster “student” model that predicts the
DSMBind score directly from CDR sequences (Fig. 5b). This student model is trained on 200,000 CDR
sequences with their calculated DSMBind (teacher) score. This student model is 105 times faster than
ESMFold and allows us to rank 109 CDR sequences within couple of hours. Lastly, we re-calculate the
actual DSMBind score for the top 10,000 sequences ranked by the student model (Fig. 5b) and select the
best 24 sequences for experimental validation. We clone and purify the selected nanobodies and test their
binding with PD-L1 using enzyme-linked immunosorbent assay (ELISA).

We apply this workflow to two random CDR libraries with different amino acid distributions. The first
library employs a uniform distribution (equal probability for each amino acid). The second library uses a
natural amino acid distribution based on codon usage frequency [4]. In total, we experimentally tested 48
nanobodies (24 designs from each library) using ELISA binding assay (10 replicates). In each replicate,
we measured the binding activity as the difference between the ELISA reading from PD-L1 coated plates
and from plates without coating (background). As shown in Fig. 5c, two of the tested nanobodies (R16
and M24) bind PD-L1 at 200nM and 500nM (background subtracted ELISA > 0.02), where R16 comes
from the first library (rank 16) and M24 comes from the second library (rank 24). The binding of both
nanobodies are statistically significant (p-value < 0.005 compared to negative control PBST). Their
predicted structures are shown in Fig. 5d and Extended Fig. 8-9. The designed CDRs are novel because
their sequence identity between R16/M24 and all antibodies in the training set is lower than 30% (Fig. 5e).

Next, we compare the background ELISA reading of R16 and M24 with PBST to investigate if any
of these signals come from non-specific binding (e.g., binding to the plate). As shown in Fig. 5f, M24
and PBST has low background binding as expected while R16 has a much higher background binding,
which suggest that R16 may be a non-specific binder even though its binding to PD-L1 is stronger than
the background. To further analyze the background binding of R16 and M24, we implemented a more
sensitive ELISA assay based on magnetic beads instead of plates. M24 still shows low background binding
under this bead-based ELISA (Fig. 5f), which suggests that M24 is a PD-L1-specific binder. In summary,
these results provide a proof-of-concept for DSMBind’s nanobody design capability. To systematically
evaluate the performance of DSMBind, we plan to experimentally test much larger collections of designed
nanobodies and random nanobodies.

3 Discussion

In this work, we propose DSMBind, an unsupervised binding energy prediction framework for binding
energy prediction. Inspired by recent advance in score-based generative models [36–38], we develop a
novel SE(3) DSM objective to learn the likelihood of protein complex structures (including backbones and
side-chains). Our approach has a deep connection with physics and force fields. The gradient rXE✓(X) in
DSM is regarded as the force of each atom, which is used to calculate corresponding torques and rotations
applied to a protein. Our equivariant rotation prediction layer is also motivated by Euler’s Rotation
Equations in physics. We find that blending physics into model architecture consistently improves its
performance, compared to standard contrastive learning or Gaussian DSM objectives. Importantly, our
approach runs much faster than traditional physics-based methods [1, 28] because it does not require
molecular dynamic or energy minimization steps.

Our method is motivated by recent progress in unsupervised models for protein engineering [10, 27], which
associates the likelihood of protein sequences with their function (e.g., fitness and binding). We propose
to model the likelihood of protein geometric structures instead of their sequences because protein binding
depends on the shape of two geometric objects. Our results on protein-protein and antibody-antigen
binding energy prediction confirm this hypothesis, where DSMBind substantially outperforms protein
language models (PLMs) pre-trained on billions of protein sequences. Moreover, our approach can be
seamlessly applied to protein-ligand binding prediction for which PLMs are not applicable.

DSMBind has several advantages over previous supervised learning approaches for binding prediction [11,
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13, 26]. First, it does not rely on binding data collected from phage-display libraries, which is time-
consuming and labor-intensive. Second, supervised models trained on phage-display libraries are not
broadly applicable as its training data is collected for one specific protein. DSMBind learns a general-
purpose binding energy prediction model because it is trained on a variety of protein complexes in
PDB. Notably, DSMBind is able to match or outperform state-of-the-art supervised models in multiple
benchmarks related to protein-ligand, protein-protein, and antibody-antigen binding energy prediction.
We demonstrate its zero-shot design capability on a challenging PD-L1 nanobody design task, where
DSMBind discovered a novel binder without being trained on any PD-L1 binding energy data.

