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Abstract

RNA-based medicines and RNA-targeting drugs are emerging as promising new
approaches for treating disease. Optimizing these therapeutics by naive experimen-
tal screening is a time-consuming and expensive process, while rational design
requires an accurate understanding of the structure and function of RNA. To ad-
dress this design challenge, we present ATOM-1, the first RNA foundation model
trained on chemical mapping data, enabled by data collection strategies purposely
developed for machine learning training. Using small probe neural networks on
top of ATOM-1 embeddings, we demonstrate that this model has developed rich
internal representations of RNA. Trained on limited amounts of additional data,
these small networks achieve state-of-the-art accuracy on key RNA prediction
tasks, suggesting that this approach can enable the design of therapies across the
RNA landscape.

1 Introduction

RNA-based medicines have recently demonstrated significant therapeutic potential through the
successful development of mRNA vaccines, antisense oligonucleotides (ASOs), siRNAs, and RNA
editing therapies [1–6]. In addition, small molecule drugs targeting endogenous RNA species offer
new avenues to treat disease, in particular when the corresponding protein targets are undruggable
[7, 8]. Realizing the full therapeutic potential of RNA requires predicting and optimizing complex
properties, whether the stability of mRNA vaccines, activity of ASOs, or the binding affinity of small
molecules to RNA. As many of these properties are mediated by structure and experimental structure
determination is difficult, computational models that understand structure are important to accelerate
the development of RNA-focused therapies.

A major challenge in the design of RNA-focused therapies is the lack of ground truth data to use
for modeling. Functional data, such as on siRNA toxicity, can often only be collected at low
throughput. With respect to structural data, few experimentally determined tertiary structures of
RNA are available. In fact, only 1% of entries in the Protein Data Bank (PDB) comprise RNA
alone [9], despite the over 10-fold excess of genome intervals that produce RNA relative to proteins
[10]. While evolutionary information encoded in multiple sequence alignments (MSAs) can provide
critical insights on structure and function, these alignments are often shallow and uninformative for
human targets and engineered sequences [11]. Consequently, state-of-the-art RNA structure and

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.12.13.571579doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.13.571579
http://creativecommons.org/licenses/by-nc-nd/4.0/


function prediction approaches fall short of the recent successes of highly accurate protein prediction
methods [12].

Transfer learning from foundation models pretrained on large datasets has proven successful in
many data-limited applications of machine learning [13]. Key to success on downstream tasks is the
emergence of complex internal representations that encode a general understanding of the application
domain. One technique to demonstrate the emergence of these internal representations is the use
of so-called probe networks: small neural networks that take as input internal embeddings from the
larger model and produce predictions of properties of interest [14–17]. A foundation model with a
rich and accessible internal representation of RNA structure could enable accurate predictions even
for severely data-limited tasks. Critically, training such a model requires a sufficiently large and
informative dataset.

We show that chemical mapping can provide such a dataset for an RNA foundation model. In
a chemical mapping experiment, chemical reagents can be used to modify RNA nucleotides in
a structure-dependent manner [18–21]. These modifications are detected by sequencing to glean
information on an RNA’s conformational states in solution or in cells. Multiplexing over RNA
species combined with next-generation sequencing (NGS) allow for the collection of large datasets.
Additionally, and in contrast to MSAs, chemical mapping experiments can be run on arbitrary
RNA sequences, allowing the exploration of sequence space beyond natural sequences. As these
experiments directly measure structural information, foundation models trained on chemical mapping
data could enable better predictions on structure-related tasks for RNAs of interest compared to
models trained on natural sequences alone [22–24].

We present ATOM-1, a foundation model trained on large quantities of chemical mapping data
collected in-house across different experimental conditions, chemical reagents, and sequence libraries.
Using probe networks, we show that ATOM-1 has developed rich and accessible internal representa-
tions of RNA. Despite their size, these small probe networks demonstrate state-of-the-art accuracy
on several tasks, including predicting RNA 3D structure, secondary structure, and in-solution RNA
stability.

