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ChIP-DIP: A multiplexed method for mapping 
hundreds of proteins to DNA uncovers diverse 
regulatory elements controlling gene expression
Andrew A. Perez1*, Isabel N. Goronzy1,2,3*, Mario R. Blanco1, Jimmy K. Guo1,4, and Mitchell Guttman1†

Gene expression is controlled by the dynamic localization of thousands of distinct regulatory 
proteins to precise regions of DNA. Understanding this cell-type specific process has been a goal of 
molecular biology for decades yet remains challenging because most current DNA-protein mapping 
methods study one protein at a time. To overcome this, we developed ChIP-DIP (ChIP Done In 
Parallel), a split-pool based method that enables simultaneous, genome-wide mapping of hundreds 
of diverse regulatory proteins in a single experiment. We demonstrate that ChIP-DIP generates 
highly accurate maps for all classes of DNA-associated proteins, including histone modifications, 
chromatin regulators, transcription factors, and RNA Polymerases. Using these data, we explore 
quantitative combinations of protein localization on genomic DNA to define distinct classes of 
regulatory elements and their functional activity. Our data demonstrate that ChIP-DIP enables the 
generation of ‘consortium level’, context-specific protein localization maps within any molecular 
biology lab.

INTRODUCTION
Although every cell in the body contains the same 
genomic DNA sequence, distinct cell-types express 
different genes to enable cell-type specific function. 
Cell-type specific gene regulation involves the 
coordinated activity of thousands of regulatory proteins 
that localize at precise DNA regions to activate, repress, 
and quantitatively control levels of transcription. Each 
genomic DNA region is organized around nucleosomes1, 
which contain histone proteins that undergo extensive 
post-translational modifications2,3 and together define 
cell-type specific chromatin states. Chromatin state is 
controlled by chromatin regulators that directly read, 
write and erase specific histone modifications4,5, as 
well as control nucleosome positioning and DNA 
accessibility6,7. This ultimately determines which 
genomic regions are accessible for binding by 
sequence-specific transcription factors8, the enzymes 
that transcribe DNA into RNA (RNA polymerases)9 
and other general and specific regulatory proteins that 
promote or suppress transcriptional initiation10,11.
Understanding how regulatory protein binding gives 
rise to cell type-specific gene expression has been a 

central goal of molecular biology for decades4. Over 
the past 20 years, significant technical advances 
have enabled genome-wide mapping of regulatory 
proteins and histone modifications (e.g. ChIP-Seq)12–
15, improved binding site resolution (ChIP-Exo)16,17, 
increased sample throughput (e.g. through automation 
and/or sample pooling)18,19, and mapping within a 
limited numbers of cells (e.g. CUT&RUN/CUT&Tag)20–
22. Yet, while these innovations have enabled new 
applications and uncovered critical new insights into 
gene regulation, all of these approaches still work by 
studying a single protein at a time. The two exceptions 
are multiplexed Cut&Tag23,24 and MAbID25, which can 
measure up to three or six histone modifications, but 
not transcription factors or other regulatory proteins, 
in a single experiment24. Due to the large number of 
distinct regulatory proteins and histone modifications 
involved and the cell-type specific nature of their 
regulatory interactions, this one-at-a-time mapping 
approach makes it extremely difficult to construct a 
comprehensive understanding of gene regulation.
Initial attempts to overcome this challenge led to the 
formation of various international consortia that aimed 
to generate reference maps of hundreds of proteins 
within a small number of cell types (ENCODE26, 
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Figure 1: ChIP-DIP: A highly multiplexed method for mapping proteins to genomic DNA. (A) Schematic of the ChIP-DIP 
method. Beads are coupled with an antibody and associated oligonucleotide (antibody-ID). Sets of beads are then mixed (antibody-bead 
pool) and used to perform ChIP. Multiple rounds of split-and-pool barcoding are performed to identify molecules bound by the same Protein G 
bead. DNA is sequenced and genomic DNA and antibody oligos containing the same split-and-pool barcode are grouped into a cluster, which 
are used to assign genomic DNA regions to their linked antibodies. All DNA reads corresponding to the same antibody are used to generate 
protein-localization maps. (B) Protein localization maps over a specific human genomic region (hg38, chr12:53,649,999-54,650,000) for four 
protein targets - CTCF, H3K4me3, RNAP II and H3K27me3. Left panel: Protein localization generated by ChIP-DIP in K562. Top track shows 
read coverage prior to protein assignment and bottom four tracks correspond to read coverage after assignment to individual proteins. Right 
panel: ChIP-Seq data generated by ENCODE within K562 for these same 4 proteins are shown for the same region. To enable direct comparison 
of scales between datasets, we normalized the scale to coverage per million aligned reads. Scale is shown from 0 to maximum coverage within 
each region. (C) Comparison of ChIP-DIP and ChIP-Seq maps over specific regions corresponding to zoom-ins of the larger region shown 
in (B). The locations presented are demarcated by colored bars above the gene track of (B). Scale shown similar to (B). (D) Genome-wide 
comparison (density plots of signal correlation) between the localization of each individual protein measured by ChIP-DIP (x-axis) or ChIP-Seq 
(y-axis). Points are measured genome-wide across 10kb windows (CTCF, H3K27me3) or all promoter intervals (H3K4me3, RNAP II). 
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PsychENCODE27, ImmGen28, etc.). Although these 
efforts have provided many critical insights29–31, 
because protein binding maps and gene expression 
programs are intrinsically cell type-specific32,33, it is not 
possible to study cell type-specific regulation using 
maps generated from reference cell lines34. To date, 
most mammalian cell types, experimental and disease 
models, and model organisms remain uncharacterized. 
Generating additional cell type-specific regulatory 
maps currently requires consortium-level effort (dozens 
of labs across the world), time (many years), and 
resources (>$100 million) for each biological system. 
Accordingly, there is a clear need for a highly scalable, 
multiplexed protein profiling method that can increase 
throughput of protein mapping by orders of magnitude 
and profile the diverse categories of DNA-associated 
proteins, including classes that have been traditionally 
easier to map (e.g. histone modifications) and those 
that have been more challenging (e.g. transcription 
factors)35. Such a method would allow any lab to 
generate comprehensive maps for any cell type of 
interest in a rapid and cost-effective way and would 
enable exploration of key questions that is not currently 
possible.
To address this need, we developed chromatin immu-
noprecipitation done-in-parallel (ChIP-DIP), a scalable 
platform that enables simultaneous, genome-wide 
mapping of hundreds of diverse regulatory proteins 
within a single experiment. We utilized ChIP-DIP to 
generate data from ~180 distinct DNA associated 
proteins in human or mouse cells, including a single 
multiplexed ChIP-DIP experiment containing >225 
different antibodies targeting ~160 distinct proteins 
(Supplemental Table 1). We show that ChIP-DIP 
generates accurate genome-wide maps, equivalent 
to those generated by traditional approaches, that are 
highly robust regardless of the number of antibodies or 
protein composition contained within a pool and across 
a range of input cell numbers. We show that ChIP-DIP 
enables accurate mapping of all classes of DNA-as-
sociated proteins, including histone modifications, 
chromatin regulators, transcription factors and other 
sequence-specific DNA binding proteins, and RNA 
Polymerases. Together, our results demonstrate that 
ChIP-DIP enables the generation of ‘consortium level’ 
comprehensive, context-specific protein localization 
maps within any experimental system and within any 
molecular biology lab and enables the exploration of 
complex, combinatorial patterns of protein localization 
that define regulatory activity. Beyond the immediate 
applications, ChIP-DIP can be directly integrated into 
a suite of existing split-pool approaches to enable 
highly multiplexed mapping of protein localization 
within single cells in combination with measurements  
of 3D structure36, ncRNA localization, and nascent 
transcription37.  

RESULTS

ChIP-DIP: A highly multiplexed method for 
mapping DNA-associated proteins

To enable highly multiplexed, genome-wide mapping 
of hundreds of DNA-associated proteins in a single 
experiment, we developed ChIP-DIP (ChIP Done 
In Parallel) (Figure 1A). ChIP-DIP works by (i) using 
a rapid, modular, and simple approach to couple 
individual antibodies to beads containing a unique 
oligonucleotide tag (Figure S1A), (ii) combining sets 
of different antibody-bead-oligo conjugates to create 
an antibody-bead pool, (iii) performing ChIP using 
this pool, (iv) conducting split-and-pool barcoding to 
match antibody-bead-oligo conjugates to specific 
genomic DNA regions38–40, and (v) sequencing DNA 
and computationally matching split-pool barcodes that 
are shared between genomic DNA and the antibody 
tag. We refer to all unique reads containing the same 
split-pool barcode as a cluster. We combine DNA 
reads from all clusters corresponding to the same 
antibody to generate a protein localization map for 
each individual protein. The output of a ChIP-DIP 
experiment is analogous to the data generated in a 
traditional ChIP-Seq experiment, however instead of a 
single map, ChIP-DIP provides a set of distinct maps – 
one for each antibody utilized (Figure 1B). 
To ensure that chromatin-antibody-bead-oligo 
conjugates remain intact throughout the ChIP-DIP 
procedure (rather than dissociating and reforming new 
complexes), we designed a series of experiments to 
measure dissociation between (i) oligo and bead,  
(ii) antibody and bead, or (iii) antibody and chromatin 
(Figure S1B, Supplemental Note 1). We observed 
minimal dissociation for any of these cases; most 
beads contain a single oligo type (>95%, Figure S1C), 
beads without a coupled antibody are associated with 
minimal chromatin (<0.5%, Figure S1D) and most 
purified chromatin originates from the initial capture  
(> 94%, Figure S1E).
To test whether ChIP-DIP can accurately map 
genome-wide protein localization, we performed 
a ChIP-DIP experiment in human K562 cells using 
four well-studied proteins: (1) the CTCF sequence-
specific DNA binding protein that binds to insulator 
sequences41, (2) the H3K4me3 histone modification 
that localizes at the promoters of active genes42,43, 
(3) the RNA Polymerase II enzyme that transcribes 
RNA44 and (4) the H3K27me3 histone modification 
that accumulates over broad genomic regions that are 
associated with polycomb-mediated transcriptional 
repression42,43. 
We observed localization patterns that are highly 
comparable at specific genomic sites (Figure 1B-C) 
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and highly correlated genome-wide (r=0.837-0.956, 
Figure 1D) to ChIP-Seq profiles generated by the 
ENCODE consortium45–47 (Supplemental Table 2). 
These genome-wide profiles were highly consistent 
even when using antibody pools containing different 
numbers of antibodies and protein composition 

(Figure 2A-D, Supplemental Table 3), including pools 
containing independent antibodies targeting the same 
protein (CTCF) or multiple proteins within the same 
complex (e.g., members of the PRC1/2 complex, 
Figure S2). Because ChIP-DIP enables simultaneous 
mapping of many proteins within the same experiment, 

Figure 2: ChIP-DIP accurately maps large sets of proteins using low-levels of cell lysate. (A) Schematic of experimental 
design to test scalability of antibody-bead pool size and composition. (B) Correlation heatmap for protein localization maps of four proteins 
– CTCF, H3K4me3, RNAP II and H3K27me3 – generated using antibody pools of four different sizes and compositions (see Methods). Pool 
sizes are listed along top and left axis. Replicate proteins in the same pool indicate that a different antibody was used for that protein. Some 
antibodies were not included in every pool. (C) Comparison of H3K4me3 localization over a specific genomic region (hg38, chr19:45,345,500-
46,045,500) when measured within various antibody pool sizes and compositions. (D) Comparison of CTCF localization over a specific genomic 
region (hg38, chr19:40,349,999-41,050,000) when measured within a pool of 10 antibodies containing a single CTCF-targeting antibody (top) 
or two different CTCF-targeting antibodies within a pool of 52 antibodies  (bottom). (E) Schematic of experimental design to test the amount 
of cell input required for ChIP-DIP. (F) Correlation heatmap for protein localization maps of four targets – CTCF, H3K4me3, RNAP II and 
H3K27me3 – generated using various amounts of input cell lysate (see Methods). Amounts of input cell lysate are listed along top and left axis. 
(G) Comparison of H3K4me3 localization over a specific genomic region (hg38, chr13:40,600,000-42,300,000) when measured using various 
amounts of input cell lysate. (H) Comparison of CTCF localization over a specific genomic region (hg38, chr12:53,664,000-53,764,000) when 
measured using various amounts of input cell lysate.
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we reasoned that it may dramatically reduce the 
total number of input cells required per experiment48 
(Methods). Indeed, we observed strong genome-wide 
correlations and peak overlap when measuring these 
same proteins across a range of input cell numbers 
(Figure 2E-H, Figure S3, Supplemental Table 4). 
Because ChIP-DIP can generate dozens of individual 
maps from the same lysate, this further reduces the 
effective number of cells required for each protein 
target. In this example, we observed strong correlations 
with maps generated from ~1,400 cells per protein. 
Together, these results demonstrate that ChIP-DIP 
is highly robust and generates data that are highly 
comparable to those generated by standard methods.

