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Abstract
Transformer-based sequence encoding architectures are often limited to a single-sequence
input while some tasks require a multi-sequence input. For example, the peptide–MHCII binding
prediction task where the input consists of two protein sequences. Current workarounds to solve
this input-type mismatch lack resemblance with the biological mechanisms behind the task. As a
solution, we propose a novel cross-attention transformer encoder that creates a cross-attended
embedding of both input sequences. We compare its classification performance on the
peptide–MHCII binding prediction task to a baseline logistic regression model and a default
transformer encoder. Finally, we make visualizations of the attention layers to show how the
different models learn different patterns.

Introduction
Recently, transformers have proven to be very valuable for natural language processing. BERT
[1] (Bidirectional Encoder Representations from Transformers) is an architecture based on the
encoder of a transformer and was successfully applied to various tasks like text summarization,
intention detection and topic classification. Recently, its potential for analyzing protein sequence
data was shown [2]–[4]. One of the limitations of these BERT models for protein sequences is
that they are designed to only process a single protein sequence at once, making them less
suitable for e.g. contact and interaction prediction tasks, because they take two protein
sequences as input. Multiple workarounds to allow these kinds of predictions exist but lack
resemblance with the biological mechanisms behind the task. A possible approach is to
concatenate both input sequences and use this as a single input for the model [5]. A possible
problem with this approach is that it might be hard for the model to learn the intrinsic features
and properties of both sequences and also learn the cross-sequence patterns that determine
the final output prediction (e.g. interaction). A second possible workaround is to have a separate
BERT model for both sequences [6], concatenate the outputs of these models at the end, and
send them through the last part of the model (e.g. a multi-layer perceptron) to make the final
prediction. The downside of this approach is that there are no transformer layers used on both
sequences together, while the attention mechanism is great at learning these inter-token
relations and patterns. The last workaround that is often used for dual-input transformer models
is a cross-attention mechanism. The traditional BERT architecture only uses self-attention

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2023. ; https://doi.org/10.1101/2023.12.11.571066doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.11.571066
http://creativecommons.org/licenses/by-nc/4.0/


layers, in each of these layers the attention is calculated using the input sequence twice (hence
self-attention) and afterwards this attention is again applied to the original input embedding to
get the self-attended output embedding. Using cross-attention instead, the attention is
calculated between both input sequences and is then applied to only one of the input
embeddings with as result a cross-attended embedding for the other sequence as output. As a
consequence, the output of such a cross-attention layer is an embedding for only one of the two
input sequences. This approach can be very useful if you have one ‘main’ input and want to add
information from a second input. But, in the case of e.g. interaction prediction, we would prefer
to have a cross-attended embedding for both sequences that treats them both equally
important.

As an alternative, we present a new cross-attention layer that does produce a cross-attended
embedding of both inputs as output. This layer can be used in combination with concatenated
self-attention layers and parallel self-attention layers. We test multiple model architectures with
and without cross-attention layers on the peptide–Major Histocompatibility Complex Class II
(peptide–MHCII) binding prediction task. An MHCII molecule is a protein complex on the cell
surface of antigen presenting cells that presents peptides. The task at hand is to predict which
MHCII molecules are able to present which peptides. A peptide is a short protein sequence and
the MHCII protein complex can also be represented as a relatively short protein sequence. This
makes this a suitable input for our method.

Methods

Cross-attention layer
Our new cross-attention (CA) layer is similar to the regular self-attention layer. But, we made
two major changes: the inputs used to calculate the Query, Key and Value matrices are different
and we project the output of the attention calculation to new dimensions (fig. 1). The attention
matrix is always calculated between the Query and Key. In the case of self-attention, both Q and
K would be derived from the same input. For our cross-attention layer, we use one of the
sequences to create the Query and the other sequence to create the Key, this results in an
attention matrix with dimensions len(s_a) x len(s_b). Normally, cross-attention would then apply
this attention matrix to one of the two inputs, resulting in an embedding for the other input. Our
cross-attention layer aims to create a cross-attended embedding for both inputs, that is why we
use the concatenated inputs to create the Value matrix. As a result, the attention matrix will be
applied to both inputs. For this to work, we transform the cross-attention matrix to a matching
shape. This transformation is implemented by applying a linear layer (from len(s_b) to
len(s_a+s_b)), this output is transposed and again inputted in a linear layer (from len(s_a) to
len(s_a+s_b)). The projected cross-attention matrix has size len(s_a+s_b) x len(s_a+s_b),
multiplying this with our Value vector results in a cross-attended embedding for both sequences.
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Parallel self-attention layer
As both inputs can have different properties and mechanisms, it is not always desirable to apply
the self-attention mechanism on the concatenated inputs. On top of that, the interactions
between the inputs should be learned in the cross-attention layer(s). That is why we use parallel
self-attention (pSA) layers. This layer applies regular self-attention on both inputs and keeps
them completely separate (see Fig. 1). This makes that these layers focus on the structure and
patterns of both inputs separately.

