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Abstract

Single-cell RNA sequencing is a modern technology for analyzing cellular heterogeneity. A key challenge is to cluster a
heterogeneous sample of different cell types into multiple different homogeneous groups. Although there exist a number of
clustering methods, they do not perform well consistently across various datasets. Moreover, most of them are not based
on probabilistic approaches making it difficult to assess uncertainties in their results. Therefore, in spite of having large
cell atlases, it is often quite difficult to map cells to types. In addition, many of the methods require prior knowledge such
as marker gene information for each type. Also due to technological limitations, dropouts of gene expressions may occur
in the data which is not taken into account in other methods. Here we present a probabilistic method named CellHorizon
for clustering scRNA-seq data that is based on a generative model, handles dropouts and works without any prior marker
gene information. Experiments reveal that our method outperforms current state-of-the-art methods overall on six gold
standard datasets.
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Introduction

Single-cell RNA sequencing (scRNA-seq) technology has

become a popular tool to understand the relationship between

cells and genes [1]. Even with its growing usage, scRNA-seq

data analysis remains a difficult task [24]. There is substantial

variability in the data. In addition, the gene expression

measurements in the scRNA-seq data are low and sparse, with

many “false” zero count observations known as dropout events

[17]. The dropout event occurs because of the low RNA capture

rate and the low sequencing depth per cell.

Another challenge is that in most scRNA-seq studies, cell

types are not known with certainty. Researchers typically use

unsupervised clustering techniques to organize cells into sets.

Cell types can be identified based on the clustering results [12].

Jaitin et al. showed that dissection of tissues into mixtures of

cell types is a difficult task [10]. It is a standard procedure to

use marker genes after cells are grouped into clusters. Ringeling

et al. observed that Seurat [5] fails to distinguish CD4 T cells

and CD8 T cells based on transcriptomic data alone, Hence, the

authors used both marker genes and protein marker expressions

(ADT, antibody-derived tags) to estimate cell types. However,

they were still unable to label one-fifth of the cells [19].

Unsupervised methods like Leiden [23], Louvain [4] and

SC3 [13] are some of the most popular clustering methods.

Leiden [23] algorithm, an improved version of Louvain [4] moves

its nodes locally to optimize a modularity function. Then it

refines the partition and creates an aggregate network. These

are computationally very expensive. Another unsupervised

clustering method SC3 [13] generates distance matrices like

Euclidean, Pearson, and Spearman, and then uses their PCA

transformation to get their eigenvectors. Clustering is done

on each of these eigenvectors and their consensus is taken

as the result. This method requires fixing a large number of

parameters upon which the quality of the clustering depends.

Most of these parameter values can not be selected intuitively.

An autoencoder-based method scGAC [7] takes the raw-

count matrix as input and after normalizing and log

transformation it gets the expression matrix. Using auxiliary

matrices and PCA, it generates a feature matrix that is

optimized by Graph Attentional Autoencoder (GAA). Based

on the latent space representation of the GAA, it optimizes

a membership matrix based on k-means clustering to assign

each cell to one specific cluster. EDClust [26] is a statistical

probabilistic clustering method that focuses on subject-specific

factors of single-cell data. It uses the Dirichlet-multinomial

mixture model to represent expression counts in multi-subject

scRNA-seq data. It follows an EM–MM hybrid method. In

the E-step, it calculates a posterior probability for cluster

assignment and in M-step, it optimizes a loss function. Then to

incorporate cell type-specific and subject-specific effects it uses

a MM algorithm.

These unsupervised algorithms often use a low dimensional

representation like PCA of count data and cluster the cells

based on this. The low-dimensional representations measure

linear similarity among cells but fail to capture the latent

relationship which leads to sub-optimal clustering [9].