ChIP-DIP accurately maps hundreds of diverse 
DNA-associated proteins

We next explored whether ChIP-DIP can simultaneously 
map proteins from distinct categories, some of which 
have been traditionally easier to map than others49,50. 
To do this, we performed ChIP-DIP on >60 distinct 
proteins in human K562 cells and >160 distinct proteins 
in mouse embryonic stem cells (mESCs) across six 
experiments (Supplemental Table 1). These included 
39 histone modifications (HMs), 67 chromatin regulators 
(CRs), 51 transcription factors (TFs), and all three RNA 
Polymerases (RNAPs) and 4 of their modified forms.
Histone modifications. 
Histone modifications define cell-type specific 
chromatin states and have proven incredibly useful 
for annotating cell type-specific regulatory elements51. 
We mapped 39 histone modifications – including 18 
acetylation, 17 methylation, 3 ubiquitination and 1 
phosphorylation marks – in either mESCs or K562s 
(Figure 3A). We confirmed the localization of five 
histone modifications commonly used to demarcate five 
functional states52, as well as additional modifications 
associated with each state (Figure S4A-F): enhancer 
regions53 (H3K4me1, H3K4me2, H3K27ac, Figure 3B), 
transcribed regions42,54,55 (H3K36me3, H3K79me1/2, 
Figure 3C), promoter regions42,43,56 (H3K4me3, 
H3K9ac, Figure 3D), polycomb-repressed regions57 
(H3K27me3, H2AK119ub, Figure 3E), and constitutive 
heterochromatin regions58 (H3K9me3, H4K20me3, 
Figure 3F).  These data indicate that ChIP-DIP 
accurately maps histone modifications with distinct 
genome-wide patterns (broad and focal localization), 
that represent distinct activity states (active and 
repressive), and that localize at distinct functional 
elements (promoters, enhancers, gene bodies, and 
intergenic regions).
Chromatin regulators. 
Chromatin regulators (CRs) are responsible for reading, 

writing, and erasing specific histone modifications and 
are critical for the establishment, maintenance, and 
transition between chromatin states59,60. We measured 
67 CRs associated with various histone methylation, 
acetylation, and ubiquitination marks, as well as with 
DNA methylation, in either mouse ES or human K562 
cells (Figure 3A). As expected, we observe that an 
eraser (JARID1A)61 and a writer (RBBP5-containing 
complex)62 of H3K4me3 localize at H3K4me3-modified 
promoter sites (Figure3G, Figure S4G).  Additionally, 
we observed that components of the PRC1 (RING1B, 
CBX8)63 and PRC2 complex (EED, SUZ12, EZH2)64 
co-localize and are enriched over genomic regions 
containing their respective histone modifications 
(H2AK119ub and H3K27me3, Figure 3H, Figure S4H). 
Similarly, we observed co-localization of two members 
of the Heterochromatin Protein 1 (HP1) family, HP1α 
and HP1ß, at genomic DNA regions containing their 
associated heterochromatin marks, H3K9me3 and 
H4K20me365 (Figure 3I, Figure S4I). These data 
indicate that ChIP-DIP accurately maps chromatin 
regulators from diverse complexes and with distinct 
functional properties (i.e., modification recognition, 
enzymatic activity, chromatin packaging).  
Transcription factors. 
Transcription factors (TFs) bind cis-regulatory elements 
in combinatorial patterns to control gene expression. 
Generating comprehensive maps of TF localization 
has proven difficult because there are large numbers 
of distinct TFs, most are cell type-specific, and they 
are challenging to map by ChIP-Seq because they 
tend to be lower in abundance and only transiently 
associated with DNA66,67. To explore whether ChIP-DIP 
can map large sets of TFs, we measured 15 TFs in 
K562 and 43 TFs in mESC, including constitutive (e.g. 
SP1 and USF2)68,69, stimulus-dependent (e.g. p53 and 
NRF1)70–73, and developmental/cell type-specific (e.g. 
Nanog and RFX1)74,75 DNA binding proteins76 (Figure 
4A). We obtained high resolution binding maps for 
TFs in both cell types, with previously characterized 
TFs showing localization at their expected genomic 
DNA targets68,71,73,77–79 (Figure 4A-B, Supplemental 
Table 5). Using these genome-wide localization data, 
we accurately identify DNA binding motifs for each TF, 
including the 20bp dimer motif of p5380 and the 21bp 
RE-1 consensus sequence of REST81 (Figure 4C). 
Together, these data indicate that ChIP-DIP generates 
accurate, high-resolution binding maps of diverse TFs 
in multiple cell types.
RNA Polymerases (RNAPs). 
Different classes of RNA are transcribed by distinct RNA 
polymerases: RNA Polymerase I (RNAP I) transcribes 
the 45S ribosomal RNA (rRNA) encoding the 18S, 28S, 
and 5.8S rRNAs; RNAP II transcribes messenger RNAs 
and various non-coding RNAs, including snRNAs, 
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snoRNAs and lncRNAs; and RNAP III transcribes 
diverse small RNAs, including transfer RNAs, 5S rRNA, 
7SL, 7SK, and U6 snRNA82. We leveraged the power 
of ChIP-DIP to simultaneously map all three RNAPs 
and the post-translationally modified forms of RNAP 
II. We observed that each RNAP localizes with high 
selectivity to its corresponding classes of genes; RNAP 
I binds at rDNA, RNAP II at mRNA and snRNA genes, 

and RNAP III at tRNA genes (Figure 5A, Figure S5A). 
Moreover, we observed distinct localization patterns 
of different RNAP II phosphorylation states: serine 5 
phosphorylated RNAP II localizes at promoters, while 
serine 2 phosphorylated RNAP II accumulates over 
the gene body and past the 3’ end of the gene (Figure 
S5B-C). These data indicate that ChIP-DIP accurately 
maps the localization of the three RNA polymerases 

Figure 3: ChIP-DIP accurately maps dozens of functionally diverse histone modifications and chromatin regulators. 
(A) Illustration of the diverse histone modifications and chromatin regulatory proteins mapped in K562 or mESC using ChIP-DIP. (B-C) 
Visualization of multiple histone modifications across a genomic region (hg38, chr22:23,050,000-23,290,000) in K562 corresponding to 
multiple histone modifications associated with (B) enhancers – H3K4me1, H3K4me2 and H3K27Ac and (C) active gene bodies – H3K36me3, 
H3K79me1 and H3K79me2. (D) Top: Schematic of histone modifications and chromatin regulators associated with active promoters. Bottom: 
Visualization of multiple histone modifications associated with active promoters - H3K4me3 and H3K9Ac – across a genomic region (mm10, 
chr12:81,590,000-81,636,000) in mouse ESCs. Hashmarks indicate an intervening 29kb region that is not shown. (E) Top: Schematic of histone 
modifications and chromatin regulators associated with polycomb-mediated repression. Bottom: Visualization of multiple histone modifications 
associated with polycomb-mediated repression – H3K27me3 and H2A119ub – across a genomic region (hg38, chr2:175,846,000-176,446,000) 
containing the silenced HOXD cluster in K562.  (F) Top: Schematic of histone modifications and chromatin regulators associated with 
constitutive heterochromatin. Bottom: Visualization of multiple histone modifications associated with constitutive heterochromatin – H3K9me3 
and H4K20me3 – across a genomic region (hg38, chr2:46,200,000-55,700,000) in K562. (G) Visualization of an H3K4me3-associated eraser 
(JARID1A) and writer component (RBBP5) across the same genomic region as (D).  (H) Visualization of PRC2 (EED) and PRC1 (RING1B) 
components across the same genomic region as (E). (I) Visualization of HP1b and HP1a across the same genomic region as (F).
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– including multiple functional phosphorylation states 
of RNAP II – at distinct gene classes and gene features.
Together, these results establish ChIP-DIP as a modular, 
highly-multiplexed method that generates high-quality 
maps for a wide range of DNA-associated proteins 
spanning diverse biological functions.

Integrated analysis of protein localization identifies 
functionally distinct cis-regulatory elements

Previous large-scale analyses have identified histone 
modifications that demarcate distinct genomic elements 
(e.g. promoters, enhancers, transcribed regions, etc.)83, 
their activity state (active, inactive, repressed), and 

regulatory potential (poised/primed for activation)84. 
However, because of the large number of histone 
modifications and regulatory proteins, many efforts have 
focused on mapping only five histone modifications to 
identify genomic features and regulatory states (i.e., 
H3K4me3, H3K4me1, H3K36me3, H3K9me3, and 
H3K27me3 marking promoters, enhancers, elongated 
transcripts, heterochromatin, and polycomb-mediated 
silencing, respectively)52. Because ChIP-DIP can map 
large numbers of diverse proteins, we asked whether 
additional combinations of histone modifications and 
regulatory proteins can provide additional information 
about distinct types, activity states, and regulatory 
potentials of cis-regulatory elements (promoters 

Figure 4: ChIP-DIP accurately maps dozens of transcription factors representing diverse functional classes.  
(A) Top: Visualization of six transcription factors (SP1, USF2, p53-pSer15, NRF1, NANOG, RFX1) representing three broad functional classes 
(constitutive, stimulus-response, development/cell type-specific) across a genomic region (mm10, chr11:35,000,000-75,000,000) in mESC. 
Bottom: Higher-resolution zoom-ins showing individual TF binding patterns at selected targets and motif localization as appropriate. (1) p53 
binding the p53 response element on the Cyclin G1 gene promoter. (2) Nanog binding a cluster of sites internal to the developmental gene 
ADAM19. (3) Nuclear Respiratory Factor 1 (NRF1) binding multiple copies of its motif at the promoter of FXR2. (4) The constitutively active 
USF2 binding its triplicate E-box motif. (B) Visualization of TBP (constitutive) and REST (cell type-specific) across a genomic region (hg38, 
chr11:1-11,000,000) in K562 cells. Bottom: Higher-resolution zoom-ins highlight two individual peaks of RE-1 Silencing Transcription Factor/ 
Neuron-Restrictive Silencer Factor (REST/NRSF) at motif sites near promoters of known neuronal gene targets. (C) de novo generated motifs 
for p53 (top) in mESCs and REST (bottom) in K562 cells using binding sites identified using ChIP-DIP.
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or enhancers) beyond those captured by the five 
commonly studied individual histone modifications.