Our work is related to recent generative protein design models such as Chroma [12] and RFDiffusion [43].
DSMBind is complementary to existing approaches since they focus on the generative component (protein
backbone structure generation), while we focus on the the discriminative component (binding energy
prediction). Indeed, RFDiffusion relies on AlphaFold2’s PAE score [2] to assess the binding probability
of generated proteins. Our analysis on antibody-antigen binding shows that DSMBind outperforms
AlphaFold2 PAE score while running 100 times faster. We envision that combining DSMBind with these
generative protein design models may further improve its binder design capability.

In summary, the application of geometric deep learning and generative modeling to protein binding energy
prediction is an exciting area of research. Using large-scale protein complex data in PDB, it is possible
now to learn a powerful protein energy function useful for virtual screening and protein design. Though
we validate DSMBind only in protein-ligand and protein-protein binding, the framework itself can be
generally applied to other domains, such as protein-DNA and protein-RNA interaction. With combined
effort in computational modeling and experimental validation, we expect that deep learning will rapidly
transform structural biology, drug discovery, and protein engineering research.

4 Methods

Notations. A protein complex is a geometric object with two entities (a protein coupled with a ligand
or another protein). It is denoted as a tuple (A,X), with atom features A = [a1, · · · ,an] and atom
coordinates X = [x1, · · · ,xn] (column-wise concatenation). We consider all backbone and side-chain
atoms in our model. The binding energy of a complex is denoted as E(A,X).

4.1 Neural Euler’s Rotation Equations (NERE)

NERE is a crucial component of SE(3) DSM that converts the gradient of a binding energy function
E(A,X) to a rotation matrix. In classical mechanics, Euler’s rotation equation is a first-order ordinary
differential equation that describes the rotation of a rigid body. Suppose a ligand rotates around its center
mass µ with angular velocity !. Euler’s rotation equation in an inertial reference frame is defined as

IN
d!

dt
= ⌧ , ⌧ =

X

i

(xi � µ)⇥ fi (1)

IN =
X

i

kxi � µk2I � (xi � µ)(xi � µ)> (2)

where IN 2 R3⇥3 is the inertia matrix of a ligand, ⌧ is the torque it received, and fi is the force applied to
a ligand atom i. The force is defined as the gradient of a binding energy function fi = �@E(A,X)/@xi.
The inertia matrix describes the mass distribution of a ligand and the torque needed for a desired angular
acceleration. For a short period of time �t, we can approximate the new angular velocity !t=�t by

d!

dt
⇡ !t=�t � !t=0

�t
= I

�1
N ⌧ (3)
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Since we assume the system is in an inertial reference frame (!t=0 = 0), we have !t=�t = I
�1
N ⌧�t (we

set �t = 0.1). We note that calculating the inverse I
�1
N is cheap because it is a 3⇥ 3 matrix. In summary,

NERE is a function that converts the force to a rotation vector !.

! = FNERE(�@E(A,X)/@X) = I
�1
N ⌧�t (4)

A nice property of NERE is that it is equivariant under SO(3) rotation group because it is derived from
physics. We formally state this proposition as follows.

Proposition 1. Suppose we rotate a ligand so that its new coordinates become x
0
i = Rxi. The new force

f
0
, torque ⌧

0
, inertia matrix I

0
N , and angular velocity !

0
for the rotated complex are

f
0
i = Rfi, ⌧

0 = R⌧ , I 0
N = RINR

>,!0 = R!

In other words, NERE is equivariant under SO(3) rotation group.