In addition to the clustering methods, there exist a number

of supervised and semi-supervised methods like CellAssign [29]

and SCINA [31]. Both CellAssign [29] and SCINA [31] require

prior information. CellAssign [29] is a probabilistic approach to

assign cells to types. Its main focus is to automate the process

of annotation rather than clustering cells. For this, it requires

additional marker gene information. However, determining

the marker genes of a cell type that is not well known is a
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challenging task. CellAssign [29] also does not handle dropouts

which is a key factor in single-cell clustering. Tabula Muris [22],

which contained scRNA-seq data for about 120,000 cells from

20 organs and tissue types in mice had a dropout rate of up to

93% [18].

In this work, we propose an unsupervised probabilistic

clustering method based on CellAssign [29] that does not

require any prior marker gene information and models the

expression data using negative binomial distribution. As it

is a probabilistic approach it performs well when cells may

have characteristics that span multiple clusters and helps us

to understand overlapping relationships between clusters. It

allows us to capture the uncertainty associated with each cell’s

assignment to a cluster. It also takes dropout into account by

associating a dropout rate with each gene so that, dropout

and actual zero value in the expression can be differentiated.

Our method also does not require any additional parameter

value and it is based on expression count data rather than any

low-dimensional representation of it.

Method

In scRNA-seq clustering, given an expression matrix (n × g)

of n cells and g genes, the challenge is to cluster the cells

into c different clusters. Our method achieves this through a

generative probabilistic approach and using negative binomial

distributions to represent the count data. At first, the mean and

dispersion parameters of the negative binomial distributions are

initialized from the expression matrix. Then an EM algorithm

is used to iteratively re-estimate the mean, dispersion and

other parameters of the model. The EM algorithm terminates

when the model converges. Then the probability for each cell

being each type is calculated from the corresponding negative

binomial distributions.

Handling Dropouts
One of the key focuses of our method is handling dropouts.

ZingeR [2] is a tool to model dropouts. It handles dropouts

using a two component mixture model. The dropout is

modeled by a point mass at zero and the original count as a

negative binomial distribution. Then the probability that a zero

expression count belongs to the count component is the negative

binomial component divided by the mixture component. Our

method uses a dropout parameter dg for each gene which is the

probability of dropout for a gene g.

Generative Model
In the generative model of our algorithm, z or cell type indicator

is determined by the prior probabilities πc. Based on z, we get

the parameters of our negative binomial distribution µ and ϕ

for each gene. Based on this negative binomial distribution, we

sample the initial raw count value y1. Again dg or dropout rate

is used to determine w which is the probability of count value

coming from zero distribution. y is the final count value that is

determined by y1 and this incorporated w.

.

Initialization
For each gene, we calculate the mean and variance column-wise.

Then using Equation 1, we calculate the dispersion ϕ.

ϕ =
µ2

Var − µ
(1)

Fig. 1. Generative Model

where µ is the mean and Var is the variance. So, µ and ϕ

parameters for negative binomial distribution are initialized.

EM Algorithm
The EM algorithm [15] or expectation–maximization algorithm

is an iterative method of maximizing the likelihood of a

statistical model by varying parameter estimation. The E step

or expectation step determines an expectation of the log-

likelihood of the model using the current estimates of the

parameters. The M step or maximization step re-estimates the

parameters using a loss function. This two steps are performed

iteratively until a convergence criterion is met.

Fig. 2. EM Algorithm

E Step
In the E step, at first, we define two boolean variables λng and

τng as follows:

λng =

{
1, if yng = 0

0, if yng ̸= 0

}

τng =

{
0, if yng is a true count

1, if yng is a dropout

}
We calculate the probability that a zero value in the gene

expression came from dropout wng as follows:

wng = P (τng = 1)

=
∑
c

P (τng = 1|zn = c)P (zn = c)

=
∑
c

dg ∗ λng

dg + (1 − dg)NB(µngc, ϕngc)
γnc

(2)

.
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Then we calculate the mean µngc of the negative binomial

distribution using the following equation:

µngc = Sn × µgc (3)

where Sn is the size factor of cell n. Using the mean µngc

and dispersion ϕngc we calculate the probability that nth cell

is of type c.