2 Results

2.1 Training a foundation model on chemical mapping data

We first give a brief overview of chemical mapping and how to pose it as a supervised machine learning
problem. Chemical mapping experiments modify RNA and produce a collection of sequencing
reads for each input RNA species; each read may contain substitutions, insertions, or deletions
relative to the original sequence (Figure 1). The distribution of these mutations is related to the
structure (or ensemble of structures) of the input RNA; different chemical mapping reagents and
experimental conditions measure different aspects of RNA structure. For many of these reagents,
a first-order approximation is that unpaired nucleotides are more likely to result in mutations than
paired nucleotides.

From a machine learning perspective this is a standard sequence-to-sequence problem: the input
sequence is the RNA species, while the output sequences are the observed reads assigned to that
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Figure 1: RNA structure and chemical mapping reads. (A) An RNA secondary structure (left)
and tertiary structure (right) for the same RNA. Lines in the secondary structure denote base-paired
positions. Many chemical mapping reagents will preferentially, but not exclusively, modify unpaired
positions. (B) Sequencing reads from a chemical mapping experiment, with mutations (red) from the
original sequence occurring more frequently at unpaired positions.
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Figure 2: A linear probe with 257 parameters trained on one secondary structure generalizes to
other RNAs. (A) The predicted probability of each base pair for PDB ID 8DP3 [27] as estimated by
our 257-parameter probe. (B) The ground truth secondary structure for PDB ID 8DP3 represented as
a symmetric matrix of base pairs. This linear probe of ATOM-1’s pair representation was trained
on a single secondary structure (PDB ID: 6WJR [28]). The accurate prediction demonstrates that
ATOM-1 has developed accessible and accurate representations of secondary structure.

species. Readout via NGS allows the input species to be multiplexed and experiments to be scaled to
produce the hundreds of billions of tokens needed to train high-capacity machine learning models.

We collect chemical mapping data using several chemical reagents on a set of diverse, custom-
designed libraries under several different conditions. To this data we fit a custom, structure-aware,
encoder-decoder sequence-to-sequence transformer-based model. For an RNA sequence of length n,
the embedding produced by the encoder is two objects: the single representation, which is an array
of size n-by-512, and the pair representation, an array of size n-by-n-by-256 [25]. In the following
sections we show that the encoder’s embeddings contain rich and accessible information on RNA
structure and function.

In machine learning, probe networks are commonly used to demonstrate the emergence of accurate
and accessible representations in large, pretrained models [26]. Importantly, computational probing
experiments emulate the process of prototyping the use of the foundation model for a new prediction
task. A typical probing experiment consists of two steps. First, we train a small network (the
probe) to predict the property of interest directly from the foundation model embeddings. Next, to
show that performance of the probe is the direct result of the foundation model and not our training
procedure or probe network, we train the same network without access to embeddings (the baseline).
If the performance of the probe is substantially better than that of the baseline we conclude that the
foundation model contains useful and accessible representations of the property of interest.

2.2 Secondary structure prediction

RNA secondary structure is characterized by patterns of hydrogen bonding between nucleotide
bases in canonical Watson-Crick or wobble base pairs [29]. These structures are crucial for RNAs’
biological function and the design of RNA-focused therapies. From a mathematical standpoint, a
secondary structure S of an RNA of length n is a set of unordered pairs {i, j} where i ̸= j ∈ 1, . . . , n.
Each pair in S is called a base pair.