Proof. After rotating the whole complex, the energy function E(A,X 0) = E(A,X) since the encoder is
SE(3)-invariant. Given that xi = R

>
x
0
i and @xi/@x0

i = R
>, the new force becomes

f
0
i =

✓
@E(A,X 0)

@x0
i

◆>
=

✓
@E(A,X)

@xi

@xi

@x0
i

◆>
=

✓
@xi

@x0
i

◆>
fi = Rfi

Based on the definition of torque and the fact that cross products satisfy Rx⇥Ry = R(x⇥ y), we have

⌧
0 =

X

i

(x0
i � µ

0)⇥ f
0
i =

X

i

(Rxi �Rµ)⇥Rfi

= R

X

i

(xi � µ)⇥ fi = R⌧

Likewise, using the fact that RR
> = I, the new inertia matrix becomes

I
0
N =

X

i

kx0
i � µ

0k2I � (x0
i � µ

0)(x0
i � µ

0)>

=
X

i

kxi � µk2I � (Rxi �Rµ)(Rxi �Rµ)>

=
X

i

Rkxi � µk2IR> �R(xi � µ)(xi � µ)>R>

= R

 
X

i

kxi � µk2I � (xi � µ)(xi � µ)>
!
R

>

= RINR
>

For angular velocity, we have !
0 = CI

0�1
N ⌧

0 = CRI
�1
N R

>
R⌧ = CRI

�1
N ⌧ = R!

4.2 Random Rigid Transformations

To construct a random rotation, we sample a rotation vector ! from NSO(3), an isotropic Gaussian
distribution over SO(3) rotation group [19] with variance �2. Each ! ⇠ NSO(3) has the form ! = ✓!̂,
where !̂ is a vector sampled uniformly from a unit sphere and ✓ 2 [0,⇡] is a rotation angle with density

f(✓) =
1� cos ✓

⇡

1X

l=0

(2l + 1)e�l(l+1)�2 sin((l + 1/2)✓)

sin(✓/2)
(5)
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Likewise, we sample a random translation vector t from a normal distribution t ⇠ N (0,�2
I). Finally,

we apply this rigid transformation to the ligand and compute its perturbed coordinates X̃ = R!X + t,
where R! is the rotation matrix given by the rotation vector ! = (!x,!y,!z).

R! = exp(W!), W! =

0

@
0 �!z !y

!z 0 �!x

�!y !x 0

1

A . (6)

Here exp means matrix exponentiation and W! is an infinitesimal rotation matrix. Since W! is a skew
symmetric matrix, its matrix exponential has the following closed form

R! = exp(W!) = I + c1W! + c2W
2
! (7)

c1 =
sin k!k
k!k , c2 =

1� cos k!k
k!k2 (8)

Moreover, we do not need to explicitly compute the matrix exponential R! since W! is the linear mapping
of cross product, i.e. ! ⇥ r = W!r. Therefore, applying a rotation matrix only involves cross product
operations that are very efficient:

R!xi = xi + c1! ⇥ xi + c2! ⇥ (! ⇥ xi) (9)

4.3 EBM Architecture

We parameterize E(A,X) as an energy-based model (EBM), which consists of a protein encoder and an
output layer. The encoder is a frame averaging neural network (FANN) [30] that learns a SE(3)-invariant
representation hi for each atom:

H = [h1, · · · ,hn] =
1

|F(X)|
X

U2F(X)

�h(A, (X � µ)U) (10)

�h is a recurrent neural network with a simple recurrent unit (SRU) transformer [21]. In the input layer,
we project the coordinate matrix X onto a set of eight frames U 2 F(X) constructed by Principal
Component Analysis (PCA). Suppose u1,u2,u3 are the three principle components of a covariance matrix
⌃ = (X � µ)>(X � µ) (µ is the center mass of X). The frame set F(X) is defined as

F(X) = {[±u1,±u2,±u3]} (11)

The frame averaging operation at the end ensures the encoded representation hi is SE(3)-invariant. The
output layer �o is a feed-forward neural network with one hidden layer. It predicts the interaction energy
�o(hi,hj) for each pair of atoms. Finally, we define E(A,X) as the sum of pairwise interaction energies:

E(A,X) =
X

(i,j):dij<d

�o(hi,hj) (12)

Since atomic interaction vanishes beyond certain distance, we only need to consider atom pairs in the
binding interface (with distance dij < d). The binding interface and atom features are defined as follows:

• For a protein-ligand complex, the binding interface includes the entire ligand and top 50 protein residues
closest to the ligand. On the protein side, each atom is represented by a one-hot encoding of its atom
name (C↵, C� , N, O, etc.) and a 2560-dimensional residue embedding learned by ESM-2 [22]. On the
ligand side, the atom features are learned by a message passing network (MPN) [44] based on the ligand
molecular graph. The MPN and EBM are optimized jointly during training.