Final model architecture
As shown in figure 1, the final model starts with N cSA or pSA layers. All our comparisons were
done with N being 10, 11, or 12. Then 12 - N CA layers follow, meaning that there can be 2, 1 or
0. Finally, a mean pooling and a multilayer perceptron (MLP) is applied to get the output
prediction.
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Figure 1. Schematic overview of the Cross-Attention BERT architecture. On top, the full
model architecture, consisting of N cSA or pSA layers followed by 12-N CA layers, a mean
pooling and MLP layer. Below, an overview of the difference between a cSA and pSA layer and
a detailed schematic of the CA layer. The CA layer starts with multiplying sequence A and B,
this results in the cross-attention matrix. Then this is again multiplied with new weights W1 and
W2 to transform the cross-attention matrix to its new dimensions. Finally this is multiplied again
with concatenated sequences A and B to result in the cross-embedded output for sequence A
and B.

Finetuning pretrained model
All our models are only finetuned, we use the pretrained weights from the TAPE model [2],
which is pretrained on a large collection of protein sequences, to initialize our layers. The layers
are always initialized with the weights of the corresponding pretrained layers, meaning that our
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Nth layer is initialized with weights from the Nth pretrained layer. The cSA layers can be directly
initialized with the corresponding pretrained layers. For the pSA layers, both parallel layers are
initialized with the weights of the same pretrained layer. Most of the weights of the CA layers are
also initialized with the pretrained weights, only the two linear layers we added are not
initialized.

Cross-validated hyperparameter selection
To find the best model, we performed 5-fold cross-validation. Each configuration was first
trained and afterwards tested on the validation dataset, the configuration with the best validation
ROC-AUC was chosen. We tested different values for the learning rate (0.1, 0.01, 0.001, and
0.0001) and optimizer (SGD and AdamW) and experimented with different layer combinations.
All models have 12 layers in total, we experimented with using 12 pSA layers, 12 cSA layers, 10
or 11 pSA layers followed by 1 or 2 CA layers and 10 or 11 cSA layers followed by 1 or 2 CA
layers. At the end, 3 models were chosen based on the best parameter configuration. The best
model using cSA and CA layers, the best model using only cSA layers and the best model using
pSA and CA layers.

Logistic regression model
As a baseline model, we implemented a logistic regression on an embedding of the pretrained
TAPE model [2]. We have two versions of this model, a concatenated and parallel version. The
concatenated version calculates an embedding from the concatenated sequences using the
frozen pretrained model, this embedding then goes through a single linear layer and sigmoid
activation function. The parallel version calculates an embedding for both input sequences from
the frozen pretrained model separately, then these embeddings are concatenated and again go
through a single linear layer and sigmoid activation. All embeddings are calculated with the
frozen default TAPE BERT model.

Peptide–MHC data
Our model is evaluated on peptide–MHCII binding data. The peptide and MHC are both
relatively short protein sequences. The task is to predict whether a given MHC would
bind/present a given peptide. The same dataset as BERTMHC [5] was used to train and test our
model. The train and validation data was collected from IEDB [7] up to 2016 and 5 train/val
cross-validation splits were made with minimal overlap between the train and validation data.
The test data is an external dataset consisting of IEDB data after 2016 and an independent
dataset from the Dana–Farber repository [8]. All samples already present in the train/val data
were removed.