Promoter type and activity state are defined by 
combinations of histone modifications
H3K4me3 is generally thought to mark the promoters 
of actively transcribed RNAP II transcripts42,43,85. 
Consistent with this, we find H3K4me3 over the 
promoters of actively transcribed RNAP II genes, 
yet we also observe this modification near RNAP I 
promoters (ribosomal RNA) and many active RNAP III 
genes (tRNAs) (Figure 5B). Similarly, we observe that 
other histone modifications associated with active 
RNAP II promoters, including H3K4me2, H3K9Ac, 

H3K27Ac, and H3K56Ac, are also enriched at RNAP I 
and III genes (Figure 5B-C, Figure S5D). For example, 
focusing on a genomic region containing neighboring 
RNAP II (i.e. histone) and RNAP III (i.e. tRNA) genes, we 
observe specific binding of the associated Polymerase 
with shared transcription factors and chromatin 
modification patterns over all genes (Figure 5C).
Although the presence of these histone modifications 
does not appear to distinguish between genes 
transcribed by different polymerases, we observed that 
both their position relative to the transcriptional start 
site (TSS) and their relative levels differ by polymerase: 
for RNAP I genes, these modifications localize prior to 
the TSS; for RNAP II, they flank the promoter and are 

Figure 5: Distinct chromatin signatures define the promoters of each RNA Polymerase. (A) Visualization of RNAP I at 
the promoter and along the gene body of rDNA (left), RNAP II at a snRNA gene (middle), and RNAP III at a cluster of tRNA genes (right) in 
mouse ESCs. (B) Comparison of H3K4me3 and H3K27Ac profiles at the promoters of RNAP I, II and III genes. RNAP I is displayed over the 
rDNA spacer promoter (left) while RNAP II and III are displayed as metaplots across active (blue) and inactive (dashed gray) promoters. (C) 
Visualization of RNAP II and RNAP III along with the shared transcription factor TBP, and histone modifications H3K4me3 and H3K56Ac across 
a genomic region (mm10, chr13:23,385,000-23,595,000) containing a tRNA gene cluster (RNAP III transcribed genes) adjacent to a histone 
gene cluster (RNAP II transcribed genes), separated by dashed line. (D) Density distribution of H3K4me2/H3K4me3 versus H3K56Ac/H3K4me3 
ratios at RNAP I, active RNAP II and active RNAP III promoters. Points show ratios when computed using the total sum of histone coverage 
over all promoters. Marginal distributions are shown for RNAP II and III along x and y-axis. Axes are log10 scaled. (E) Schematic showing 
relative levels of histone modifications H3K4me2 and H3K56Ac at H3K4me3 enriched regions and the associated RNAP promoter.
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enriched downstream of the TSS; and for RNAP III, they 
flank the gene body, localizing both upstream of the 
TSS and downstream of the transcriptional termination 
site (Figure 5B, Figure S5D). In addition, the three 
RNAPs have different relative levels of these histone 
modifications near their respective gene promoters. 
For example, we found that RNAP I and II promoters 
display stronger H3K56Ac enrichment and RNAP I and 

III display stronger H3K4me2 enrichment relative to 
H3K4me3 (Figure 5D). In this way, both quantitative 
combinations of histone modifications and their relative 
positions define distinct classes of promoters (Figure 
5E). 
Next, we considered whether other histone 
modifications may distinguish activity states of RNAP 
II promoters. To explore this, we quantified the levels of 

Figure 6: Combinations of histone modifications distinguish RNAP II promoter type, activity and potential.  
(A) Hierarchically clustered heatmap of coverage levels of 10 different histone modifications (y-axis) at individual H3K4me3 enriched genomic 
regions (x-axis). Five distinct sets of regions are indicated by colored bars along top-axis. (B) RNAP II coverage at H3K4me3-enriched 
regions, as sorted in (A). (C) Gene density of 10 different gene classes at H3K4me3 enriched regions, as sorted in (A). (D) Visualization of 
H3K4me3 and H3K27me3/H2AK119ub (associated with set 1) across the EML5 gene in K562. (E) Visualization of H3K4me3, H3K79me2/
H3K79me3/H3K36me3 colocalization (associated with set 2) across the ribosomal protein gene RPL24 in K562. (F) Visualization of H3K4me3 
and H4K20me3/H3K9me3 colocalization (associated with set 3) across neighboring zinc finger genes in K562. (G) Visualization of H3K4me3 
and H3K4me1/H3K4me2/H3K27Ac (associated with set 4) across the long intergenic noncoding RNA gene LNCRNA0881. For tracks in (D-G), 
the non-H3K4me3 tracks represent the sum of histone tracks associated with each set and are scaled to the maximum value across all 
panels. H3K4me3 tracks are scaled to the maximum for each panel. (H) Illustration summarizing the co-occurring promoter-associated histone 
modifications and their associated gene groups. 
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ten additional histone modifications at each genomic 
region containing H3K4me3 and grouped them using 
hierarchical clustering. We identified five sets of 
H3K4me3 enriched genomic regions; four are enriched 
with other histone modifications (sets 1-4) and one is 
not (set 5). The four co-occurring sets correspond to 
H3K4me3 along with: H3K27me3/H2AK119ub (set 1), 
H3K36me3/H3K79me (set 2), H3K9me3/H4K20me3 
(set 3), or H3K4me1/H3K27ac (set 4) (Figure 6A). 
These sets correspond to promoters that exhibit 
distinct transcriptional activity (e.g., high versus low 
expression) (Figure 6B) and are enriched for distinct 
classes of RNAP II-transcribed genes, such as 
ribosomal protein and cell cycle genes (set 2), zinc 
finger protein (set 3) and long intergenic ncRNAs genes 
(sets 3 and 4) (Figure 6C-G)13,86. Consistent with 
the fact that H3K4me3 localization associates with 
functionally distinct classes of promoters, we found 
that different combinations of chromatin regulators 
that read, write, and erase H3K4me3 localize at distinct 
promoters (Figure S4G).
Taken together, these results demonstrate that 
combinations of histone modifications can distinguish 
promoter features including polymerase (Figure 5E), 
gene type, and activity level (Figures 6H).

Enhancer type, activity and potential are defined by 
combinations of histone modifications 
There are >40 different histone acetylation marks87, 
many of which have been associated with enhancers 
and active transcription. We mapped 15 of these in 
mESCs, including marks on all four core histones and 
histone variants, and observed that they co-localize 
at similar sites genome-wide (pearson r = 0.86-0.97)88 
(Figure S6). We considered whether these strong 
correlations indicate that these marks are redundant 
or whether there is additional regulatory information 
encoded by the relative levels of each acetylation mark 
at specific genomic sites. To explore this, we used a 
matrix factorization algorithm to define five weighted 
combinations of acetylation marks at highly acetylated 
genomic regions (quantitative combinations C1-C5; see 
Methods, Figure 7A-B, Supplemental Note 2, Figure 
S7). These quantitative combinations correspond to 
genomic regions that contain distinct transcription 
factor and chromatin regulator binding profiles (Figure 
7C-F, Figure S8).
Active promoter-proximal elements. The first group 
of regions (C1) is defined by H3K9Ac and several other 
H3 acetylation marks (H3K14ac, H3K18ac, H3K36ac, 
H3K56ac, and H3K79ac) (Figure 7B). Genomic 
regions containing this signature tend to be localized 
near the promoter region of transcribed genes and 
are enriched for RNAP II, general TFs (e.g. TFIIB), and 
other CpG-island associated factors (e.g. E2F1, CXX1) 

along with their sequence motifs (e.g. ETS, SP and 
NRF families) (Figure 7C,E-F).  
Poised promoter-proximal elements. The second 
group of regions (C2) contains high levels of H3K9Ac 
and acetylation of the histone variant H2AZ (H2AZAc) 
(Figure 7B). Genomic regions containing this signature 
tend to have lower levels of RNAP II (relative to C1) and 
are strongly enriched for polycomb (JARID2, SUZ12, 
RING1B) and other repressive chromatin regulators 
(KDM2B, HDAC2) (Figure 7E-F). 
Stress and signaling response elements. The third 
group of regions (C3) contains high levels of H2AZAc 
and H4Ac (Figure 7B). Genomic regions containing 
this signature are also enriched for RNAP II but are 
bound by p53 and contain other stress response motifs 
(e.g BACH1, NRF2) or signaling response motifs (e.g. 
CRE) (Figure 7C, Figure 7E-F). Consistent with these 
observations, H2AZ has been proposed as a facilitator 
of inducible transcription (e.g. signaling pathway 
responses and p53 regulation)89–92. Yet, because H2AZ 
is also a component of C2, our results suggest that this 
association is not solely a property of H2AZAc but of 
this unique C3 signature.
Active pluripotency distal regulatory elements. The 
fourth group of regions (C4) is defined by H2BK20Ac 
and H3K27Ac (Figure 7B). Genomic regions containing 
this signature tend to be promoter-distal (Figure S8B) 
and are associated with actively transcribed embryonic 
and stem cell specific genes (Figure 7D). These 
regions are enriched for binding of the pluripotency 
TFs, including Nanog, Oct4, and Sox2, as well as the 
P300 acetyltransferase and components of mediator 
(Figure 7F).
Poised differentiation distal regulatory elements.
The fifth group of regions (C5) is defined by high-levels 
of H2BK20Ac (similar to C4) and H3K14Ac (distinct from 
C4) (Figure 7B). Interestingly, these regions displayed 
similar TF and CR occupancy (e.g. Oct4, Sox2, Nanog, 
P300 and mediator) to C4 regions (Figure 7F-G). 
However, in contrast to C4 regions bound by these 
pluripotency factors, which correspond to enhancers 
of active genes involved in embryo and stem cell 
function, C5 regions bound by these factors correspond 
to enhancers of genes involved in post-embryonic 
development (Figure S9) and are enriched for sequence 
motifs of TFs involved in lineage specification and 
morphogenesis (e.g. TEAD family)93 (Figure S8C). 
This suggests that C5 enhancers might be important 
in establishing the gene expression program needed 
upon differentiation (regulatory potential). Interestingly, 
we identified a third set of genomic regions that also 
contain a high-density of pluripotency TFs but lack the 
C4 or C5 acetylation signatures; these are associated 
with genes involved in later stages of organogenesis 
(e.g. kidney and sensory systems) (Figure S9).
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Figure 7: Combinations of histone modifications distinguish RNAP II promoter type, activity and potential. (A)  
The relative weights of five different combinations of histone acetylation marks (C1-C5, y-axis) for each acetylated genomic region (x-axis). 
Regions are grouped according to the combination that received the greatest weight, as indicated along top-axis. (B) The relative weights of 
each histone acetylation mark (y-axis) within each combination (x-axis). Only weights greater than 2.5 are labeled. (C) Visualization of H3K9ac 
and H4ac along with SP1 and P53 across a genomic region (mm10, chr15:34,065,000-34,086,000) containing enhancers assigned to the C1 
(yellow) and C3 (red) state. (D) Visualization of H2BK20Ac and H3K27Ac along with Nanog, Tead1, and RNAP II across a genomic region (left: 
mm10, chr7:3,191,500-3,221,500, right: mm10, chr18:5,006,500-5,016,500) containing enhancers assigned to C4 (left) and a distinct region 
assigned to C5 (right). (Scale of the Nanog track is capped to the maximum of the left region; Tead1 data is from published ChIP-Seq data 
in fetal cardiomyocytes96). (E) Visualization of H3K9Ac, H2AZAc, H4Ac along with RING1B, P53, and RNAP II over a genomic region (mm10, 
chr8:47,272,800-47,427,000) containing enhancers assigned to states C1-C4. (F)  DNA-associated proteins (x-axis, ordered by function) with 
significant binding at genomic regions defined by each combination (y-axis) are indicated in color (see Methods). (G) Enrichment bargraph 
of selected transcription-associated factors or regions with high density of pluripotency TFs (see Methods) in C4 vs C5 associated-regions. 
Error bars correspond to the enrichment range from bootstrap resampling. (H) Schematic of C1-C5 associated regions and their corresponding 
functions.
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These analyses indicate that histone acetylation is not a 
redundant marker of enhancers, but that combinations 
of acetylation modifications can define unique classes 
of cis regulatory elements (promoter-proximal versus 
distal enhancers) that act in distinct ways (stimulus-
responsive versus developmentally regulated) and that 
exhibit different activity (e.g. active gene expression 
versus poised for activation upon differentiation) 
(Figure 7H).
Overall, these observations highlight the importance 
of multi-component analyses and demonstrate why 
ChIP-DIP provides a powerful approach that will be 
critical for defining unique regulatory features within 
distinct cell states.