• For an antibody-antigen complex, the binding interface consists of residues in the antibody comple-
mentarity determining region (CDR) and top 50 antigen residues closest to the CDR. All atoms are
represented by the one-hot encoding of its atom name and ESM-2 embedding.

• For a protein-protein complex, we crop each protein to the top 50 residues closet to the other protein.
All atoms are represented by the one-hot encoding of its atom name and ESM-2 embedding.
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4.4 Contrastive Learning Baseline

The maximum likelihood objective seeks to minimize the energy of crystal structures where the likelihood
of a complex is p(A,X) / exp(�E(A,X)). However, maximum likelihood estimation (MLE) is difficult
for EBMs due to marginalization. One solution is to approximate MLE via contrastive learning [3].
For each crystal structure (A,X), we apply K random rigid transformations to obtain K perturbed
protein-ligand complexes X1, · · · ,XK as negative samples. Suppose �E(A,Xi) is the predicted energy
for Xi, we train our EBM to maximize the likelihood of the crystal structure.

`contrastive = E(A,X)⇠D

"
exp(�E(A,X))

PK
i=1 exp(�E(A,Xi))

#
(13)

4.5 Gaussian DSM Baseline

Recent works [36, 38] has successfully trained EBMs using denoising score matching (DSM) and proved
that DSM is a good approximation of MLE. In standard DSM, we create a perturbed complex by adding
Gaussian noise to ligand atom coordinates, i.e., X̃ = X + ✏, where ✏ ⇠ p(✏) = N (0,�2

I). DSM objective
tries to match the score of our model �@E/@X̃ and the score of the noise distribution r✏ log p(✏) = �✏/�2:

`gaussian = E(A,X),✏⇠N (0,�2I)

⇥
k@E(A, X̃)/@X̃ � ✏/�2k2

⇤
(14)

Intuitively, `g forces the gradient to be zero when the input complex is a crystal structure (✏ = 0). As a
result, a crystal structure pose will be at the local minima of an EBM under the DSM objective.

4.6 Proposed Method: DSMBind

Adding Gaussian noise is not ideal for protein complexes because it creates nonsensical conformations
that violate physical constraints. A better solution is to create a perturbed complex (A, X̃) via random
rotation and translation. Given a protein complex, our perturbation procedure consists of two steps:

1. Backbone rotation/translation: Sample a random rotation vector ! ⇠ p(!) = NSO(3) and a
random translation t ⇠ p(t) = N (0, I). Apply rigid transformation to the entire ligand (including
backbone and side-chain atoms). This step transform the ligand as a rigid body.

2. Side-chain rotation: Sample a rotation vector �i ⇠ p(�i) = NSO(3) for each ligand residue i. Rotate
the side-chain of each residue by �i. Each side-chain group is rotated independently.

Under this perturbation scheme, DSM aims to match the model score �@E/@X̃ with the score of backbone
rotation, translation, and side-chain rotation noise r! log p(!),rt log p(t),r�i log p(�i). Our SE(3) DSM
objective is a sum of three losses: `se3 = `t + `r + `s, where `t, `r, and `s correspond to the translation,
rotation DSM, and side-chain DSM loss. The translation DSM is straightforward since t follows a normal
distribution and rt log p(t) = �t/�2:

`t = E
⇥
kt̃�rt log p(t)k2

⇤
, t̃ = � 1

n

X

i

@E/@x̃i (15)

For the rotation DSM, we sample random rotation ! = ✓!̂. As !̂ is sampled from a uniform distribution
over a sphere (whose density is constant), the density and score of p(!) is

p(!) / f(✓), r! log p(!) = r✓ log f(✓) · !̂ (16)

In practice, we calculate the density and score by precomputing truncated infinite series in f(✓). However,
the main challenge is that the model score �@E/@X̃ 2 Rn⇥3 is defined over atom coordinates, which is
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Algorithm 1 SE(3) DSM Training Procedure (single step)
Require: A training complex (A,X).
1: Sample a noise level �.
2: Sample backbone rotation vector ! ⇠ NSO(3) with variance �2

3: Sample backbone translation vector t ⇠ N (0,�2
I).