To demonstrate that ATOM-1 has an understanding of secondary structure, we consider probe
networks that take embeddings from ATOM-1 as input. Since base pairing is a property of each pair
of nucleotides, it is natural to apply these probes to the pair representation independently along the
last dimension. As an example, a 257-parameter linear model trained on a single secondary structure
yields qualitatively-reasonable predictions of secondary structure (Figure 2). In fact, despite only
being trained on an FMN riboswitch aptamer structure (PDB ID: 6WJR [28], 112 nucleotides), this
simple probe is able to generalize to distinct RNA classes, for instance a cloverleaf-like RNA domain
(PDB ID: 8DP3 [27], 90 nucleotides). This demonstrates that in the process of learning to predict
chemical mapping data, ATOM-1 has developed an accessible representation of secondary structure.
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Figure 3: A probe of ATOM-1 for secondary structure prediction generalizes with high accuracy.
We train single-hidden-layer MLP probe networks on embeddings from ATOM-1 and RNA-FM. As a
baseline, we also train the same architecture without access to any foundation model as a baseline. We
further include comparisons with two physics-inspired predictors, CONTRAFold and RNAFold, that
do not use foundation models. Comparisons are shown for evaluation sets derived from three sources:
(A) the PDB, (B) Archive II, and (C) bpRNA-1m TS0. For all three panels, the probe networks were
trained on PDB structures. Unlike for the PDB evaluation set, the secondary structures in ArchiveII
and bpRNA-1m TS0 are inferred from multiple sequence alignments. (D) Arc diagrams comparing
secondary structures predicted using the probe of ATOM-1 to experimental secondary structures
derived from the PDB. Comparisons are shown for three structures from the PDB evaluation set:
the SARS-CoV-2 frameshift stimulation element (PDB ID: 7MKY [30]), an apo THR riboswitch
aptamer (PDB ID: 7KD1 [31]), and a SAM-I riboswitch variant (PDB ID: 7EAF [32]). Arcs connect
nucleotides in Watson-Crick base pairs. The intensity of coloring represents the predicted probability
of base-pairing.

To show that the secondary structure representations developed by ATOM-1 are highly accurate, we
consider a slightly more expressive probe: a multilayer perceptron (MLP) with a single hidden layer
of dimension 2048 (for a total of ∼2.6M parameters). For comparison, we consider a probe with the
same architecture applied to RNA-FM [22], a foundation model trained on naturally-occurring RNA
sequences; following section 2.1, we include a baseline network with the same architecture applied
only to sequence features. For technical details see section S1.

We train the probe networks on a subset of single-chain RNA secondary structures derived from PDB
entries before April 30, 2020. For testing, we use secondary structures from PDB entries published
after May 1, 2020 and further exclude sequences with more than 80% sequence identity to our training
set from the evaluation. See section S1.2 for more details. Figure 3A presents the accuracies of the
different prediction methods as measured by F1-score (see section S1.1). The probe of ATOM-1 is
competitive with physics-inspired methods, RNAFold [33] and CONTRAFold [34], and performs
substantially better than the same probe architecture applied to RNA-FM. Our baseline—the probe
architecture applied directly to sequence features—demonstrates minimal prediction accuracy.
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Figure 4: A probe of ATOM-1 for tertiary structure prediction demonstrates state-of-the-art
accuracy. Results are shown for N = 29 clusters of test set structures published after May 1, 2022.
(A) Structure prediction accuracy of a probe of ATOM-1 as measured by RMSD compared to RhoFold
[38] and RoseTTAFold2NA [39], both of which have access to MSAs. (B) Structure prediction
accuracy of a probe of ATOM-1 as measured by LDDT versus the baseline model. The baseline is
a model with an identical architecture to the probe but without access to ATOM-1. (C) Number of
cases for which each method predicts the best structure among all tested methods as measured by
RMSD and LDDT.

To test the generalization capability of our probe, we validate on two additional datasets: bpRNA-
1m TS0 [35, 36] and ArchiveII [37]. As with the PDB evaluation set, we remove test cases with
high sequence identity to our training set. Secondary structure in these datasets is not derived
from experimentally-determined tertiary structure, but inferred from multiple-sequence alignments.
Despite the shift in domain, our model remains highly accurate, demonstrating strong generalization
ability (Figure 3B,C).

We find that our probe generates accurate predictions for complex RNAs across diverse RNA classes
and lengths (Figure 3D). For instance, we accurately predict secondary structures for a SARS-CoV-2
frameshift stimulation element construct, an apo THR riboswitch aptamer, and a SAM-I riboswitch
variant. These examples demonstrate that the probe is able to correctly predict pseudoknots, secondary
structure elements which physics-inspired methods often fail to predict [33, 34].

Finally, we note that our probe technique is purely local: each prediction for a pair of residues uses
only the single and pairwise representation for those two residues. This is in contrast to previous
secondary structure techniques which use non-local dynamic programming algorithms [33, 34],
repeated convolutional layers with large receptive fields [22, 35, 40], or both [41, 42]. Because our
probe network does not include any interactions between nucleotides, any predictive performance
originates from the representation present in the ATOM-1 embeddings alone.