γnc = P (zn = c)

=

∏
g πc(dg ∗ λng + (1 − dg)NB(µngc, ϕngc))∑

c

∏
g πc(dg ∗ λng + (1 − dg)NB(µngc, ϕngc))

(4)

M-step
In the M-step, we minimize the loss function

Q =
∏
n

∏
c

∏
g

[
d
wng

g {(1 − dg)NB(yng|µngc, ϕngc)}(1−wng)
]γnc

× p(π)

(5)

or equivalently its logarithm

logQ =
∑
n

∑
c

γnc

∑
g

[wng log(dg)+

(1 − wng) log {(1 − dg)NB(yng|µngc, ϕngc)}]

+ log(p(π)) (6)

using Adam optimizer. The loss function also has two parts: one

coming from negative binomial distribution and another from

dropout. We update the parameters dg, µngc, ϕngc, πc which

are used for the next iteration of EM.

Convergence Criteria
We use two types of convergence criteria for the EM algorithm.

The model is assumed to be converged if any of these conditions

are met.

• Max Epoch: The EM algorithm runs at most 400 epochs,

then it stops and returns the results.

• Early Stopping: The model is stopped early and returned

if for 15 consecutive iterations, the loss does not improve.

Adam Optimizer
Adam optimizer [11] is used in the M step of our algorithm. It

is a stochastic gradient descent method and it uses the adaptive

estimation of first-order and second-order moments to minimize

a loss function. In our method Equation 6 is minimized by

Adam optimizer by changing the values of dg, µngc, ϕngc, and

πc.

Results

Dataset
The input for our clustering method is a gene expression

matrix where each row corresponds to a cell and each column

represents a gene. We compared our model with other state-

of-the-art models using six gold standard datasets, six silver

standard datasets, and one simulated dataset.

Simulated Dataset

We generated a simulated dataset of 5 cell types of 9156 cells

and 24 genes. We randomly selected 6 to 12 marker genes

for each type of cell. For each gene and each cell type one

negative binomial distribution was taken and used to sample

the expression count. The mean µ for marker genes was taken

two times more than the non-marker genes.

µgc =

{
rand(10, 20), if g /∈ marker(c)

rand(20, 40), if g ∈ marker(c)

}
(7)

To calculate the dispersion parameter ϕ, we randomly

generated variance Var.

V argc = rand(100, 500) (8)

Then we can calculate ϕ using the following equation:

ϕgc =
µ2
gc

V argc − µgc

(9)

Dropout rate dg was chosen as follows:

dg = rand(0.1, 0.6) (10)

We assumed the size factor was 1 for all cells. Then using

µgc and ϕgc, negative binomial distributions were created and

count values yng were sampled from them. Dropout rate dg

was used to incorporate the effect of dropout in our simulated

dataset.

Gold-standard Datasets

Six gold-standard datasets and six silver-standard datasets were

used for our comparison. Goolam, Kolodziejczyk, Yan, Deng,

Pollen, and Biase are considered as gold-standard datasets

because in these datasets the cell sub-populations were chosen

from distinct biological stages or conditions [25].

Table 1. Gold-standard Datasets

Dataset Name Total Cells Total Genes Cell Types

Goolam [9] 124 41428 5

Kolodziejczyk [14] 704 38616 3

Yan [27] 90 20214 6

Deng [8] 268 22431 6

Pollen [16] 301 23730 11

Biase [3] 49 25737 3

Silver-standard Datasets

In addition, we analyze Worm neuron, Human kidney, 10x

pbmc, Mouse retina raw, CITE CBMC and TAM FACS

datasets. They are considered silver-standard datasets because

in these the cells were labeled according to the authors’

computational analysis and biological knowledge [25].
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Table 2. Silver-standard Datasets

Dataset Name Total Cells Total Genes Cell Types

Worm Neuron [6] 4186 13488 10

Human Kidney [28] 5685 25215 11

10x PBMC [32] 4271 16653 8

Mouse Retina [20] 14653 11422 19

CITE CBMC [21] 8617 2000 15

TAM FACS [30] 110824 22966 126

Preprocessing
We performed four preprocessing steps in our algorithm to filter

the data and determine the genes whose expressions are highly

differentiable across different cell types.