4: Sample a side-chain rotation vector �i ⇠ NSO(3) for each residue i.
5: Perturb the coordinates X̃ by applying rigid transformation (!, t, {�i}) to the ligand.
6: Compute the score of energy function (!̃, t̃, {�̃i}) based on its gradient (force) �@E/@X̃.
7: Minimize DSM objective `se3.

not directly comparable with r! log p(!) 2 R3 as they have different dimensions. To address this issue,
we map �@E/@X̃ to a rotation vector !̃ using the Neural Euler’s Rotation Equation FNERE (defined in
the appendix) and perform DSM in the rotation space:

`r = E
⇥
k!̃ �r! log p(!)k2

⇤
, !̃ = FNERE(�@E/@X̃) (17)

For the side-chain DSM, we sample random rotation �i ⇠ NSO(3) for each residue i and rotate its side
chain by �i. The side-chain DSM loss is defined as

`s =
X

i

E
⇥
k�̃i �r�i log p(�i)k2

⇤
, �̃i = FNERE(�@E/@X̃A(i)) (18)

where A(i) is the set of side-chain atoms belonging to residue i and X̃A(i) represents their coordinate
matrix. The overall training procedure is summarized in Algorithm 1.

4.7 Protein-Ligand Binding Experimental Details

Data. Our training data comes from the refined subset of PDBbind v2020 database [40] with their
binding affinity labels excluded. After removing overlapping instances with the validation and test set, our
training set has 4806 protein-ligand complexes in total. Our validation set has 363 complexes randomly
sampled from PDBbind by Stärk et al. [39] with binding affinity labels. Our test set comes from the
FEP+ benchmark [32], which has 264 protein-ligand complexes targeting eight proteins (cdk8, cmet, eg5,
hif2a, pfkfb3, shp2, syk, and tnks2). Each protein-ligand complex is predicted by Glide core-constrained
docking (example structures shown in Extended Data Fig. 1) and labeled by experimental binding affinity.

Metric. We report the Spearman and Pearson correlation between true binding affinity and predicted
energy E(A,X). We do not report root mean square error (RMSE) because our model does not predict
absolute affinity values. In fact, shifting E(A,X) by any constant will be equally optimal under the DSM
objective. We run our model with five different random seeds and report their average.

Hyperparameters. Our model consists of a MPN molecule encoder and a FANN protein encoder. For
the MPN encoder, we use the default hyperparameter from Yang et al. [44]. For the FANN protein
encoder, we set the hidden layer dimension to be 256, distance threshold d = 10, and try encoder depth
L 2 {1, 2, 3}. We use the Spearman correlation on the validation set to select the best hyperparameter.

Baselines. We consider three sets of baselines for comparison:

• Physics-based models calculate binding affinity based on molecular dynamics. We consider three
popular methods: Glide [7], MM/GBSA [28], and Schrodinger FEP+ software [42]. The performance of
these baselines are provided by the authors of the FEP benchmark. Among these methods, Schrodinger
FEP+ is the most accurate but most computationally expensive. It takes six hour to calculate energy
for just one complex on a 64-core CPU server with 8 GPUs.
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• Unsupervised models. Since unsupervised learning is relatively under-explored in this area, we
implement two unsupervised EBMs trained with contrastive learning and Gaussian DSM. These two
baselines use the same encoder architecture as DSMBind but different training objectives.

• Supervised models. Most of the existing deep learning models for binding affinity prediction belong
to this category. They are trained on the entire PDBBind database with approximately 19000 binding
affinity data points. We include four top-performing methods based on a recent survey [47]: KDeep [16],
IGN [15], TankBind [23], and PLANET [47]. TankBind is currently the state-of-the-art model on our
validation set. We use their open-source implementation and pre-trained model checkpoint on GitHub
or online servers to evaluate their performance.