2.3 Tertiary structure prediction

While secondary structure is an important aspect of RNA, many therapeutically-relevant properties
of RNA are mediated by the full tertiary (3D) structure. A natural question, then, is to what extent
ATOM-1 contains readily-accessible 3D structural information, especially since one might suspect
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Figure 5: Structure predictions for a probe of ATOM-1 compared to the baseline without
foundation model embeddings. The baseline model is identical to our probe architecture but does
not use ATOM-1. Predictions are overlaid on experimental structures for different test set RNAs: (A)
a Pre-Q1 riboswitch (PDB ID: 8FB3 [46]), (B) a G-quadruplex (PDB ID: 7SXP [47]), (C) a synthetic
tRNA (PDB ID: 7URI [48]), and (D) a cloverleaf RNA fused with a tRNA (PDB ID: 8S95 [49]).

that chemical mapping data is dependent only on secondary structure. To answer this, we probe
ATOM-1 using a shallow (two-layer), MSA-free variant of the Evoformer [25] with a custom structure
module (see section S2). We train and evaluate our model on RNA structures from the PDB and
report results on clusters of test set sequences grouped by sequence similarity (see section S2.4).

Figure 4A compares our probe of ATOM-1 to two state-of-the-art 3D structure prediction meth-
ods: RhoFold [38], the deep learning method with best performance from CASP15 [43], and
RoseTTAFold2NA [39]. Notably, both RhoFold and RoseTTAFold2NA make use of MSAs which
are time-consuming to generate and are often unavailable for RNAs of interest [11]. Despite having
no access to MSAs and being considerably smaller (∼15M parameters) and shallower (2 layers) than
RhoFold (∼100M parameters in 12 layers) and RoseTTAFold2NA (∼68M parameters in 40 layers),
our probe produces predictions with higher global accuracy as measured by root mean-squared
deviation (RMSD) [44] to experimental structures (Figure 4A). Moreover, compared to our baseline
network, which uses an identical architecture without ATOM-1 embeddings, the probe produces
predictions with consistently higher local accuracy as measured by the local distance difference
test (LDDT) [45] (Figure 4B). Overall, our probe generates the best 3D structure predictions more
often than state-of-the-art deep learning methods as measured by both RMSD and LDDT (Figure
4C). Together, these comparisons show that ATOM-1 produces readily accessible and accurate
representations of RNA 3D structure.

The utility of ATOM-1 embeddings is further evident in the visualizations of predicted 3D structures
in Figure 5. We find that our probe network produces RNA models that match the native global fold
for diverse RNA targets across a broad range of sequence lengths. These predictions substantially
outperform the baseline model without ATOM-1. Notably, this improvement is apparent even in cases
where the native structure includes mostly non-canonical base-pairing (for instance, the G-quadruplex
in Figure 5B), suggesting that ATOM-1 embeddings contain structural information beyond secondary
structure.

2.4 In-solution stability

Successful distribution of mRNA vaccines requires mRNA constructs that are stable over long periods
of time in solution. We evaluate the ability of our foundation model to help predict RNA stability
using data from the Stanford OpenVaccine Kaggle community prediction challenge [50].
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Figure 6: A probe of ATOM-1 takes first place on data from the OpenVaccine community
challenge. (A) The empirical distribution of test losses across challenge submissions. The quantile
value denotes the fraction of submissions with smaller (better) test losses. Lower quantile values
indicate better performance. We also show the performance of a baseline with identical architecture to
our probe but without access to ATOM-1. (B) Validation versus test loss for all submissions from the
OpenVaccine Kaggle challenge and our probe model (lower is better). Compared to other methods,
we generalize better to long sequences present in the test set. The black dashed line is a line of best
fit on the top 300 submissions by test loss. Loss is calculated as the mean prediction RMSE across
multiple prediction tasks (see section S3.2).