Visualization
Visualizations of the (self-)attention matrices were made with the python package bertviz [9].
This package supports visualizations of cSA (regular self-attention) and CA layers. One can
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also make visualizations of an encoder-decoder model, this functionality was reused to create
visualizations for both self-attention matrices in the pSA layers.

Results

Performance of logistic regression models
5-fold cross-validated hyperparameter selection was performed on the logistic regression
models. The best concatenated and the best parallel logistic regression model was selected
based on the validation performance. Both best models use the SGD optimizer with a learning
rate of 0.1. The performance reported is the average ROC-AUC and average standard deviation
over the 5-fold cross-validation. The parallel logistic-regression model has a validation
ROC-AUC of 74.23% ± 2.12%, the concatenated model has a validation ROC-AUC of 73.46% ±
2.27% (fig. 2a). The test ROC-AUC of the parallel model is 58.39% ± 0.47% and that of the
concatenated model is 56.39% ± 0.79% (fig. 2b). On the test data, the parallel model slightly
outperforms the concatenated model.

Figure 2: ROC-curves of (a) validation and (b) test performance of the parallel and
concatenated logistic regression models. The average ROC-curve with its standard deviation is
plotted.

Performance of cross-attention models
After doing 5-fold cross-validated hyperparameter selection we selected 3 model configurations
based on the validation performance: the best model containing cSA layers, the best model
consisting of only cSA layers (as a reference model without CA layers) and the best model
containing pSA layers. For all three models, a learning rate of 0.1 and the SGD optimizer
resulted in the best validation performance. The performance reported is the average ROC-AUC
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and average standard deviation over the 5-fold cross-validation. The best model containing cSA
layers has 10 of these followed by 2 CA layers. It has a validation ROC-AUC of 85.61% ±
1.27%. The best model with only cSA layers has a validation ROC-AUC of 85.31% ± 1.47%.
The best model containing pSA layers has 11 of these followed by 1 CA layer. Its validation
ROC-AUC is 84.38% ± 1.46% (fig. 3a). Testing these models on the external test set results in a
ROC-AUC of 66.44% ± 0.81% for the cSA-CA model, a ROC-AUC of 66.15% ± 0.70% for the
CA only model and a ROC-AUC of 64.50% ± 0.79% for the pSA-CA model (fig. 3b). The model
with only cSA layers and the model with a combination of cSA and CA layers have a similar
performance. On the test data, the model with a combination of pSA and CA layers performs
slightly worse than the other two models.

Figure 3. ROC-curves of (a) validation and (b) test performance of the best model for the three
layer configurations. The average ROC-curve with its standard deviation is plotted.

Visualization of different models
Visualizations of the attention matrices were made with the python package bertviz. Fig. 4 and
Fig. 5 show the attention matrices of part of the layers of the cSA - CA model. Respectively 3 of
the 10 cSA layers and the 2 CA layers. Fig. 6 shows the attention matrices of 3 of the cSA
layers of the cSA only model. Fig. 7-9 show the attention matrices of part of the pSA - CA model
layers. Respectively 3 of the 11 pSA MHC layers, 3 of the 11 pSA peptide layers, and the final
CA layer.
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Figure 1. cSA-CA model cSA layer 0-9 visualization.
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Figure 2. cSA-CA model CA layer 10-11 visualization.
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Figure 3. cSA only model cSA layer 0-11 visualization.
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Figure 4. pSA-CA model pSA MHC layer 0-10 visualization
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Figure 5. pSA-CA model pSA peptide layer 0-10 visualization

Figure 6. pSA-CA model CA layer visualization.

Discussion
Current transformer models learning from a combination of two input sequences have limited
resemblance with the real-world mechanisms behind the data, possibly hindering them to learn
these patterns. In this work, we presented an adapted cross-attention layer that treats both input
sequences equally and creates a cross-attended embedding for both sequences as output. We
hypothesized that first using pSA layers that learn the intrinsic features of both sequences
separately and then using CA layers to learn the combination of the two sequences would work
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best. Testing on peptide–MHC binding data showed that this model architecture slightly
underperformed compared to using only cSA layers or a combination of cSA and CA layers.
This might be due to the limited complexity of the intrinsic structure of the peptide and MHC
sequences, making the pSA layers less useful than the cSA layers. We still think that our
cross-attention architecture can be useful when applied to suitable data.
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