4.8 Protein-Protein Binding Experimental Details

Data. The training set of DSMBind are downloaded from PDB and filtered by the following criteria:

• It is not a homomer complex (i.e., a complex composed of multiple instances of the same protein.
• It does not have more than eight chains.
• If the complex contains an antibody, it must also have its antigen.
• If the complex contains a T cell receptor (TCR), it must also have its antigen.

For each downloaded complex, we further decompose it into pairs of two chains and remove pairs of
chains with buried surface area less than 500Å2. After these filtering steps, we derived approximately
27000 non-redundant protein-protein complexes as our training set. Each complex has exactly two chains.
During training, we randomly rotate one of the proteins while keeping the other fixed.

The test set comes from the SKEMPI 2.0 database, which has 348 protein complexes and approximately
6000 ��G data points. Similar to Luo et al. [24], we randomly select 10% of the data for validation and
the rest of 90% for testing. We run the model with five random seeds and report the average performance
on the test set.

Hyperparameters. For our FANN protein encoder, we set the hidden layer dimension to be 256, try
distance threshold d = [10, 16], and encoder depth L 2 {1, 2, 3}. We use the Spearman correlation on the
validation set to select the best hyperparameter.

Baselines. Luo et al. [24] reported a comprehensive list of baselines on the SKEMPI test set. They can
be categorized into three groups: physics-based models, protein-language models, and supervised models.
Their performance are directly copied from Luo et al. [24] and we briefly review these methods and their
evaluation protocol here for reference.

• Physics-based models: We use two popular protein energy functions: Rosetta [1] and FoldX 5.0 [6].
For Rosetta, we use its default scoring function (ref2015) and apply fast_relax protocol to minimize
the energy of each input complex. We then calculate the interaction energy between the two proteins in
both wildtype and mutant complex. For FoldX, we apply RepairPDB function to minimize the energy
of each input complex and then calculate ��G using its BuildModel function.

• Protein language models (PLMs). We consider six PLMs for comparison: ESM-1v [27], ESM-IF [10],
MIF-logit [45], Position-Specific Scoring Matrix (PSSM), MSA transformer [31], and Tranception [29].
For ESM-1v, we run its inference code with masked-marginals mode. For ESM-IF, we score the
log-likelihood of each protein sequence with multichain_backbone flag so that the model see the whole
protein-protein complex. For both models, we score the likelihood of wild-type and mutant sequences
and use their difference as the estimation of ��G. We use the implementation provided in the ESM
GitHub repository to calculate their performance.

• Supervised models. We consider two state-of-the-art baselines (MIFNet [45] and RDENet [24]) that
have the best performance on SKEMPI. MIFNet is a masked inverse folding model similar to ESM-IF,
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but fine-tuned on the SKEMPI dataset with three-fold cross validation. RDENet is pre-trained on
38413 unlabelled protein clusters with a rotamer density estimation (RDE) task and fine-tuned on the
SKEMPI dataset with three-fold cross validation.

• Energy-based models. In addition to the above baselines, we report the performance of energy-based
models trained with contrastive learning and Gaussian DSM. They are trained on the same training set
and have the same model architecture as DSMBind.

4.9 Antibody-Antigen Binding Experimental Details

SabDab Data. Our training data comes from the Structural Antibody Database (SAbDab) [33], which
contains 4883 non-redundant antibody-antigen complexes. Our test set has 566 complexes from SAbDab
that have binding affinity labels. After removing antigen/antibody sequences that appear in the test set,
our training set has 3416 complexes without binding affinity labels. Our validation set has 116 complexes
(with binding affinity labels) after removing antibodies or antigens overlapping with the test set.

HER2 Data. This dataset has 424 designed variants of trastuzumab with experimentally measured
binding affinity to the HER2 antigen. The structure of trastuzumab-HER2 complex has been crystallized
(PDB: 1n8z) and the affinity of trastuzumab is already known (Kd = 0.2nM). For each designed antibody,
we use the following template-based docking algorithm to predict the structure of HER2-antibody complex:

1. Use the ESMFold algorithm [22] to predict the antibody structure (including side-chain atoms).
2. Run the Kabsch algorithm [18] to superimpose the predicted antibody structure to the trastuzumab

crystal structure in the complex 1n8z (which is used as our docking template).