We train a simple probe network (∼10M parameters) to predict degradation and reactivity charac-
teristics from the embeddings of ATOM-1. Figure 6A shows that our method outperforms all 1636
challenge submissions. For comparison, we also show the accuracy of a baseline network without
access to ATOM-1 embeddings. As in previous tasks, we observe significant accuracy regression—the
test loss of the baseline network is 37% higher compared to the ATOM-1 probe—indicating that the
high prediction accuracy of our probe of ATOM-1 is not driven by the probe architecture or training
procedure. We provide more details on the prediction task and its evaluation in section S3.2.

The design of this challenge allows us to showcase the generalization abilities of models built on top
of ATOM-1. Figure 6B compares validation and test losses for the different methods that participated
in the challenge. We note that the ATOM-1 probe does particularly well with respect to the sequences
in the test set, which are about 30% longer than those in the training and validation sets. During the
challenge, participants were able to repeatedly evaluate the accuracy of their methods on the validation
set, likely leading to overfitting to this validation set by some methods, whereas an evaluation on the
test set was not available until the end of the challenge.

Furthermore, we note that we do not perform any pretraining or self-distillation using test set
sequences, whereas the top Kaggle solutions used one or both of these approaches [51, 52]. While
these methods are perfectly valid within the confines of the challenge, they are likely to lead to test
metrics that are overly optimistic with respect to the prospective performance of models on new
sequences—even those drawn from the same distribution as the test set.

3 Outlook

We show that ATOM-1, a foundation model trained on large quantities of chemical mapping data, has
developed accurate and accessible representations of RNA. Despite their small size, probe networks
trained on ATOM-1 embeddings demonstrate state-of-the-art accuracy across multiple tasks. On 3D
RNA structure prediction in particular, probing ATOM-1 improves upon methods that have access to
coevolution information in multiple sequence alignments—information that is often not available for
prospective RNA design or for human RNA targets. On a community challenge for RNA stability
prediction, a small ATOM-1 probe takes first place in a retrospective analysis.
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ATOM-1’s strong generalization abilities suggest broad applicability across a wide range of other
properties relevant to the design of RNA-focused therapies, such as RNA translation efficiency, siRNA
toxicity, and ASO activity. Given a small dataset of experimental measurements, the foundation
model enables fast and accurate prototyping.

Here we have focused on small probe networks, which are ideal to query the accessibility and
information content of foundation model embeddings, but may not yield the highest prediction
accuracy. Larger, more expressive networks and more advanced transfer learning techniques can
substantially improve this accuracy. Similarly, ATOM-1 is trained solely on data from chemical
mapping experiments; this training data can be readily extended to include additional data from
experiments that provide orthogonal information on RNA structure and function, enriching the
information content of the foundation model embeddings and its generalization abilities.
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Supplementary Material

S1 Secondary structure probing

For both ATOM-1 and RNA-FM, our probe network consists of a multilayer perceptron with a
single hidden layer of dimension 2048. For each pair of nucleotides i and j we apply the probe to
the length 1024 vector Eij = (Si, Sj , Pij). Si and Pij are the 512 and 256 dimension single and
pair representations produced by ATOM-1. When probing RNA-FM, we used the 640 dimensional
representation of the last layer as the single representation. Since RNA-FM does not have a natural
pair representation, we concatenated the 20 attention heads from all twelve layers, for a total effective
pairwise dimension of 240. As such, the probe network for RNA-FM and ATOM-1 have slightly
different numbers of parameters at 3.1M and 2.6M respectively. The output of our probe is a pairing
probability pij for each pair of nucleotides. We train on the ground truth pairing matrix using the
binary cross entropy loss function.

As a baseline, we use a model with the same architecture (a multilayer perceptron with a single
hidden layer of dimension 2048) but with sequence features instead of ATOM-1 embeddings as input.
The sequence features for pair ij are the one-hot embeddings of the nucleotides i and j and a one-hot
embedding of the distance between i and j in the sequence, i− j, with maximum distance of 32 [25].
This model resulted in nearly zero accuracy. To strengthen the baseline in the main text, we applied
Sinkhorn’s algorithm to the predicted logits to generate a doubly-stochastic base-pairing probability
matrix pij such that

∑
i pij =

∑
j pij = 1. The Sinkhorn layer allows the baseline network some

non-local interaction between base pairs, improving predictive performance.