DISCUSSION
We demonstrated that ChIP-DIP enables highly 
multiplexed mapping of hundreds of regulatory proteins 
to genomic DNA in a single experiment. Although the 
largest ChIP-DIP experiment in this study contained 
>225 distinct antibodies, this number was primarily 
limited by the availability of high-quality antibodies and 
we expect that ChIP-DIP could be performed using 
even larger pools of antibodies.  Because this approach 
employs standard molecular biology techniques, we 
expect that it will be readily accessible to any lab 
without the need for specialized training or equipment. 
As such, we anticipate that ChIP-DIP will enable a 
fundamental shift from large consortia generating 
reference maps for a limited number of cell types to 
individual labs generating cell-type-specific maps 
within any specific experimental system of interest. 
Given the important information encoded within 
quantitative combinations of histone modifications, 
chromatin regulators, and transcription factors, 
comprehensively mapping these factors across 
cell-types will be critical for studying gene regulation 
and for defining the putative effects of genetic variants 
associated with human disease. For instance, while 
specific regulatory states have been shown to be 
encoded by combinations of histone modifications 
(e.g. bivalent domains4), the details of such states 
(i.e. number and cell-type specificity) has remained 
largely unexplored. The large numbers of histone 
modifications and regulatory proteins have until now 
necessitated a tradeoff between mapping many 
marks in a few cell-types or a few marks in many 
cell-types. ChIP-DIP overcomes this by mapping 
hundreds of proteins in a single experiment. Moreover, 
due to the nature of split-pool barcoding used in 
ChIP-DIP and because there is negligible antibody-
bead-chromatin dissociation during the procedure, 
ChIP-DIP can also be used to map protein binding 
within multiple samples simultaneously using distinct 

sets of antibody-oligo-labeled beads. While we did 
not directly emphasize this capability in this paper, 
several ChIP-DIP experiments described here were 
performed simultaneously by barcoding multiple 
sample conditions within the same experiment (e.g., 
crosslinking conditions, IP conditions). In addition to 
the increase in scale provided by mapping multiple 
proteins within a single sample, ChIP-DIP also reduces 
many sources of technical and biological variability 
associated with processing individual proteins and 
samples.  This ability to measure regulatory proteins 
at scale, in multiple cell conditions, and with reduced 
sources of variability will enable large scale mapping of 
dynamic protein localization across distinct cell types 
and timepoints. 
Beyond the multiplexing applications highlighted in 
this work, ChIP-DIP can be directly integrated into 
multiple existing split-pool approaches to create 
additional capabilities that are not currently possible. 
For example, we previously showed that we can map 
the 3D genome structure surrounding individual protein 
binding sites (SIP)94; integrating this approach with 
ChIP-DIP will enable mapping of the 3D structures 
that occur at hundreds of distinct protein binding sites 
simultaneously. Moreover, we previously developed a 
method to map 3D genome contacts within thousands 
of individual single cells using this same split-pool 
approach36. Integrating this single cell approach with 
ChIP-DIP will enable comprehensive mapping of 
hundreds of regulatory protein binding sites within 
many thousands of individual cells.  Finally, we 
previously showed that split-and-pool barcoding can 
be used to simultaneously map the spatial proximity of 
DNA and RNA to measure ncRNA localization and the 
levels of nascent RNA transcription at individual DNA 
sites95. Integrating this approach with ChIP-DIP will 
enable the direct measurements of protein binding and 
transcriptional activity at individual genomic locations, 
providing a direct link between binding events and 
the associated transcription activity within the same 
cell. For these reasons, we expect that ChIP-DIP will 
represent a transformative new tool for dissecting gene 
regulation.
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Supplemental Figure 1: Potential sources of mixing in ChIP-DIP, related to Figure 1. (A) Schematic of labeling strategy to 
generate Protein G beads coupled with a unique antibody-identifying oligonucleotide and a matched antibody. Protein G beads are covalently 
modified with a biotin; oligonucleotides containing a 3’ biotin are conjugated to streptavidin; oligo-streptavidin complexes are mixed with 
biotinylated protein G beads and protein G beads are mixed with antibodies. This process is repeated for each unique oligonucleotide-antibody 
pair and pooled together. (B) Schematic of three potential sources of mixing during ChIP-DIP. (C) Cumulative distribution plot representing the 
uniqueness of antibody-ID oligos type (x-axis) within individual clusters. (D) Schematic of experimental design to test for antibody movement 
between beads and quantification of relative reads per bead assigned to true targets (CTCF) or empty beads added during experimental 
processing steps. (E) Schematic of human-mouse experimental design to test for chromatin movement and quantification of species-specific 
reads assigned to human or mouse beads.
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Supplemental Figure 2: Simultaneous mapping of multiple components of a single protein complex using ChIP-DIP, 
related to Figure 2. (A) Visualization of various components of the PRC1 (RING1B, CBX8) and PRC2 (EZH2, SUZ12, EED) complexes that 
were mapped within the same ChIP-DIP pool (K562 52 Antibody Pool) along a genomic region (hg38, chr4:500,000-5,500,000).
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Supplemental Figure 3: Comparison of protein localization across different amounts of cell lysate, related to 
Figure 2. (A) Comparison of RNAP II NTD localization across a snRNA gene cluster (hg38, chr17:58,620,000-58,689,000) when generated 
using various amounts of input K562 cell lysate. (B) Comparison of H3K27me3 localization across a genomic region (hg38, chr1:23,850,000-
25,850,000) generated using various amounts of input K562 cell lysate. (C) Comparison of various isoforms of RNAP II at the EGR1 locus (hg38, 
chr5:138,455,000-138,480,000) generated using various amounts of input K562 cell lysate.
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Supplemental Figure 4: Histone modifications associated with five chromatin states, related to Figure 3. (A) UMAP 
embedding of 12 histone modifications measured in K562 correspond to five chromatin states. (B) Pie chart showing proportion of H3K4me1 
peaks in K562 at various genomic position categories - promoters (co-localizing H3K4me3), intragenic (co-localizing H3K36me3) or intergenic 
- in K562. Proportion of peak regions overlapping with H3K27Ac within each genomic position category are shown in purple. (C) Metaplot of 
signal distribution of H3K36me3, H3K79me1 and H3K79me2 across the gene body of protein coding genes in K562. (D) Correlation scatterplot 
of H3K9Ac and H3K4me3 signals at promoter sites in mESC. (E) Pie chart showing overlap of H2AK119ub and H3K27me3 sites in K562. 
 (F) Enrichment heatmap of H3K9me3 and H4K20me3 at various associated (ZNF genes, LTRs, LINES) and unassociated (SINES, TSS) 
genomic elements in K562. H3 is shown as reference. (G) Metaplots of read coverage for three H3K4me3-associated chromatin regulators 
(JARID1A, RBBP5, PHF8) and H3K4me3 at four promoter groups in mESC. Promoter groups were identified using k-means clustering of CR 
signal (see Methods). (H) Metaplot showing colocalization of multiple PRC1 and PRC2 members and their respective histone modifications at 
RING1B sites in K562. (I) Genome-wide correlation matrix of multiple HP1 proteins versus heterochromatin and euchromatin markers in K562.
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Supplemental Figure 5: Chromatin states corresponding to distinct RNA polymerases and isoforms, related to 
Figure 5. (A) Bar graph showing enrichment of gene class coverage (rRNA, mRNA, snRNA or tRNA) for RNAP I, II and III in mESC.  For each 
RNAP, the bar of its associated class (or classes) is highlighted.  (B) Visualization of RNAP II phosphorylation isoforms across the NUP214 
gene in K562. (C) Metaplot of signal distribution of RNAP II phosphorylation isoforms across the gene body of protein coding genes in K562.  
(D) Comparison of histone profiles for H3K4me2, H3K9Ac and H3K56Ac at the promoters of RNAP I, II and III, similar to Figure 5B. (Left) 
Histone modification over the RNAP I-transcribed rDNA spacer promoter. (Middle/Right) Metaplot of histone profiles at active (blue) and 
inactive (gray) promoters for RNAP II (middle) and RNAP III (right).
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Supplemental Figure 6: Histone acetylation marks are highly correlated genome-wide, related to Figure 7.
(A) Genome-wide pearson correlation of 15 different histone acetylation marks in mESC. Correlations are based on coverage computed in 10kB 
windows. (B) Comparison of 15 different histone acetylation marks across a genomic region (mm10, chr1:55,048,000-55,148,000) in mESC.
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Supplemental Figure 7: ChromHMM model using histone acetylation marks, related to Figure 7.
(A) Histone acetylation mark emission probability matrix for 19-state ChromHMM model. State annotations (right) were assigned manually 
based on genomic position enrichments of states. (B) Track visualization of histone acetylation marks (top) and chromatin state annotations 
(bottom) at example promoter region (left) versus example intergenic region (right). Histone acetylation marks are scaled to the same maximum 
values at both regions. At each region, the chromatin states that are present are shown with solid lines and a box indicating the exact position; 
chromatin states that are absent are listed next to dotted lines. (C) Heatmap of genome annotation enrichment of chromatin states. Enrichment 
scores are normalized to the maximum and minimum of each column. (D) Heatmap of genomic position enrichment relative to the TSS of 
chromatin states. Enrichment scores are normalized to the maximum and the minimum of the heatmap. 
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Supplemental Figure 8: Enrichment profiles for NMF generated combinations (C1-C5) of histone acetylation marks, 
related to Figure 7. (A) RNAP II, TF and CR enrichment matrix for regions assigned to combinations (C1-C5) from NMF decomposition of 
highly acetylated regions using histone acetylation marks. (B) Heatmap of genome position enrichments relative to TSS for regions assigned 
to combinations. (C) Transcription factors of top 10 most significant sequence motifs for regions assigned to each combination are listed.
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Supplemental Figure 9: Profiles for high density regions of NANOG-OCT4-SOX2, related to Figure 7. (A) Plot showing 
normalized region scores (x-axis) for peak regions of NANOG-OCT4-SOX2, ordered by rank (y-axis). High density regions are defined as regions 
past the point where the slope = 1. (B) Track visualization of NANOG-OCT4-SOX2 upstream of the gene for KLF4, a pluripotency transcription 
factor, in mESC. A high density region is indicated with a red bar; low density regions are indicated with grey bars. (C) Visualization of NANOG-
OCT4-SOX2 near the TET2 gene, a developmentally associated chromatin regulator, in mESC. A high density region internal to the gene is 
indicated with a red bar. (D) Coverage metaplots over low density regions (LDR) vs high density regions (HDR) for pluripotency transcription 
factors and other transcriptional-related factors. Metagenes are centered on the region and the lengths represent the approximate difference 
in mean lengths (500bps for LDRs and 14,500bps for HDRs). An additional 4kb surrounding each region is shown. (E) Enrichment heatmap 
for GO terms of genes associated with HDRs or LDRs containing C4, C5 or neither C4/C5 chromatin signatures. (F) Enrichment heatmap for 
development-associated GO terms of genes associated with HDRs or LDRs containing C4, C5 or neither C4/C5 chromatin signatures.
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SUPPLEMENTAL TABLES
Table S1. Antibody Pools and Read Counts for ChIP-DIP Experiments
Table S2. Correlations and Peak Overlap between ChIP-DIP and ENCODE
Table S3. Peak Overlap between ChIP-DIP Experiments with Antibody Pools of Different Sizes and Protein 

Composition
Table S4. Peak Overlap between ChIP-DIP Experiments with Various Amounts of Starting Cell Lysate
Table S5. Motif Analysis for Transcription Factors
Table S6. Antibody-ID Oligonucleotide Sequences
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METHODS 