• Gene filter: We included genes that are expressed in at least

three cells.

• Cell filter: A minimum of 200 genes expressed was required

for a cell to pass filtering.

• We selected 1% most highly variable genes (HVGs) that

have the highest variance across all cells. They have the

greatest potential to distinguish between different cell types.

• Finally we applied log normalization to account for high

variance in expression count.

Performance Evaluation Metrics
We used Adjusted Rand Index (ARI) an improved version of

Rand Index (RI) to compare the performance of our method

with other methods using true and predicted cell types. ARI

computes the similarity between two clusters on a scale from 0

to 1. ARI scores are higher if the predicted clustering is close

to the true clustering.

Result on Simulated dataset
First, we analyze the simulated dataset to assess how well our

method can determine the parameters of our model: mean,

dispersion and dropout rate.

Fig. 3. Real vs Predicted Mean

From Fig 3 and Fig 4, we find that the predicted mean and

dropout are similar to the original mean and dropout. Also, we

can observe that the range of the original mean and dropout

Fig. 4. Real vs Predicted Dropout

that is 10-40 and 0.1-0.6 are equal to the range of predicted

mean and dropout of 10-40, and 0.1-0.6 respectively. We also

find that our method has a very high ARI score of 0.948 in

the simulated dataset. We varied the mean and dropout rate

of the simulated dataset and found that our method could

perform consistently with different ranges of mean, and dropout

values. Hence, our method could determine the parameters of

the negative binomial distributions precisely and cluster the

cells accurately in the simulated dataset.

Fig. 5. True celltype

Fig. 6. Predicted celltype
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Result on Real dataset
Next we analyze the six gold standard and six silver standard

real datasets and compared the ARI of 5 state-of-the-art

clustering methods with our method.

Table 3 shows the ARI of the methods on the gold standard

datasets. As the cell sub-populations were chosen from distinct

biological stages or conditions in gold datasets, they are more

reliable than silver datasets where the labels were given using

authors’ computational analysis. Our method outperforms all

the other methods on average in 6 gold datasets. In the Goolam

and Deng datasets, our method has a significantly higher ARI

score than the second highest performing methods Leiden and

scGAC respectively. Our method showed poor performance in

only the Biase dataset. A possible reason is the number of cells

is small in this dataset which may lead to inaccurate estimation

of parameters.

Table 3. Gold-standard Datasets ARI Comparison

Dataset Secuer Louvain Leiden SC3 scGAC Our

Method

Goolam [9] 0.4673 0.4584 0.5709 0.4820 0.5554 0.8602

Kolod [14] 0.5064 0.4448 0.4452 0.5279 0.6017 0.5112

Yan [27] 0.7917 0.8278 0.9233 0.6383 0.8955 0.8451

Deng [8] 0.3747 0.4571 0.4683 0.3892 0.5596 0.6743

Pollen [16] 0.8508 0.8508 0.8508 0.8976 0.5857 0.7902

Biase [3] 1.0000 0.8986 0.9483 1.0000 1.0000 0.6120

Average 0.6651 0.6562 0.7011 0.6559 0.6996 0.7155

In the case of silver datasets Securer, Louvain and scGAC

(Tab 4) failed to run TAM FACS due to very high memory

demands. Moreover, scGAC could not run Mouse Retina.

Table 4. Silver-standard Datasets ARI Comparison

Dataset Secuer Louvain Leiden SC3 scGAC Our

Method

Worm
Neuron [6] 0.451 0.508 0.434 0.209 0.431 0.250

Human
Kidney [28] 0.629 0.588 0.570 0.236 0.528 0.360

10x
PBMC [32] 0.643 0.681 0.679 0.448 0.654 0.581

Mouse
Retina [20] 0.634 0.689 0.691 0.224 — 0.529

CITE
CBMC [21] 0.495 0.569 0.487 0.388 0.612 0.542

TAM
FACS [30] — — 0.144 0.020 — 0.037

Average — — 0.501 0.254 — 0.383

Running time
Table 5 shows running times of the methods. We find that our

method is the third fastest method overall. The two methods

faster than our method are SC3 and Secuer. However, their

ARI scores are less than our method. Hence, no other method

performed better in less time than our method.