S1.1 Metrics

To calculate the F1 score for a prediction, we first solve the assignment problem using the Hungarian
algorithm to generate the single most probable secondary structure conformation. For this conforma-
tion we calculate the Positive Predictive Value (PPV) and Sensitivity (SEN) compared to the ground
truth conformation: PPV = TP

TP+FP , SEN = TP
TP+TN , where TP, TN, and FP are respectively the

number of true positives, true negatives, and false positives. Finally, the F1 score is the harmonic
mean of PPV and SEN : F1 = 2×PPV× SEN/(PPV+SEN). See Table S1 for a comparison of
all three metrics across the three secondary structure test sets.

S1.2 Datasets and splits

Our training dataset is a subset of PDB entries described in Sec. S2.4, filtered to include only single-
chain RNA structures of unmodified nucleotides. We construct the PDB secondary structure pairing
matrices using DSSR [53]. We allow each nucleotide to have only a single pair; if a nucleotide is
identified as participating in multiple pairs we use the canonical Watson-Crick pair. For our PDB
test set, we use structures published after May 1, 2020. For all three test sets (PDB, ArchiveII,
bpRNA-1m TS0), we applied a filter that removed entries with less than 80% sequence identity to
our PDB training set. We further cluster each test set at the level of 80% sequence identity, and the
resulting F1 metric is reported after averaging over each cluster.

PDB bpRNA-1m TS0 ArchiveII

F1 PPV SEN F1 PPV SEN F1 PPV SEN

Probe(ATOM-1) 0.879 0.891 0.856 0.564 0.524 0.653 0.636 0.653 0.628
Probe(RNA-FM) 0.637 0.696 0.582 0.411 0.399 0.460 0.555 0.582 0.543
CONTRAFold 0.830 0.791 0.828 0.535 0.478 0.646 0.572 0.552 0.601
RNAFold 0.845 0.808 0.838 0.507 0.445 0.631 0.551 0.519 0.592
Baseline 0.129 0.158 0.113 0.011 0.009 0.017 0.008 0.007 0.010

Table S1: Our probe network applied to ATOM-1 achieves top accuracy on three secondary
structure datasets. The table reports the mean of F1, PPV, and SEN applied to each of the three
secondary structure test sets (PDB, bpRNA-1m TS0, Archive II) discussed in the main text.
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• Our PDB test set is constructed from single-chain unmodified RNA PDB entries deposited
after May 1, 2020, resulting in 113 structures in 57 clusters.

• The ArchiveII test set was constructed by filtering out sequences longer than 1000 nu-
cleotides, removing sixteen entries, with 3825 structures assigned to 1318 clusters.

• The bpRNA-1m TS0 test set was taken directly from https://zenodo.org/records/
4430150, and after filtering had 1277 sequences assigned to 1276 clusters.

See the Supplementary Data for a reproducible list of all training PDB entries and test clusters.

S2 3D structure prediction

S2.1 A simple 3D structure module

Inspired by Equifold [54], we model each RNA nucleotide as a collection of partially-overlapping
rigid bodies, each represented as an element of SE(3). Because each RNA nucleotide has many
degrees of freedom we use 8 rigid bodies for each nucleotide, though other, more parsimonious
representations are possible. One peculiarity of 3D structure prediction is that this representation is
not unique: an RNA structure represented by the series of rigid bodies F1, . . . , Fn ∈ SE(3) should
be considered identical to TF1, . . . , TFn for any T ∈ SE(3) as this is a rigid transformation of the
original structure.

This representation allows us to use a simple, parameter-free fixed nonlinearity to map from invariant
vectors to 3D structures inspired by the Chroma structure module [55]. For every pair of rigid bodies
A and B we predict the relative position of the origin of B in the coordinate frame of A: (A−1B)0.
Here 0 is the zero vector in R3, and we use the natural action of SE(3) on R3. This vector (which
we call the pairwise displacement) is invariant with respect to left action of SE(3) on itself by
multiplication, as (TA)−1(TB) = A−1B for all T ∈ SE(3), and is thus a sensible thing to predict.