Cell Lines, Cell Culture and Crosslinking

Cell lines used in this study
We used the following cell lines in this study: (i) Female mouse ES cells (pSM44 mES cell line) derived from a 129 
× castaneous F1 mouse cross and (ii) K562, a female human lymphoblastic cell line (ATCC, Cat # CCL-243).
Cell Culture Conditions
(i) pSM44 mES cells were grown at 37C under 7% CO2 on plates coated with 0.2% gelatin (Sigma, G1393-100ML) 
and 1.75 mg/mL laminin (Life Technologies Corporation, #23017015) in serum-free 2i/LIF media composed 
as follows: 1:1 mix of DMEM/F-12 (GIBCO) and Neurobasal (GIBCO) supplemented with 1x N2 (GIBCO), 0.5x 
B-27 (GIBCO 17504-044), 2 mg/mL bovine insulin (Sigma), 1.37 mg/mL progesterone (Sigma), 5 mg/mL BSA 
Fraction V (GIBCO), 0.1 mM 2-mercaptoethanol (Sigma), 5 ng/mL murine LIF (GlobalStem), 0.125 mM PD0325901 
(SelleckChem) and 0.375 mM CHIR99021 (SelleckChem). 2i inhibitors were added fresh with each medium change. 
Fresh medium was replaced every 24-48 hours depending on culture density, and cells were passaged every 72 
hours using 0.025% Trypsin (Life Technologies) supplemented with 1mM EDTA and chicken serum (1/100 diluted; 
Sigma), rinsing dissociated cells from the plates with DMEM/F12 containing 0.038% BSA Fraction V. 
(ii) K562 cells were purchased from ATCC and cultured in 1x DMEM (Life Technologies, # 11965118), 10% FBS 
(VWR, #97068-091), 100U/mL Penicillin/Streptomycin (Life Technologies, # 15140122), 1mM Sodium Pyruvate 
(Thermofisher, #11360070), 2mM L-Glutamine (Life Technologies # 25030081) at 37C and 5% CO in 15cm plates 
(USA Scientific # 5663-9160Q).
Cell Harvest
(i) For harvesting pSM44 mESCs, cells were trypsinized by adding 5 mL of TVP (1 mM EDTA, 0.025% Trypsin, 1% 
Sigma Chicken Serum; pre-warmed at 37C) to each 15 cm plate and rocking gently for 3-4 min until cells start 
to detach. 25 mL of wash solution (DMEM/F-12 supplemented with 0.03% GIBCO BSA Fraction V, pre-warmed 
at 37C) was added to each plate to inactivate the trypsin. Detached cells were transferred into 50 mL conical 
tubes, pelleted at 330 g for 3 min, washed in 4 mL of 1X PBS per 10 million cells and then pelleted in 1X PBS in 
preparation for crosslinking. (ii) For harvesting K562s, the cell suspension was transferred to 50mL conical tubes, 
pelleted at 330 g for 3 min, washed with 4 mL of 1X PBS per 10 million cells and then pelleted in 1X PBS in 
preparation for crosslinking. 
Cell Crosslinking
Cells were crosslinked in suspension with 1% Formaldehyde for 10 min at room temperature. For both cell lines, 
during crosslinking steps and subsequent washes, volumes were maintained at 4 mL of buffer or crosslinking 
solution per 10 million cells. Pelleted cells were resuspended in 1ml of 1X PBS per 10 million cells and pipetted to 
disrupt clumps of cells. Next, cells were crosslinked in suspension in a final volume of 4 mL of 1% formaldehyde 
(FA Ampules, Pierce 28906) diluted in 1X PBS per 10 million cells and rocked gently for 10 min at room temperature.  
Formaldehyde was immediately quenched with addition of 200 ml of 2.5 M glycine (Sigma G7403-250G) per 1 mL 
of 1% FA solution and incubated with gentle rocking for 5 min at room temperature. Cells were then washed three 
times with 0.5% BSA in 1X PBS that was kept at 4C. Finally, aliquots of 10 million cells were prepared in 1.7 mL 
tubes; these cell aliquots were pelleted, flash frozen in liquid nitrogen and stored in -80C until lysis.

Nuclear Isolation and Chromatin Preparation
Nuclear Isolation
Crosslinked cell pellets (10 million cells) were lysed using the following nuclear isolation procedure:  cells were 
incubated in 0.7 mL of Nuclear Isolation Buffer 1 (50 mM HEPES pH 7.4, 1 mM EDTA pH 8.0, 1 mM EGTA pH 8.0, 
140 mM NaCl, 0.25% Triton-X, 0.5% NP-40, 10% Glycerol, 1X PIC) for 10 min on ice. Cells were pelleted at 850 g 
for 10 min at 4C. Supernatant was removed, 0.7 mL of Lysis Buffer 2 (50 mM HEPES pH 7.4, 1.5 mM EDTA, 1.5 mM 
EGTA, 200 mM NaCl, 1X PIC) was added and the sample was incubated for 10 min on ice. Nuclei were obtained 
after pelleting and supernatant was removed (as above). Then, 550 uL of Lysis Buffer 3 (50 mM HEPES pH 7.4, 
1.5 mM EDTA, 1.5 mM EGTA, 100 mM NaCl, 0.1% sodium deoxycholate, 0.5% NLS, 1X PIC) was added and the 
sample was incubated for 10 min on ice prior to sonication.
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Chromatin fragmentation and size analysis
Chromatin was fragmented via sonication of the nuclear pellet using a Branson needle-tip sonicator (3 mm 
diameter (1/8’’ Doublestep), Branson Ultrasonics 101-148-063) at 4C for a total of 2.5 min at 4-5 W (pulses of 0.7 
s on, followed by 3.3 s off). To check the resulting DNA size distribution, a small aliquot of 20uL of sonicated lysate 
was then added to 80uL of Proteinase K buffer ((20 mM Tris pH 7.5, 100 mM NaCl, 10 mM EDTA, 10 mM EGTA, 
0.5% Triton-X, 0.2% SDS) and reverse crosslinked at 80C for 30 minutes. DNA was isolated using Zymo IC DNA 
Clean and Concentrator columns and eluted in water. 10uL of purified DNA was then run for 10 minutes on a 1% 
e-gel (Invitrogen™ E-Gel™ EX Agarose Gels, 1%, Cat.No. G402021). Fragments were found to be 150-700 bp with 
an average size of roughly 350 bp. The remaining chromatin prep was stored at 4C overnight to be used for the 
immunoprecipitation the next day. 

ChIP-DIP: Bead Preparation

Antibody-ID oligo design
Antibody-ID oligos were designed and ordered from IDT (Supplemental Table 6). The sequence is as follows: 
/5phos/TGACTTGNNNNNNNNTATTATGGTAGATCGGAAGAGCGTCGTGTACACAGAGTC/3Bio/. 
This corresponds to a sticky end that ligates Odd barcodes, UMI, antibody barcode, Illumina primer binding site 
(i5 primer binding site), spacer sequence. The oligo contains a 5’ phosphate to enable ligation and a 3’ biotin to 
enable coupling to beads.
Protein G Bead biotinylation
1 mL of Protein G Dynabeads (ThermoFisher, #10003D) were washed once with 1X PBSt (1X PBS + 0.1% Tween-20), 
separately keeping the original storage buffer, and resuspended in 1mL PBSt. Beads were then incubated with 20 
μL of 5 mM EZ-Link Sulfo-NHS-Biotin (Thermo, #21217) on a HulaMixer for 30 minutes at room temperature. To 
quench the NHS reaction, beads were placed on a magnet, 500 μL of buffer was removed and replaced with 500 
μL of 1M Tris pH 7.4 and beads were incubated on the HulaMixer for an additional 30 minutes at room temperature. 
Beads were then washed twice with 1 mL PBSt and resuspended in their original storage buffer until use. 
Preparation of streptavidin-coupled oligonucleotides
Biotinylated antibody-ID oligonucleotides were coupled to streptavidin (BioLegend, #280302) in a 96-well PCR 
plate. In each well, 20 μL of 10 μM oligo was added to 75 μL 1X PBS and 5 μL 1 mg/mL streptavidin to make a 909 
nM (calculated from the molarity of streptavidin molecules) stock. The 96-well plate was incubated with shaking at 
1600 rpm on a ThermoMixer for 30 minutes at room temperature. Each well was diluted 1:4 in 1X PBS for a final 
concentration of 227 nM.
Preparation of oligonucleotide coupled Protein G beads 
For each antibody in the experiment, 10uL of oligonucleotide-coupled Protein G beads were prepared. All 
biotinylated Protein G beads that would be needed for the entire experiment were first pooled into a tube, washed 
in 1mL of PBSt and resuspended in 200uL of 1x oligo binding buffer (0.5X PBST, 5 mM Tris pH 8.0, 0.5 mM EDTA, 
1M NaCl) per 10uL of beads. 200 μL of bead suspension was aliquoted into individual wells of a deep well 96-well 
plate (Nunc 96-Well DeepWell Plates with Shared-Wall Technology, Thermo Scientific, Cat. No. 260251) and 14 μL 
of 5.675nM (1:40 from 227nM working stock made fresh) of streptavidin-coupled oligo was added to each well. 
The 96-well plate was then sealed with a Nunc 96-well cap mat (Thermo Scientific, Cat. No. 276000) and shaken 
at 1200 rpm on a ThermoMixer for 30 minutes at room temperature. Beads in each well were washed twice with 
M2 buffer (20 mM Tris 7.5, 50 mM NaCl, 0.2% Triton X-100, 0.2% Na-Deoxycholate, 0.2% NP-40), twice with 1X 
PBSt, and finally resuspended in 200 μL of 1X PBSt. 
Estimating number of oligos per bead
After oligo-coupling, a QC step was performed to estimate the number of oligos bound to each bead. 20% of a 
representative well for each row of the 96-well plate of oligo-coupled beads was isolated and the “Terminal” tag 
from split-and-pool barcoding was ligated onto the oligos in these aliquots. Then, half of the ligated product was 
PCR amplified for 10 cycles and purified using 1x SPRI beads. The purified DNA product was run on an Agilent 
Tapestation using a D1000 tape to estimate molarity and this molarity was used to calculate the total number 
of molecules post PCR. Using this post-PCR number and the number of cycles of PCR, the number of unique 
molecules pre-PCR was estimated40. Finally, the number of unique molecules was divided by the number of 
beads put into the PCR reaction (2.7*10^6 beads per 1uL of stock biotintylated protein G beads) to calculate the 
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estimated oligos per bead.

Antibody Coupling
2.5 μg of each antibody was added to each well of the 96-well plate containing oligonucleotide labeled beads 
resuspended in 1X PBSt. The plate was incubated on a ThermoMixer overnight at 4C with 30 seconds of shaking at 
1200 RPM every 15 minutes. The following morning, beads were washed twice with 1X PBSt (Sigma, #B4639-5G), 
resuspended in 200 μL of 1x PBSt + 4mM biotin + 2.5ug Human IgG Fc and left shaking at 1200 rpm for 15 minutes 
at room temperature to quench free Protein G or streptavidin binding sites.
Preparation of bead pool
All wells containing oligo labeled, antibody coupled beads were washed 2X with 200uL 1X PBSt + 2 mM biotin, 
taking care to remove all supernatant after the final wash. Afterwards, one of two protocols were followed for bead 
pooling: 1) Equal bead pooling - Beads were pooled using equal amounts of prepared beads for each antibody 
(10uL of Protein G beads per antibody). 2) Titrated bead pooling - Beads were pooled using unequal amounts of 
prepared beads for each antibody. The relative number of beads for each antibody was determined based on the 
chromatin pull-down efficiency (chromatin reads per bead) measured in QC experiments. Fewer beads were used 
for antibodies with higher pull-down efficiencies and greater beads were used for antibodies with lower pull-down 
efficiencies or negative controls. This strategy was intended to generate a more uniform distribution for the number 
of chromatin reads assigned to each antibody in the final experiment. 

