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Abstract 16 

For decades, the 16S rRNA gene has been used to taxonomically classify prokaryotic species 17 

and to taxonomically profile microbial communities. The 16S rRNA gene has been criticized for 18 

being too conserved to differentiate between distinct species. We argue that the inability to 19 

differentiate between species is not a unique feature of the 16S rRNA gene. Rather, we observe 20 
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the gradual loss of species-level resolution for other marker genes as the number of gene 21 

sequences increases in reference databases. We demonstrate this effect through the analysis 22 

of three commonly used databases of nearly-universal prokaryotic marker genes: the SILVA 23 

16S rRNA gene database, the Genome Taxonomy Database (GTDB), and a set of 40 24 

taxonomically-informative single-copy genes. Our results reflect a more fundamental property of 25 

the taxonomies themselves and have broad implications for bioinformatic analyses beyond 26 

taxonomic classification. Effective solutions for fine-level taxonomic classification require a more 27 

precise, and operationally-relevant, definition of the taxonomic labels being sought, and the use 28 

of combinations of genomic markers in the classification process. 29 

Importance 30 

The use of reference databases for assigning taxonomic labels to genomic and metagenomic 31 

sequences is a fundamental bioinformatic task in the characterization of microbial communities. 32 

The increasing accessibility of high throughput sequencing has led to a rapid increase in the 33 

size and number of sequences in databases. This has been beneficial for improving our 34 

understanding of the global microbial genetic diversity. However, there is evidence that as the 35 

microbial diversity is more densely sampled, increasingly longer genomic segments are needed 36 

to differentiate between distinct species. The scientific community needs to be aware of this 37 

issue and needs to develop methods that better account for it when assigning taxonomic labels 38 

to metagenomic sequences from microbial communities. 39 

Main text 40 

The sequencing of the 16S rRNA gene has commonly been employed to taxonomically 41 

characterize the prokaryotes found in microbial communities. Several 16S rRNA gene 42 
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databases exist—RDP (1), Green Genes (2), SILVA (3)—comprising almost 4 million distinct 43 

gene variants. These databases are used as a reference when assigning taxonomic labels to 44 

newly sequenced versions of this gene. Although the 16S rRNA gene is universally present in 45 

the genomes of prokaryotes, and is phylogenetically-informative (i.e., useful for inferring their 46 

evolutionary history), its use to taxonomically-characterize microbial communities has been 47 

criticized due to the limited taxonomic resolution of 16S rRNA gene analyses (4, 5). 48 

 49 

With the advent of metagenomics—the culture-independent sequencing and analysis of the total 50 

organismal DNA directly extracted from a sample—a broader range of methods have been 51 

developed to characterize the taxonomy of microbial communities. One commonality between 52 

metagenomic methods and those developed for the 16S rRNA is the use of reference 53 

databases to assign taxonomic labels to sequences. Instead of amplicon sequence variants 54 

(ASVs) or operational taxonomic units (OTUS), in a metagenomic context the database might 55 

consist of k-mers, genes, or genomes, and the sequences being taxonomically classified might 56 

be metagenomic reads, contigs, or metagenome-assembled-genomes (MAGs). 57 

 58 

Here we demonstrate that the limited resolution of the 16S rRNA gene as a taxonomic marker 59 

reflects a more fundamental limitation of taxonomic classification itself, i.e., as sequence 60 

databases increase in size, the resolution of taxonomic classification made on the basis of these 61 

databases degrades due to the increased diversity of sequences with a specific taxonomic 62 

label. This effect has previously been demonstrated for whole-metagenome analyses using a k-63 

mer classifier trained on various versions of the NCBI RefSeq database (6). Here, we 64 

demonstrate that the same pattern is observed when analyzing marker gene sequences, 65 

including the 16S rRNA gene and single copy marker genes that are phylogenetically 66 

informative and nearly universally present in prokaryotes (4, 7). The marker genes we analyzed 67 
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included a set of 40 single copy marker genes (8), and the 120 genes used by the Genome 68 

Taxonomy Database (GTDB) (9) (these two sets overlap by 3 genes). 69 

 70 

We began our analysis by comparing the effect of database size on the SILVA 16S rRNA gene 71 

database (394,617 sequences after removal of sequences with incomplete taxonomic labels as 72 

well as those from mitochondria and plastids) and the 120 marker genes used by the Genome 73 

Taxonomy Database (GTDB) project (35,171,383 total sequences). It should be noted that both 74 

databases contain full-length genes that have not been deduplicated, i.e., there can be identical 75 

sequences from the same species. To assess the level of ambiguity present in the database in 76 

a classifier-independent manner, we clustered the database sequences at different identity cut-77 

offs and computed the number of clusters that contain sequences from more than one species 78 