To find the single structure most consistent with the predicted pairwise displacements dij ∈ R3 we
consider the following optimization problem:

minimize
F1,...,Fn∈SE(3)

∑
ij

aij
∥∥(F−1

i Fj)0− dij

∥∥2
2

(1)

Here aij is a non-negative weight produced by our network.

While the optimization problem (1) does not have a closed-form solution it does allow for a very
fast coordinate descent algorithm. This is because minimizing over a single rigid body Fi with all
other bodies fixed is an instance of the celebrated Kabsch problem, which does admit a closed-form
solution. To speed up convergence we use parallel block coordinate descent: we solve the Kabsch
problem for each frame in parallel and update all frames simultaneously. During training or inference
we run this algorithm until convergence or a maximum number of iterations (100) is reached. While
parallel coordinate descent is not guaranteed to converge to the global optimum, we find that this
procedure works in practice. To speed up and stabilize training we use a simple approximation
to the derivative of this operation: we stop derivatives for all but the last step of the optimization
procedure [56].

S2.2 Probe architecture

ATOM-1 embeds an RNA sequence of length n as a tuple of two arrays (S, P ) with S ∈ Rn,d and
P ∈ Rn,n,d′

; following AlphaFold (AF2) [25], we refer to these as the single and pair representations
respectively. The structure prediction probe takes these arrays as input features and applies three
simple components: an input adapter, a small trunk, and the very simple structure module described
above.

The input adapter is two linear layers that are applied independently along the last dimension of the
single and pair representations to change d and d′. The trunk is an extremely shallow version of the
Evoformer from AF2 (without any MSA features). In all of our experiments we use a trunk with
two layers. Finally, the structure module applies linear mappings to the final dimension of the pair
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representations to produce the estimated displacements dij ∈ R3 and weights aij , which are fed into
the optimization problem 1 to produce a structure.

There are two additional input features used in some experiments: a sequence featurizer which
embeds simple features of the input sequence (nucleotide identities and relative positions), and a
recycling embedder, which is simply a pair of layernorms that can be used to feed the output of
the main trunk as input to the trunk. All feature embeddings (the adapted ATOM-1 embeddings,
sequence embeddings, and recycling embeddings) are summed before being fed into the trunk.

S2.3 Loss functions and training

We use a simplified version of the FAPE loss from AlphaFold [25]:

L(F, F̂ ) =
∑
ij

∥∥∥(F−1
i Fj)0− (F̂i

−1
F̂j)0

∥∥∥
2

where F is the ground truth structure and F̂ is the prediction. As is common in structure prediction
we attach additional auxillary losses: we add a classifier head to the pair representation to predict the
direction of the vector (F−1

i Fj)0 using a discretization of the sphere and an additional direct loss on
the predicted displacement dij , L(F,d) =

∑
ij

∥∥(F−1
i Fj)0− dij

∥∥
2
.

Our structure probe uses recycling [25]: during training we run the network a random number of
iterations (between 0 and 3) without tracking gradients by feeding the output of the trunk into the
network as an additional input. We then take one final step where we apply loss functions and
compute the gradient with respect to the network parameters. During inference we run 10 recycling
iterations before producing a structure.

S2.4 PDB split

We curate a set of PDB structures and a train/test split designed to make fair comparisons with
competing 3D structure prediction models. We compile a structure set from all RNA-containing
PDB structures, separating each PDB into groups of interacting chains and excluding cases where
we expect RNA structure to be primarily determined by protein or DNA binding-partners. We then
create a training set by selecting structures from PDB entries published prior to April 30, 2020. Since
competitor methods may have been trained on structures released after April 30, 2020, we use only
PDBs published after May 1, 2022 as test structures. We finally apply a sequence similarity filter
(<80% similarity as measured by cd-hit-est-2d [57]) to ensure that our test set is sufficiently far
from our training set.

We report results on clusters of test set sequences, grouping sequences with similarity >80% as
measured by mmseqs2 [58].

A list of PDB IDs in our train and test set is available in the Supplementary Data.