ChIP-DIP: Immunoprecipitation, Split-and-pool and Library Preparation

Pooled immunoprecipitation
Fragmented lysate was diluted with PBSt +10mM biotin + 1x PIC + 2.5ug of human IgG Fc per 10ul of beads. The 
pool of labeled beads was added to the lysate and rotated on a HulaMixer for 1 hour at room temperature. Beads 
were washed 2X with 1mL IP Wash Buffer I (20mM TrispH8.0, 0.05% SDS, 1% Triton X 100, 2mM EDTA, 150mM 
NaCl in water), 2X with 1mL of IP Wash Buffer II (20mM TrispH8.0, 0.05% SDS, 1% Triton X 100, 2mM EDTA, 
500mM NaCl in water) and 2X with 1mL of M2 buffer (20mM Tris pH7.5, 0.2% Triton X100, 0.2% NP-40, 0.2% 
DOC, and 50mM NaCl). 
Chromatin End Repair and dA-tailing 
To blunt end and phosphorylate double stranded DNA, the NEB End Repair Module (E6050L; containing T4 DNA 
Polymerase and T4 PNK) was used. Beads were incubated in 1X NEBNext End Repair Enzyme cocktail + 1X 
NEBNext End Repair Reaction Buffer + 4mM biotin + 1ug human IgG Fc per 10uL beads at 20C for 15 minutes. 
The reaction was quenched with 3X volume of PBSt + 100uM EDTA and beads were washed 2X with 1mL PBSt. 
Next, to dA-tail DNA, the NEBNext dA-tailing Module (Klenow fragment (50 -30 exo-, NEBNext dA-tailing Module, 
E6053L) was used. Beads were incubated in 1X NEBNext dA-tailing Reaction Buffer + 1X Klenow Fragment (exo-) 
+ 4mM biotin + 1ug human IgG Fc per 10uL beads at 37C for 15 minutes. The reaction was quenched with 3X 
volume of  PBSt + 100uM EDTA and beads were washed 2X with 1mL PBSt.
Split-and-pool barcoding
Split-and-pool barcoding was performed as previously described38,40 with modifications. Specifically, beads were 
first split-and-pool ligated by DPM to attach a common sticky end to all DNA molecules. Then, beads were 
split-and-pool ligated for ≥ 6 rounds with sets of “Odd,” “Even,” and “Terminal” tags. The number of barcoding 
rounds and number of tags used for each round was determined based on the number of beads that needed to 
be resolved. These parameters were selected to ensure that virtually all barcode clusters (>95%) represented 
molecules belonging to unique, individual beads. In most cases, 6 rounds of barcoding with 24-36 tags per round 
were performed. Each individual tag sequence was used in only a single round of barcoding. All split-and-pool 
ligation steps were performed for 5 minutes at room temperature and supplemented with 2mM biotin and 5.4uM 
ProteinG. After split-and-pool barcoding was complete, beads were resuspended in 1mL of MyRNK buffer [20 mM 
Tris pH 7.5, 100 mM NaCl, 10 mM EDTA, 10 mM EGTA, 0.5% Triton-X, 0.2% SDS]. Aliquots of various sizes (0.05% 
to 4% of total beads) were prepared, ensuring that the number of beads within each aliquot was resolvable by the 
number of possible unique split-and-pool barcodes. Each aliquot was then digested with 8ul of Proteinase K (NEB) 
for 2 hrs at 55C, 1200RPM shaking and reverse crosslinking at 65C, 1600 RPM shaking overnight. 
Library Preparation

DNA from each reverse crosslinked aliquot was isolated with a Zymo IC column using a 6X volume of the DNA 
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binding buffer (Zymo Cat. No. D4014) and eluted in 21ul of H20. Libraries were amplified for 9-12 cycles using 
Q5 Hot-Start Mastermix (NEB Cat No M0294L) and primers that added the full Illumina adaptor sequences. The 
following PCR mixture was used: 21uL DNA in H2O, 2uL of i5 primer (12.5uM), 2uL of i7 primer (12.5uM), 25uL 
2X Q5 MM. After amplification, libraries were cleaned with 1.2x SPRI (Bulldog Bio CNGS500) and eluted in 20uL. 
Prior to sequencing, libraries were gel purified to remove unused primers using a 2% agarose gel [Invitrogen Cat 
No. G401002].

Sequencing

Sequencing was performed on Illumina NovaSeq S4 (300 cycle) and NextSeq (200 cycle or 300 cycle) paired-end 
runs, Read lengths were asymmetrical in order to capture the full split-and-pool barcode sequence on read 2 (R2) 
and the chromatin sequence on read 1 (R1). For 300 cycle kit – 100 cycles for R1, 200 cycles for R2; For 200 cycle 
kit – 50 cycles for R1 and 150 cycles for R2.
For each experiment, multiple different libraries were generated and sequenced. Each library corresponds to a 
distinct aliquot which is amplified with a unique pair of primers, providing an additional round of barcoding. 

Data Processing Pipeline

Read Processing. Paired-end sequencing reads were trimmed with Trim Galore! V0.6.2 (https://www.bioinformatics.
babraham.ac.uk/projects/trim_galore/) to remove adaptor sequences and quality assessed with FastQC v0.11.8. 
Split-and-pool barcodes were identified from Read 2 using Barcode ID v1.2.0 (https://github.com/GuttmanLab/
chipdip-pipeline ). Reads missing split-and-pool tags or with tags in the incorrect position given the split-and-pool 
round they correspond to were discarded. Subsequently, reads were split into two files, one for antibody ID reads 
and one for DNA reads, based on the presence of “BPM” (bead tag) or “DPM” (DNA tag), respectively, on Read 1. 
For DNA reads, the DPM sequence was trimmed from Read 1 using Cutadapt v3.499. The remaining sequence 
was aligned to mm10 or hg38 using Bowtie2 (v2.3.5)100 with default parameters. Only primary alignments with a 
mapq score of 20 or greater were kept for further analysis. Finally, reads were masked using the repeat genome 
obtained from ENCODE101. 
For antibody ID reads, the BPM sequence, which contains the antibody-ID information, was   trimmed from Read 
1 using Cutadapt v3.4 and the UMI extracted from the remaining sequence. 
MultiQC v1.6102 was used to aggregate metrics from all steps.
Cluster Generation. A “cluster file” was generated by aggregating all reads (ie. aligned, masked DNA reads and 
antibody ID reads) that share the same split-and-pool barcode sequence. During this step, reads in each cluster 
were deduplicated by alignment position for DNA reads or UMI for antibody ID reads.
Antibody ID Oligo Movement Quality Control Check. To assess the frequency of antibody ID oligo movement 
between beads, the proportion of antibody ID reads corresponding to the maximum representation in each cluster 
was calculated. Only clusters with >1 antibody ID read were considered. For each experiment, these values were 
plotted as an empirical cumulative distribution function (ECDF) using the python plotting package seaborn103.
Cluster Filtering and Assignment. Individual clusters in the “cluster file” were assigned to a specific antibody based 
on antibody ID reads within the cluster.  First, clusters in the “cluster file” without antibody ID reads or clusters with 
>10,000 genomic DNA reads (which likely represent undersonicated material or clumps of beads) were filtered out. 
Next, each remaining cluster was assigned to the antibody ID that had maximum representation within the cluster 
if 1) there were greater than two unique reads corresponding to the antibody ID and 2) the antibody ID represented 
>80% of all antibody ID reads within the cluster. These criteria were selected empirically to ensure high confidence 
assignments of antibody IDs to each cluster. Clusters that did not meet these criteria were removed from further 
analysis.
Antibody-specific protein maps. Genomic DNA alignments were split into separate bam files such that each file 
corresponded to all alignments associated with an individual antibody based on the antibody ID assignments 
within each cluster. DNA reads from clusters that did not have antibody ID reads, were too large or could not be 
uniquely assigned to a single antibody ID were filtered out. DNA reads were deduplicated such that only one read 
per alignment position per cluster was retained.
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Visualization and Peak Calling

Bigwig Generation. Bigwigs were generated from each antibody-specific BAM file using the ‘bamCoverage’ 
function from deeptools v3.1.3104 and were visualized with IGV105. Track visualizations are scaled to the maximum 
over the region and scales indicate reads per bin, unless indicated otherwise.
Background Normalization. Because beads from many antibodies are processed together, ChIP-DIP has   sources of 
potential background that are distinct from a traditional ChIP-Seq experiment. In any ChIP experiment, the antibody 
used will immunoprecipitate its specific protein (and the associated chromatin) but will also non-specifically purify 
other proteins (and their associated chromatin) at some lower frequency. This non-specific chromatin (background) 
is generally proportional to the overall distribution of genomic DNA present in the starting material (“input”). In 
ChIP-DIP, the same is true during the IP; any given antibody will preferentially capture its specific protein but will, 
at some lower frequency, non-specifically capture other proteins. However, because ChIP-DIP entails purification 
with many antibodies, the source of proteins and chromatin for this non-specific binding is no longer the entire 
cellular input but rather the material present within the pooled IP (e. g. the proteins and chromatin that were pulled 
down by the pool of antibodies). Indeed, we observed that some antibodies displayed background signal that 
was distinct from the input library. For example, antibodies targeting CTCF displayed higher background over 
promoter regions, likely reflecting the presence of various promoter-enriched histone modifications present in the 
same experimental pool. To account for this in our analysis, we used the pool of all genomic DNA reads captured 
in a ChIP-DIP experiment as the background control. We found that normalization using this empirically-defined 
background led to a more conservative enrichment calculation for ChIP-DIP data. For example, in the CTCF 
example noted above, this normalization approach successfully removed the background promoter-associated 
signal while retaining signal at known CTCF binding sites. 
Specifically, a background model was generated for each individual antibody using the total pool of assigned 
sequencing reads. The background for an antibody contained all reads except those assigned to it, or other 
antibodies targeting the same or related proteins. For example, for an antibody targeting RNAPII-NTD, reads from 
all antibodies targeting RNAP II were excluded from this background set. To calculate a scaling factor for this 
background: 1) the total experiment coverage was calculated in 10kB bins, 2) the high coverage bins (80%) were 
selected, 3) a per-bin enrichment quotient of the target compared to the background coverage was calculated, 4) a 
kernel density plot of the enrichment quotient was generated, 5) a threshold was calculated based on the position 
of the smallest peak and 6) the ratio of total coverage in target versus background bins below the threshold was 
determined. The goal of this procedure was to locate regions that represented background noise in the target 
and calculate the target-to-background ratio using only those regions. The kernel density plot was frequently 
bimodal or with a long tail, with the higher peak or tail representing signal bins and the lower peak representing 
background bins. Background normalized peaks were called using the scaled background as a substitute for 
input. Background normalized bigwigs were generated using the ‘bamCompare’ function from deeptools v3.1.3 
by subtracting the scaled background and, subsequently, removing negative value bins.
Peak Calling. Peaks were called using the HOMER v4.11106 program ‘findPeaks’ on tag directories generated for 
target datasets using ‘-style histone’ for histone modification targets and ‘-style factor’ for other targets. Background 
normalized peaks were generated using the scaled background distribution (described above). Specific parameter 
settings, such as ‘-minDist’ (distance between adjacent peaks), ‘-size’ (width of peaks) or filtering thresholds 
were tuned according to the nature of the target. For instance, peaks for focal histone modification H3K4me3 
were generated using ‘-F 2 -P 0.001 -L 0’ while enriched regions for broad histone modification H3K36me3 were 
calculated using ‘-F 2 -P 0.001 -L 0 -size 1000 -minDist 7500 -region’.
Motif Prediction. Transcription factor motifs were predicted using the HOMER program ‘findMotifsGenome’ on 
peaks generated using HOMER, as described above. For all transcription factors, motifs were generated using the 
settings ‘-s 200 -mask -l 10’ and results are reported in Supplemental Table 5. For individual examples in Figure 
4 with, longer motifs were also predicted.