Hyperparameters. For our FANN protein encoder, we set the hidden layer dimension to be 256, distance
threshold d = 20, and try encoder depth L 2 {1, 2, 3}. We use the Spearman correlation on the validation
set to select the best hyperparameter. We run the model with five random seeds and report the average
performance on each test set.

Baselines. Similar to the previous section, we consider four sets of baselines for comparison:

• Physics-based models. We consider two physics-based potentials (Rosetta [1] and FoldX [6]) that
are commonly used in protein engineering.

• Protein-language models. The PLM baselines are implemented slightly differently from the previous
experiment. The input to ESM-1v is the concatenation of an antibody and an antigen sequence and we
take the pseudo log-likelihood of antibody CDR residues as the binding affinity of an antibody-antigen
pair. The input to ESM-IF is the crystal structure of an antibody-antigen complex and we take the
conditional log-likelihood of antibody CDR residues given the backbone structure as its binding affinity.

• Protein folding models. For the AF2 baseline, we use the script from https://github.com/
nrbennet/dl_binder_design to calculate the predicted align error (PAE) for each complex. A lower
PAE score indicates a higher chance of binding.

• Energy-based models. Contrastive learning and Gaussian DSM baselines are implemented in the
same way as protein-protein binding prediction, except that it is trained on the SAbDab training set.

• Supervised models. We also compare DSMBind with a supervised model with the same frame
averaging neural network (FANN) encoder and pre-trained ESM-2 residue embedding as DSMBind.
Since all labeled data from SAbDab are in the validation and test sets, we draw additional data from
the SKEMPI database [14]. We obtain 5427 binding affinity data points after removing all complexes
appeared in the test set. To maximize the model performance, we train the model on 5427 data points
first and then finetuning on 273 antibody-antigen data points. As shown in Extended Data Fig. 6, we
find that transfer learning from general protein-protein binding affinity data achieved better performance
(Rs = 0.350) than training only on 273 antibody-antigen data points (Rs = 0.325). We have also tried
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other neural network architectures like 3D convolutional neural networks (3D CNN) and graph neural
networks (GNN) implemented by Atom3D [41], but they did not achieve better performance.

4.10 PD-L1 nanobody design experimental details

Randomization. In the first global search stage, we generated 200,000 nanobodies with random CDR
sequences. We fix the length of CDR1 and CDR2 to be 7 and 5, respectively. For CDR3, we explore length
from 8 to 10. Each CDR residue is randomly set to one of the 20 amino acids with equal probability. The
three randomized CDRs are concatenated with the following framework region (FR) sequences:

• FR1: EVQLVESGGGLVQAGDSLRLSCTASG
• FR2: MGWFRQAPGKEREFVASIS
• FR3: TYYADSVKGRFTISRDDARNTVYLQMNSLKPEDTAVYYCNM
• FR4: EYWGQGTQVTVSS

Student model. Given that the throughput of ESMFold is approximately one sequence per second,
we train a student model to predict the DSMBind score from sequence directly, without going through
expensive folding and docking procedures. The student model is a four-layer SRU transformer [21], whose
input is the concatenation of CDR1, CDR2, and CDR3 sequences, with each residue represented by its
one-hot amino acid encoding. We did not use ESM-2 residue features to maximize the student model’s
throughput. The model is trained to predict whether an input CDR sequence has a high DSMBind score,
i.e. ranked among the top 1% in the first batch of 200,000 sequences.