S3 In-solution stability

S3.1 Dataset

In 2020 the Das lab at Stanford launched the OpenVaccine Kaggle challenge to accelerate the
development of computational tools for vaccine design [50]. Participants were asked to predict
nucleotide-level degradation rates in either high temperature or high pH, with and without high
concentrations of magnesium, as well as reactivity when exposed to a small-molecule reagent.

The OpenVaccine organizers provided experimental labels for 2400 107-nt-long constructs as the
training set. Upon completion of the challenge, participating teams were evaluated based on the
accuracy of their predictions on a test set of 1172 130-nucleotide-long sequences. These sequences
comprised a private test set during the challenge i.e., participants did not have access to individual
labels or aggregate prediction accuracy on this set during the challenge. Instead, participants calibrated
their methods based on an aggregate accuracy score for 629 107-nucleotide-long sequences in a
public test set. In the main text we refer to these public and private test sets as the validation and test
sets respectively, due their roles in the competition. Further details on the datasets, as well as links to
the data itself can be found in the follow-up paper from the challenge organizers [51].
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S3.2 Prediction task

Given a sequence, the prediction target for this task is a simultaneous, per-nucleotide estimate of
three different experimental measurements. Predictions were only scored up to a certain number of
nucleotides, which we denote here as L (68 for the training set, 91 for the private test set). Given a
prediction as well as a corresponding set of experimental measurements ŷ, y ∈ RL×3, the per-sample,
mean columnwise root mean squared error (MCRMSE) is computed as

MCRMSEsample =
1

3

3∑
i=1

√√√√ 1

L

L∑
j=1

(yij − ŷij)
2
. (2)

In the challenge, the aggregate MCRMSE over the dataset was computed in the following way:

MCRMSEdataset =
1

3

3∑
i=1

√√√√ 1

L

L∑
j=1

N∑
k=1

(
ykij − ŷkij

)2
, (3)

where N is the number of samples in the dataset, and ykij denotes the value of the ith condition at
position j for sample k.

S3.3 Probe architecture

Following the previous sections, our probe architecture takes in single and pair representations from
ATOM-1 as input, and consists of an input adaptor, trunk, and prediction head. The input adaptor
of the probe consists of linear layers applied to the sequence dimensions of the single and pair
representations. The trunk of the probe uses a multilayer perceptron (MLP) to compute attention
weights for the pair representation. These attention weights are used to compute a multi-head attention
residual update to the single representation. The single representation then receives a residual update
from a one-layer MLP. Finally, a linear layer projects the updated single representation down to
the output dimensions to generate the predictions. In total, the prediction model contains about 10
million parameters.

S4 External network evaluation

We make predictions with two external 3D structure models: RhoFold [38] (formerly known as
E2EFold-3D), and RoseTTAFold2NA [39], and one external foundation model RNA-FM [22]. In
this subsection we briefly describe how we used these models.

For RoseTTAFold2NA, we used commit 43bdd89, dated November 9, 2022, from the
GitHub repository (https://github.com/uw-ipd/RoseTTAFold2NA/tree/main) and weights
RF2NA_sep22.pt. We prepared all conda environments and MSA databases as described in the
README file. To make predictions we use the prediction script provided, which automatically
generates MSAs.

For RhoFold, the original GitHub repository https://github.com/ml4bio/E2Efold-3D was
moved, but the new repository was not available at the time of writing. Instead we used a cached
copy of the code and weights from October 10, 2022, and exactly reproduced the conda environment
as described in the README. We re-used the MSAs generated as part of the RoseTTAFold2NA
workflow.

For RNA-FM, we used commit 3e24749 of the GitHub repository https://github.com/ml4bio/
RNA-FM. The weights were downloaded prior to August 24, 2022. For inference we used the
pretrained network configuration extract_embedding.yml and the corresponding weight file
RNA-FM_pretrained.pth to avoid data leakage with the secondary structure test sets considered.
To extract embeddings, we directly called the model and extracted the array corresponding to the
key representations from the results dictionary. In order to extract the attention weights we
toggled the flag need_head_weights, and used the value corresponding to the attentions key.
We confirmed that the single representation embeddings used were correct by comparing to the
RNA-FM web server.
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