Ribosomal DNA Alignments

To analyze reads aligning to genomic DNA encoding ribosomal RNA (rDNA), we aligned reads directly to an rDNA 
reference. We generated a modified reference of the mouse rDNA sequence (NCBI  Genbank  BK000964.3)107. 
Because the original mouse BK000964.3 sequence begins with the TSS and ends with the Pol I promoter, we 
transposed a portion at the end of the rDNA reference to the beginning, as previously described108, to enable a 
continuous visualization of the promoter-TSS region. Specifically, the rDNA sequence was cut at the 36,000 nt 
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position and the sequence downstream of the cut site were moved upstream of the TSS, such that the resulting 
rDNA sequence begins with ~10kb of IGS, then the promoters and then transcribed regions. Processing steps 
prior to sequence alignment followed the standard ChIP-DIP pipeline. After barcode identification, DNA sequence 
was aligned to the custom rDNA genome using Bowtie2 (v2.3.5) with default parameters. Only primary alignments 
with a mapq score of 20 or greater were kept for final analysis. The subsequent cluster generation and read 
assignment steps followed the standard ChIP-DIP pipeline.

ChIP-DIP Experiments

We performed 9 ChIP-DIP experiments in this paper, each of which, along with the associated antibodies, proteins, 
and statistics are described in Supplemental Table 1. Briefly, these experiments were:
1. Chromatin Movement Experiment: A quality control human and mouse mixing experiment used to quantify 

possible chromatin movement during the procedure.
2. Antibody Movement Experiment: A quality control human and mouse mixing experiment used to quantify 

possible antibody movement during the procedure.
3. K562 10 Antibody Pool Experiment: An initial data-generation experiment performed in human K562 to 

measure a small number of well-defined targets.
4. K562 50 Antibody Pool Experiment: A data-generation experiment performed in human K562 measuring 50 

antibodies.
5. K562 52 Antibody Pool Experiment: A data-generation experiment performed in human K562 measuring 52 

antibodies.
6. K562 35 Antibody Pool Experiment: A data-generation experiment in human K562 measuring 35 antibodies as 

a function of different cell input amounts.
7. mESC 228 Antibody Pool Experiment: An antibody-screening experiment performed in mouse ES cells using 

228 antibodies to identify good antibodies and the antibody amounts required for deeper characterization in 
subsequent ChIP-DIP experiments.

8. mESC 67 Antibody Pool Experiment: A data-generation experiment performed in mouse ES cells measuring 
67 antibodies.

9. mESC 165 Antibody Pool Experiment: A data-generation experiment performed in mouse ES cells measuring 
165 antibodies.

All ChIP-DIP experiments were performed using the same general protocol with the following experiment-specific 
modifications:
1. Chromatin Movement Experiment: To test whether chromatin dissociates during the ChIP-DIP procedure and 
binds to other beads, we designed a human-mouse mixing experiment. Cell lysate from 20M mESC cells, cell lysate 
from 10M K562 cells and two sets of antibody-coupled, oligonucleotide-labeled beads were prepared according 
to standard protocol. Prior to IP, lysate yields were quantified using TapeStation and equal amounts of mouse and 
human chromatin preparations were used for the subsequent, separate IPs. One set of antibody-ID labeled beads 
was used for the human IP and the other set of antibody-ID labeled beads was used for the mouse IP. After IP, 
the two species-specific IPs were mixed and split into three conditions using different quenchers: (i) 10% BSA 
quencher, (ii) 1X Blocking Buffer quencher and (iii) No quencher. For the 10% BSA quencher condition, end-repair, 
dA tailing and DPM reactions were performed in buffer supplemented with 10% BSA. For the 1X blocking buffer 
quencher condition, end-repair, dA tailing and DPM reactions were performed in buffer supplemented with 1X 
protein blocking buffer (Abcam ab126587). The three conditions were combined for split-and-pool barcoding.
For alignment of human-mouse mixing experiments, DNA reads were aligned to a custom combination genome 
including both mm10 and hg38 genomes using Bowtie2 (v2.3.5) with default parameters. Only primary alignments 
with a mapq score of 20 or greater were kept for further analysis. Reads were then masked using a merged version 
of mm10 and hg38 blacklist regions defined by ENCODE. Reads were then uniquely assigned to human beads 
(beads present only in the human IP condition) or mouse beads (beads present only in the mouse IP condition) 
using the standard assignment pipeline. Total reads aligned to mm10 or hg38 for each bead set were quantified 
and the relative proportions were plotted as a bar graph.  
2. Antibody Movement Experiment: To test whether antibodies dissociate from their labeled beads during the 
ChIP-DIP procedure and bind to other beads, we designed an experiment that involved the addition of labeled 
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antibody-free beads at various steps. Following a similar set-up as the chromatin mixing experiment, cell lysate 
from 20M mESC cells, cell lysate from 10M K562 cells and two sets of antibody-coupled, oligonucleotide-labeled 
beads were prepared using the standard protocol. One set of beads was used for the human IP and the other set 
of beads was used for the mouse IP. After IP, half of each species-specific IP was mixed together, and half was left 
separate. For this mixed condition only, oligonucleotide-labeled beads without a coupled antibody were added 
prior to the end repair and the dA-tailing reactions. These empty beads were added to capture antibodies that 
dissociated from other IP’d beads. Finally, the three conditions (mouse only, human only, mixed) were ligated with 
unique sets of DPM adaptors and combined for split-and-pool barcoding. To calculate the frequency of antibody 
movement, total reads and total beads assigned to human CTCF beads, human IgG beads, empty beads added 
prior to end repair and empty beads added prior to dA tailing were quantified. Reads per bead for each group were 
normalized to the mean value for human CTCF beads. These normalized values were plotted as a bar graph with 
99% CI using the python plotting package seaborn.
3. K562 10 Antibody Pool Experiment: We performed an initial small scale proof-of-concept (POC) experiment 
in K562 using 10 different antibodies. The POC experiment was performed using lysate from 50M K562 cells per 
IP. Standard protocol with equal bead pooling was used with the exception of IP conditions. Two identical sets 
of antibody coupled beads were prepared using different biotinylated oligonucleotides; one set was used for an 
overnight immunoprecipitation at 4C and one set was used for 1-hr immunoprecipitation at room temperature. 
DNA processing steps and DPM ligation reactions were performed separately for the two IP conditions and then 
the two samples were pooled for the remaining rounds of split-and-pool barcoding. See Supplemental Table 1 for 
full list of antibodies under the “K562 10 Antibody Pool” tab. For data processing, the standard pipeline generated 
individual clusters corresponding to antibody-IP condition pairs and individual bam files for each target in each IP 
condition. Data from both IP conditions were merged for each target, resulting in a single file per antibody.
4. K562 50 Antibody Pool Experiment: The K562 50 Antibody Pool Experiment was performed using lysate from 
50M K562 cells. The standard protocol with equal bead pooling was used.  See Supplemental Table 1 for full list 
of antibodies under the “K562 50 Antibody Pool” tab.
5. K562 52 Antibody Pool Experiment: The K562 52 Antibody Pool Experiment was performed using lysate from 
K562 cells. To test the efficiency of different crosslinking strategies, two parallel IPs were performed using the 
same pool of prepared beads. One IP utilized 60M K562 cells crosslinked with 1% FA and the other IP utilized 60M 
K562 cells crosslinked with 1% FA + DSG. Cells for the 1% FA condition were prepared as described above. Cells 
for the 1% FA + DSG condition were prepared as follows: After harvest and pelleting, K562 cells were crosslinked 
in 4 mL of 2 mM disuccinimidyl glutarate (DSG, Pierce) dissolved in 1X PBS per 10 million cells for 45 minutes 
at room temperature. Cells were then pelleted, washed with 1X PBS and crosslinked with 1% FA, as described 
above.
For antibody ID oligonucleotide-labeling of beads, beads were labeled in two sequential rounds. First, beads 
were labeled according to the standard protocol. Then, beads were labeled again using another 2.5uL of 5.67nM 
streptavidin-coupled oligo in 200uL of 1x oligo binding buffer for 30 minutes at room temperature. During the first 
round of labeling, all wells received a unique streptavidin-coupled oligonucleotide. During the second round of 
labeling, most wells received the same streptavidin-coupled oligonucleotide as the first round, with the exception 
of eleven wells. Eleven pairs of wells received the same streptavidin-coupled oligonucleotide in the second round 
– one well of each pair was labeled with the same oligonucleotide in both rounds while the other well was labeled 
with different oligonucleotides. The result was that most beads were labeled with a single, unique oligonucleotide 
label, eleven beads were labeled with a pair of oligonucleotide labels, and eleven beads were labeled with a 
single oligonucleotide label that can also be found on other beads. This labeling strategy was designed to test 
combinatorial labeling of beads. After antibody coupling, beads were pooled in equal amounts and half of the bead 
pool was used for IP of each crosslinking condition. Following IP, each condition was processed separately and 
DPM-ligated with unique, condition-identifying sets of adaptors. Conditions were kept separate for the first round 
of split-and-pool barcoding and then combined for the remaining rounds of split-and-pool. See Supplemental 
Table 1 for full list of antibodies under the “K562 52 Antibody Pool” tab.
Sequenced data was processed using the standard ChIP-DIP pipeline up until the clustering assignment step. To 
account for the dual oligo labeling of selected antibodies, prior to assignment of unique antibodies to each cluster, 
clusters with multiple labels (clusters containing both oligo types from a known co-occurring pair) were isolated 
and antibody-ID oligos in these clusters corresponded to the second round of labeling were reassigned to the 
matched antibody-ID oligo from the first round of labeling. The result is that all antibodies now corresponded to 
a unique antibody-ID oligo; for the eleven combinatorial pairs, this is the first round of labeling.  Afterwards, the 
remaining steps in the standard ChIP-DIP pipeline (cluster assignment, etc) were performed as described above.
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6. K562 35 Antibody Pool Experiment for input cell number titration:  One of the major challenges with mapping 
DNA binding proteins in primary cell types, disease models, and other rare cell populations is the large number of 
cells required for traditional ChIP-Seq experiments. Because ChIP-DIP enables simultaneous mapping of many 
proteins within the same experiment, we reasoned that it may dramatically reduce the total number of cells required 
in two ways: (i) the number of cells required to map any individual protein is instead distributed across all protein 
targets in a pool, and (ii) the total chromatin purified from multiple proteins may enable purification of lower DNA 
concentrations associated with a single/low abundance proteins that might otherwise be lost due to experimental 
handling. 
The K562 35 Antibody Pool Experiment was designed to measure the amount of cell input material required for 
ChIP-DIP. To do this, we performed a series of ChIP-DIP experiments using the same antibody pool and differing 
amounts of cell lysate. Specifically, we crosslinked >100M cells in a single batch and then performed four ChIP-DIP 
experiments from this same crosslinked lysate. This experiment involved four separate ChIP-DIP experiments, 
performed in pairs of two. For the first pair, the 45M and 5M conditions, a 50M cell aliquot was lysed and sonicated 
and then split into 45M and 5M cell equivalents of lysate. For the second pair, the 500K and 50K conditions, a 
1M cell aliquot was lysed and sonicated and then split into 500k and 50k cell equivalents of lysate. Each pair of 
experiments used a single preparation of antibody-coupled, antibody ID oligonucleotide labeled beads that was 
split in half.  See Supplemental Table 1 for full list of antibodies under the “K562 35 Antibody Pool” tab.
Read coverage profiles of four targets – H3K4me3, H3K27me3, CTCF and RNAP II - were compared. For both 
RNAP II and CTCF, two different antibodies were included (RNAP II: CST 91151 and 14958S; CTCF: CST 3418S 
and ABCAM ab128873). Coverage of normalized bigwig files across the set of all peak regions from the 10 Antibody 
Pool experiment, the same set of regions used for the pool size comparison correlations, was calculated using 
the ‘multiBigwigSummary’ function of the python package deeptools v.3.1.3. Pearson correlation coefficients for 
all pairs were calculated using the ‘plotCorrelation’ function of deeptools v.3.1.3 and the plotted as a heatmap, 
manually ordering the rows/columns from lowest to highest amount of input lysate for each target.
Peak overlaps were calculated for each antibody between pairs of experiments as the (number of peaks 
in experiment 1 intersecting peaks in experiment 2) / (total number of peaks in experiment 1). The number of 
intersecting peaks were calculated using the bedtools v2.29.2 and results are reported in Supplemental Table 4.    
7. mESC 228 Antibody Pool Screen: The mESC 228 Antibody Pool experiment was performed using 40M 
mESC cells. The standard protocol was used with the following modifications. Because the number of antibodies 
exceeded the number of unique antibody-ID oligonucleotides, three  plates of antibody-coupled, oligonucleotide-
labeled beads were prepared separately, the beads from each plate were pooled into three separate antibody-bead 
pools, and each pool was used to IP one third (~13M cells) of the prepared cell lysate. Post IP, each sample was 
processed separately until split-pool.  During split-pool barcoding, a unique set of “ODD” barcodes was ligated to 
each sample during the first round and then all samples were pooled for rounds 2-6.
Sequencing data was processed through the standard pipeline, using a concatenated string of three antibody 
names (ie. DNMT3B-CST_POLR3E-Bethyl_H3K36Ac-CST), one name for the antibody corresponding to each 
sample, to match individual antibody-ID sequences during barcode identification. After cluster generation and 
prior to cluster assignment, each antibody-ID read was assigned to only one antibody based on its first-round 
‘ODD’ split-and-pool tag. Cluster assignment then proceeded using the standard pipeline. Chromatin reads were 
assigned to each antibody based on cluster assignments and total chromatin for each antibody was quantified (see 
Supplemental Table 1, “mESC 228 antibody pool” tab for counts). These relative chromatin yields per antibody 
were used to inform the ideal amount of antibody needed and we used these to titrate the amount of beads for 
each antibody pooled together in  ChIP-DIP experiments 8 and 9 below. This experiment was sequenced at low 
depth to allow for rapid and low-cost antibody screening. 
8. mESC 67 Antibody Pool Experiment: The mESC 67 Antibody Pool experiment was performed using lysate 
from 80M mESC cells.  The standard protocol with titrated bead pooling was used. This experiment contained 67 
different antibodies. See Supplemental Table 1 for full list of antibodies under the “mESC 67 Antibody Pool” tab.
9. mESC 165 Antibody Pool Experiment: The mESC 165 Antibody pool experiment was performed using lysate 
from 60M mESC cells.  Similar to the mESC 228 Antibody Pool experiment, because the number of antibodies 
exceeded the number of unique antibody-ID oligonucleotides, a multi-plate strategy was used. Specifically, two 
plates of antibody-coupled, oligonucleotide-labeled beads were prepared separately, pooled using the titrated 
bead pooling strategy and used to IP half of the prepared cell lysate. After IP, the two samples were processed 
separately up until the third round of split-and-pool barcoding and then combined for the remaining rounds of split-
and-pool. This experiment contained 165 different antibodies. See Supplemental Table 1 for full list of antibodies 
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under the “mESC 165 Antibody Pool” tab. Sequencing data was processed through the standard pipeline, using a 
concatenated string of antibody names (ie. LSD1-CST_SAP30-Bethyl) to match individual antibody-ID sequences 
during barcode identification. After cluster generation and prior to cluster assignment, each read antibody-ID read 
was assigned to only one antibody based on its first-round split-and-pool tag. Cluster assignment and BAM file 
generation then proceeded using the standard pipeline.  