Table 5. Gold-standard Datasets Time Comparison in milliseconds

Dataset Secuer Louvain Leiden SC3 scGAC Our

Method

Goolam [9] 2849 23869 18972 1117 39492 11265

Kolod [14] 7284 24419 13336 4941 136261 12962

Yan [27] 3968 23779 12347 771 33388 10776

Deng [8] 5712 25895 12238 2294 41409 11407

Pollen [16] 4108 24800 11932 2400 44244 12307

Biase [3] 3836 22516 12440 666 28768 11513

Average 4626 24213 13544 2031 53927 11705

Discussion

We generated the PCA visualization of the Gold datasets

and analyzed the discrepancy between our clustering and

ground truth celltypes visually. Moreover, we determined the

probable marker gene list using both true celltypes and our

predicted celltypes using scanpy. We calculated the number of

common marker genes between these two lists for all possible

combination of true celltypes and predicted celltypes.

Goolam dataset

Fig. 7. Goolam pca

We can see in the true celltype, the 8 cell cluster is separated

into two parts. But in our prediction, those two parts are

clustered into different groups and also in the PCA visualization

they appear to belong to different clusters. Moreover, there

is a celltype blast in the true celltype which is a cluster of

very few cells scattered around. As few scattered cells rarely

make any cluster, our method did not consider it as a separate

cluster. In further analysis, we found that blast has the lowest

or second lowest number of common marker genes with all

predicted clusters. This is possibly why blast was not considered

as a different cluster by our method.

Kolodziejczyk dataset
Our method merges some a2i cells into 2i cells. This is due to

the fact that between 2i and a2i cells, the Spearman correlation

coefficient of mean gene expression levels is very high (0.95).

It is also reflected in the common marker list. For lif celltype,

cluster 3 has the highest number of common marker genes much

more than other clusters but for 2i and a2i both cluster 1 and

cluster 2 have roughly the same number of common marker

genes.
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Fig. 8. Kolodziejczyk pca

Fig. 9. Yan pca

Yan dataset
We can see that in true celltype the zygote cluster is divided

into two parts and another cluster 4 cell is placed between them.

Our prediction combines these two parts with cluster 1.

Deng dataset

Fig. 10. Deng pca

In the Deng dataset, we see that in true celltype the 16 cells

and 8 cells are overlapping with each other. Our prediction does

not have any overlapping and considers all of them as cluster

1.

Biase dataset
Biase is a small dataset containing only 49 cells. Our ARI was

the lowest in the Biase dataset. It is due to the fact that fitting

a distribution with such small number of samples is relatively

hard.

Conclusion

Here we have presented a probabilistic unsupervised clustering

algorithm for single-cell RNA-seq data based on a generative

model. It models the expression data using negative binomial

distributions. The method does not use any prior marker gene

information. We also consider and tackle the effect of dropout

to get a better quality clustering. We tested our method on

the simulated dataset to evaluate the accuracy of parameter

estimation and find that it can accurately estimate the means

and dropout rates of genes. We then compared our method with

other methods on Gold and Silver datasets. It was shown that

our method is consistent and overall outperforms other methods

in the gold datasets.

In future, a number of directions may be explored. We have

used our method only for detecting clusters. But we can easily

modify it to track the progress of cell development. Also, in the

simulated dataset we have successfully estimated the mean and

dropout parameters. However. there is scope for improvement

in the estimation of the dispersion parameter. The method may

enable finding the characteristics of unknown cell types from a

heterogeneous cell population. So we may be able to detect new

types of cells as well as subclusters.

Again, in tumor and cancer cells, not all the cells are

malignant. There may be healthy cells beside so we would use

the clustering algorithm to detect outliers. Doublet detection

can be another promising aspect of our method as it can use

the advantage of probabilistic assignment.
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