(multi-species clusters). Multi-species clusters approximate the likelihood that a classifier would 79 

be unable to distinguish between the distinct species found in the cluster. It is also important to 80 

note that here we cluster the database sequences rather than the query sequences (as would 81 

normally be done if we constructed ASVs or OTUs). For each gene, we created a collection of 82 

random subsets varying in size from 10,000 to 220,000 sequences. Each subset was clustered 83 

with CD-Hit (10) at several sequence identity cut-offs (95%, 97%, 99%, 100%), requiring that 84 

shorter sequences fully align to longer ones. The clustering thresholds were chosen for several 85 

reasons. Firstly, genes sharing high sequence similarity are likely to contain regions where 86 

metagenomic reads cannot be uniquely aligned, thus, highlighting issues with read-based 87 

taxonomic classification. Further, genes from distinct species that are 100% identical indicate 88 

that species-level resolution is simply not possible for a specific gene. Secondly, these 89 

thresholds are often applied in various bioinformatic contexts. For example, microbial gene 90 

catalogs are often clustered at 95% identity to produce species-level gene clusters (11), while 91 

97% and 99% identity have been used as proxy species-level thresholds in OTU clustering (12). 92 

 93 
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For all genes, the number of sequences in multi-species clusters increased at a super-linear 94 

rate as the database grew (Figures 1A and 1B), with higher rates of growth when clustered at 95 

higher similarity thresholds. The rate at which sequences are clustered with sequences from 96 

other species was estimated using the Y = cXm linear regression model in log-log space, where 97 

m is the rate, Y is the number of sequences in multi-species clusters, and X is the number of 98 

genes in the simulated database. The fraction of species that had at least one sequence in a 99 

multi-species cluster increased with database size (Figure 1C); albeit this fraction was lower 100 

when clustering with higher similarity thresholds. The number of multi-species clusters 101 

depended on the density at which a particular taxonomic "neighborhood" was sampled, with a 102 

positive linear correlation between the number of distinct species within a genus and the 103 

number of multi-species clusters formed by sequences from that genus (Figure 1D). Importantly, 104 

amongst the species pairs that most frequently cooccurred in multispecies clusters when 105 

clustered at 100% identity were pathogens like Bacillus anthracis and Vibrio cholerae, which 106 

clustered with non-pathogenic species from their respective genera (Supplementary Table 1). 107 

This observation highlights the difficulty of distinguishing important human pathogens from their 108 

non-pathogenic neighbors as databases grow. 109 

 110 

To further highlight the extent to which database growth impacts the specificity of taxonomic 111 

labels, we focused on a single genus, Listeria. This genus, that includes the important 112 

foodborne pathogen Listeria monocytogenes, comprised 5,014 RefSeq genome sequences, 113 

representing 34 distinct species. Most genome sequences from this genus (4,439) belonged to 114 

Listeria monocytogenes. From each Listeria genome sequence we extracted the 16S rRNA 115 

gene using Barrnap (13) (7,625 sequences) and 40 prokaryotic marker genes using fetchMG 116 

(14).  117 

 118 
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We identified 7,625 16S rRNA gene sequences (ranging from 1 to 9 copies per genome, 119 

consistent with the expectation that this gene is often multicopy in Listeria) and 200,359 marker 120 

gene sequences (~40 per genome, consistent with the expectation that these genes are single 121 

copy). The output of fetchMG was filtered, for each marker gene, by removing sequences that 122 

were of very different length (below half or above twice as long as the average sequence) and, 123 

thus, likely to be artifacts. For each gene, we randomly subsampled its sequences into sets of 124 

varying sizes, from 1,000 to 5,000 gene sequences in 1,000 gene increments. We repeated this 125 

process 100 times to estimate the variability of our results. As observed more broadly, even 126 

within this single genus, the number of sequences in multi-species clusters increased with the 127 

database size at all clustering thresholds and for all marker genes, including the 16S rRNA gene 128 

(Figure 2). Notably, at 95% identity each Listeria species had 16S rRNA gene sequences in 129 

multi-species clusters when analyzing the full data set. Further, 25% (100% identity) to 65% 130 

(95% identity) of all the L. monocytogenes sequences occurred in multi-species clusters, 131 

reiterating that database growth is affecting our ability to discriminate important pathogens from 132 

their near neighbors.  133 

 134 

Our results support the observation that as sequence databases grow to contain more species 135 

and sequences, they are progressively losing species-level resolution for taxonomic 136 

classification (6). This observation has broad implications given that genes are routinely 137 

employed for various bioinformatic tasks, such as the taxonomic classification of genomic and 138 

metagenomic reads and assemblies, the curation of gene and metagenome-assembled-139 

genome (MAG) catalogs, phylogeny estimation, and abundance profiling (3, 9, 11, 15, 16). The 140 

main difference between marker genes was the rate at which they lost species-level resolution, 141 

with the 16S rRNA gene sometimes being an outlier (a previously noted trend (4, 5)). Notably, at 142 

lower clustering thresholds (corresponding to longer evolutionary distances), the 16S rRNA 143 

gene is less informative than other marker genes, while at the highest threshold of 100% identity 144 
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the 16S rRNA gene shows higher discrimination, likely due to the higher level of short-term 145 

sequence evolution within hypervariable regions of this gene. 146 

 147 

Our results call into question highly specific taxonomic classifications (e.g., species, strain) for 148 

individual metagenomic reads and genes that are simplistically assigned based upon sequence 149 

similarity to database sequences. While, at some level, the community understands that 150 

accurate classification requires the use of whole-genome data (9, 17, 18), many computational 151 

tools for metagenomic analysis continue to classify individual k-mers, reads, and genes (1, 16, 152 