Nanobody expression and purification. Nanobodies with C-terminal 6xHis tag (Nanobody-6xHis)
were purified by expressing in E. coli., followed by purification using Dynabeads His-Tag Isolation and
Pulldown beads (ThermoFisher Scientific, 10103D). Briefly, Nanobody-6xHis plasmids were transformed
into T7 Express E. Coli. (New England Biolabs), single colonies were transferred into 10ml LB media and
grown at 37°C for 2–4h (until OD reached 0.5–1), the culture was chilled on ice, then IPTG was added to
a final concentration of 10µM. The culture was then incubated on an orbital shaker at room temperature
(RT) for 16 hours. Bacterial cells were pelleted by centrifugation and lysed in B-PER Bacterial Protein
Extraction Reagent (ThermoFisher Scientific) supplemented with rLysozyme (Sigma-Aldrich), DNase I
(New England Biolabs), 2.5mM MgCl2, and 0.5mM CaCl2. Bacterial lysates were cleared by centrifugation
and mixed with wash buffer (50mM sodium phosphate pH 7.4, 300mM sodium chloride, 10mM imidazole)
at a 1:1 ratio, and then incubated with 50µl Dynabeads for 10 minutes at room temperature. The beads
were then washed twice with PBST, once with a wash buffer, and once with PBS. Proteins were eluted by
incubating beads in an elution buffer (50mM sodium phosphate pH 7.4, 300mM sodium chloride, 150mM
imidazole) at 4°C for 5 minutes. Purified protein samples were quantified by measuring absorbance at
280nm on a NanoDrop spectrophotometer.

ELISA. Maxisorp plates (BioLegend, 423501) were coated with 1µg/ml anti-Flag antibody (Sigma Aldrich,
F1804) in a coating buffer (BioLegend, 421701) at 4°C overnight. Plates were washed once with PBST
(PBS, ThermoFisher Scientific, with 0.02% TritonX-100), a 1:1 mixture of HEK293T cell culture media
containing secreted PD-L1-3xFlag and blocking buffer (PBST with 1% nonfat dry milk) was added to
the plates and incubated at room temperature (RT) for 1 hour. PD-L1 coated plates were then blocked
with a blocking buffer at RT for 1 hour. Plates were washed twice with a wash buffer and purified
Nanobody-6xHis diluted in blocking buffer were added to the plates and incubated at RT for 1 hour.
Plates were washed three times with a wash buffer, HRP conjugated anti-His tag secondary antibody
(BioLegend, 652503) diluted 1:2000 in blocking buffer was then added to the plates and incubated at RT
for 1 hour. Plates were washed three times with a wash buffer and TMB substrate (BD, 555214) was
added to the plate and incubated at RT for 10-20 minutes. Stop buffer (1N sulfuric acid) was added to
the plates once enough color developed. Quantification of plates was performed by measuring absorbance
at 450nm on a BioTek synergy H1 microplate reader using Gen5 software 1.11.5. Data reported were
background subtracted. Two levels of background subtraction were performed: (1) subtracting absorbance
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measured from wells incubated with blocking buffer only (without purified Nanobody-6xHis) from sample
measurements (reflecting background absorbance by plates); and (2) subtracting absorbance from each
nanobody incubated wells coated only with anti-Flag antibody and without PD-L1 (reflecting non-specific
binding of each nanobody).

4.11 Ablation studies of DSMBind

Lastly, we perform three ablation studies to understand the importance of different modules of DSMBind.

Removing ESM-2 embedding. The default DSMBind model uses ESM-2 sequence embedding as
residue features. To understand its importance, we train DSMBind with one-hot amino acid embedding
instead. We evaluate this modified version (No ESM) on protein-ligand binding (FEP test set) and
antibody-antigen binding (SabDab test set). As shown in Extended Data Fig. 7a, removing ESM-2
embedding had almost no effect in the FEP test set (0.380 vs. 0.388), but the difference becomes much
more noticeable in the SabDab test set (0.314 vs. 0.374, Extended Data Fig. 7b). Therefore, we conclude
that using ESM-2 embedding is useful for modeling binding energy.

Removing backbone/side-chain DSM. Our SE(3) DSM objective includes both backbone and side-
chain DSM. To understand their importance, we train DSMBind with only backbone DSM or side-chain
DSM. As shown in Extended Data Fig. 7a-c, we find that removing side-chain DSM has moderate effect
on the FEP (0.367 vs 0.388) and SKEMPI dataset (0.403 vs 0.380), but has notable effect on the SAbDab
test set (0.314 vs 0.374). Removing backbone DSM has significant impact on the FEP (0.242 vs 0.388) and
SAbDab test set (0.334 vs 0.374), but almost no effect on the SKEMPI test set. This result is expected
since side-chain flexibility plays the most important role in ��G.
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