19, 20). Our results indicate that such methods might provide overly specific taxonomic 153 

assignments for taxa that are underrepresented in the reference database used for analysis. 154 

Further, our results reemphasize the issues associated with the methods used to create 155 

microbial gene catalogs, which typically cluster taxonomically unlabeled genes into a set of 156 

representative sequences, which are then assigned taxonomic labels. Such workflows have 157 

been shown to create multispecies clusters, irrespective of the sequence identity threshold used 158 

for clustering, thereby effectively erasing entire species from the catalogs (11). 159 

 160 

We suggest that taxonomic classifiers account for how densely a particular taxonomic group is 161 

represented in a database when assigning taxonomic labels. Further, future work should 162 

continue to explore what fraction of a genome is required to accurately identify a particular 163 

species within metagenomic data, and to quantify the taxonomic information content of different 164 

genomic regions. Instructively, even when comparing the average nucleotide identity (ANI) of 165 

the entire shared gene or genomic content of genomes, the commonly used threshold of 95% 166 

ANI is inconsistent as a proxy for species. For example, there are species within genera like 167 

Brucella or Mycobacterium that can only be differentiated above 99.5% ANI (18, 21). And highly 168 

sampled species (≥100 genome sequences) have been observed to comprise strains that are 169 

more divergent than the 95% cutoff (22). 170 
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 171 

At the broadest level, our work reiterates the long-noted issues with using discrete and definitive 172 

taxonomic labels for DNA sequences that are continually evolving (23). Recombination alone 173 

can render a genome a mosaic of lineages, with some horizontally transferred sequences 174 

potentially unrelated to any specific lineage. And the implications extend beyond taxonomic 175 

analysis to analyses that rely on taxonomy. For example, it is common to use taxonomic 176 

classifications based upon marker genes to infer the functional profile of microbial communities 177 

(24). A better approach would combine the information from taxonomic and functional markers 178 

in an application-specific manner. It is important that future work continue exploring the 179 

relationship between molecular evolution, taxonomy, function, the composition of sequence 180 

databases, and the fidelity of annotations when using reference databases as substrates for 181 

metagenomic analysis. 182 

Data availability 183 

All the data used for this study is publicly available. The SILVA database used can be 184 

downloaded from https://www.arb-185 

silva.de/fileadmin/silva_databases/current/Exports/SILVA_138.1_SSURef_tax_silva.fasta.gz. 186 

The GTDB marker genes (release version 207) can be downloaded from 187 

https://data.gtdb.ecogenomic.org/releases/release207/207.0/genomic_files_all/bac120_marker_188 

genes_all_r207.tar.gz. The NCBI Assembly database accessions for the Listeria assemblies 189 

can be found in Supplementary File 1. 190 
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 Figure Legends 276 

Figure 1: Clustering analysis for simulated databases created by randomly sampling sequences 277 

from the 16S rRNA SILVA database and the 120 marker gene Genome Taxonomy Database 278 

(GTDB). Each simulated database was clustered with CD-Hit at several sequence identity cut-279 

offs (95%, 97%, 99%, 100%), requiring that shorter sequences fully align to longer ones. The 280 

16S rRNA gene is denoted by a star in all subplots. A) The relationship between the number of 281 

genes in the simulated databases and the number of sequences in multi-species clusters and 282 
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the total number of multi-species clusters. For the GTDB, each curve is for one of the 120 283 

marker genes. B) The slopes of the regression models for the number of sequences in multi-284 

species clusters as a function of the number of genes in the simulated databases. Each point 285 

represents one of the 120 marker genes in the GTDB. C) The proportion of species with 286 

sequences in multi-species clusters. D) The relationship between the number of multi-species 287 

clusters that a species belongs to and the species richness of its genus (i.e., the total number of 288 

species from that genus) in the simulated database. This data was only taken from the final 289 

iteration of the simulated databases. The results were aggregated across all 120 marker genes 290 

in the GTDB. 291 

 292 

Figure 2: Clustering analysis for the simulated databases created by randomly sampling 293 

sequences from the 16S rRNA and the 40 marker genes extracted from 5,014 Listeria 294 

genomes. Each simulated database was clustered with CD-Hit at several sequence identity cut-295 

offs (95%, 97%, 99%, 100%), requiring that shorter sequences fully align to longer ones. The 296 

results for each gene are reported by the median over 100 bootstrap experiments. The 16S 297 

rRNA gene is denoted by a star in all subplots. A) The relationship between the number of 298 

genes in the simulated databases and the number of sequences in multi-species clusters and 299 

the total number of multi-species clusters. Each curve is for one of the 40 marker genes B) The 300 

slopes of the regression models for the number of sequences in multi-species clusters as a 301 

function of the number of genes in the simulated databases Each point represents one of the 40 302 

marker genes C) The proportion of species with sequences in multi-species clusters. 303 
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