Protein Target Classification

Antibody targets were assigned to one of five categories: histone modification (HM), transcription factor (TF), 
chromatin regulator (CR), RNA polymerase (RNAP) and other DNA associated protein. Transcription factors 
were defined as proteins with a DNA-binding domain and were manually subclassified into constitutive, stimulus 
response or cell type specific/developmental manually curated based on functional descriptions from GeneCards. 
Chromatin regulators contained proteins or members of complexes that read, write, or erase histone modifications 
or DNA methylation. Proteins that were part of chromatin regulator complexes and contained a DNA binding 
domain were considered part of the chromatin regulatory category. Proteins involved in chromatin remodeling (e. 
g. BRG1) or other structural proteins that interact with chromatin (e. g. LaminA) were also considered chromatin 
regulators. Dual function proteins (e. g. transcription factors with intrinsic acetyltransferase capabilities) were 
assigned to a single category (e. g. transcription factor) but were included in chromatin regulator schematics. Other 
DNA associated proteins included a mixture of targets, such as RNAP elongation factors (e. g. ELL), RNA binding 
proteins (e. g. NONO) and antibodies that detected DNA methylation.

Comparison to ENCODE data

ChIP-DIP comparisons to ENCODE-generated ChIP-Seq data in Figure 1 were performed using the 10 pool 
experiment in K562. Visual comparisons were performed using IGV and the raw ENCODE datasets: ENCFF656DMV 
(H3K4me3), ENCFF785OCU (POLR2A), ENCFF800GVR (CTCF) and ENCFF508LLH (H3K27me3). Genome-wide 
coverage comparisons were calculated across all RefSeq TSS for H3K4me3 and POLR2A or across 10kB bins 
for CTCF and H3K27me3. Calculations were performed using the ‘multiBamSummary’ function of the python 
package deeptools v3.1.3 and plotted as 2-D kernel density plots using the python library seaborn. 
Systematic comparisons between ChIP-DIP K562 datasets (10 Antibody Pool, 50 Antibody Pool, 52 Antibody 
Pool and 35 Antibody Pool) and ENCODE-generated ChIP-Seq were performed for all targets for which 
ENCODE datasets were available. Genome-wide coverage comparisons were calculated at 1000bp using the 
‘multiBigwigSummary’ function of the python package deeptools v3.1.3 and Pearson correlation coefficients are 
reported in Supplemental Table 2. The number of overlapping peaks between ChIP-DIP and ENCODE datasets 
were calculated using as described above. . Both the fraction of ENCODE peaks detected by ChIP-DIP and the 
fraction of ChIP-DIP peaks detected by ENCODE are reported in Supplemental Table 2.
Accession numbers used for coverage comparisons include: ENCFF121RHF, ENCFF508LLH, ENCFF035SOZ, 
ENCFF272JVI, ENCFF816ECC, ENCFF880HKV, ENCFF352HXD, ENCFF446FUS, ENCFF656DMV, ENCFF465UWC, 
ENCFF149MXA, ENCFF155UQU, ENCFF187HIQ, ENCFF702HIC, ENCFF800GVR, ENCFF982AFE, 
ENCFF178ARN, ENCFF096FWU, ENCFF844WTT, ENCFF801TEZ, ENCFF174BEG, ENCFF014HSG, 
ENCFF656FDC, ENCFF457PGP, ENCFF108EMO, ENCFF617EYG, ENCFF986KSB, ENCFF572IXE, ENCFF893LSE, 
ENCFF785OCU, ENCFF816VGU, ENCFF179XDZ 
Accession numbers used for peak comparisons include: ENCFF863MYY, ENCRR698RKX, ENCRR736TRL, 
ENCFF222OPH, ENCFF731WDM, ENCFF479VOH, ENCFF514SHW, ENCFF643TQX, ENCFF586UHP, 
ENCFF456SZC, ENCFF108JNI, ENCFF632MQY, ENCFF924JXT, ENCFF834RTA, ENCFF660HBV, ENCFF567BOX, 
ENCFF563CWK, ENCFF394JNY, ENCFF307DMW, ENCFF181AVH, ENCFF169ZQQ, ENCFF040TWS, 
ENCFF990EZP, ENCFF755KWM, ENCFF269JZL, ENCFF106GOL, ENCFF827OVS, ENCFF789NDS, ENCFF567HEH

Pool Size Comparison Analysis
To measure the influence of the number of antibodies contained within an individual pool, read coverage profiles 
of four targets – H3K4me3, H3K27me3, CTCF and RNAP II – generated in four different ChIP-DIP experiments 
in K562 cells were compared. ChIP-DIP experiments included the10 Antibody Pool, the 45M condition from the 
35 Antibody Pool, the 50 Antibody Pool and the 52 Antibody Pool in K562.  For both RNAP II and CTCF, two 
different antibodies were included (RNAP II: CST 91151 and 14958S; CTCF: CST 3418S and ABCAM ab128873). 
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Coverage of normalized bigwig files across the set of all peak regions from the 10 Antibody Pool experiment was 
calculated using the ‘multiBigwigSummary’ function of the python package deeptools v.3.1.3. Pearson correlation 
coefficients for all pairs were calculated using the ‘plotCorrelation’ function of deeptools v.3.1.3 and plotted as a 
heatmap, manually ordering the rows/columns from smallest to largest pool size for each target.
Peak overlaps were calculated for each target between experiments of different pool sizes as described above and 
are reported in Supplemental Table 3.  

Histone Modification Diversity Analysis
Chromatin-State: Genome-wide coverage for 10kb windows for 12 histone marks (H3K27me3, H2AK119ub, 
H3K9me3, H4K20me3 and H3K9me3 from the 5M condition in the 35 Antibody Pool Experiment in K562; 
H3K79me2, H3K79me1, H3K4me3, H3K4me2, H3K4me1, H3K9Ac and H3K27Ac from the histone panel in K562) 
was calculated using the ‘multiBamCoverage’ function from deeptools v3.1.3. These values were standardized for 
each mark by transforming into z-score values. The UMAP reduction was generated using the UMAP109 python 
package and parameters n_components=2 and n_neighbors=3. 
Polycomb-Associated Histone Modifications: Validation of polycomb-associated histone modifications used the 
5M condition in the K562 35 Antibody Pool Experiment. H3K27me3 and H2AK119ub bam alignment files were 
converted into binary signal files using the ‘BinarizeBam’ script from the ChromHMM110 package with standard 
settings. The number of bins with only H2AK119ub signal or with both H2AK119ub and H3K27me3 signal were 
computed and plotted as a pie chart.
Heterochromatin-Associated Histone Modifications: Validation of heterochromatin-associated histone modifications 
used the 5M condition in the K562 35 Antibody Pool Experiment. Read coverage of H3K9me3, H4K20me3 and 
H3 were computed over annotation groups (ZNFs, LTRs, LINES, SINES, TSS+/-2kb) using the ‘depth’ function 
from samtools v1.9111. An enrichment score was calculated by normalizing for feature and target abundance. 
Specifically, let a = total base pairs within an annotation group, b = effective genome size, c = read coverage of 
a target over the annotation group and d = total reads of the target. The enrichment score would be (c/d) / (a/b). 
Promoter-Associated Histone Modifications: Validation of promoter-associated histone modifications used the 
ChIP-DIP histone dataset in mESC. Promoter coverage correlations were calculated across promoters from 
EPDNew112, a database of non-redundant eukaryotic RNAP II promoters, +/- 500bp using the ‘multiBamSummary’ 
and ‘plotCorrelations’ functions of the python package deeptools v.3.1.3.
Gene Body-Associated Histone Modifications: Validation of gene body-associated histone modifications used the  
5M condition in the K562 35 Antibody Pool Experiment and the K562 50 Antibody Pool Experiment. Coverage 
metaplots over the gene bodies of all protein coding genes from GENCODE v38 basic annotation were calculated 
using ‘computeMatrix’ function of the python package deeptools v.3.1.3 and normalized to the maximum and 
minimum for each target. 
Enhancer-Associated Histone Modifications: Validation of enhancer-associated histone modifications used the 5M 
condition in the K562 35 Antibody Pool Experiment and the K562 50 Antibody Pool Experiment. H3K4me1 peaks 
were assigned to three categories (promoter, gene or intergenic) based on overlap with H3K4me3 (promoter), 
H3K79me1 (gene) or H3K36me3 (gene). These categories were further sub-divided based on the co-occurrence of 
H3K27Ac peaks. The proportion of peaks in each category was computed and plotted as a pie chart.
Chromatin Regulator Diversity Analysis
Polycomb-Associated Chromatin Regulators: Validation of polycomb-associated chromatin regulators used 
the K562 50 Antibody Pool Experiment. Metaplots respective to RING1B peak sites were calculated using 
‘computeMatrix’ function of the python package deeptools v.3.1.3 with the following settings: ‘reference-point -bs 
10000 -a 500000 -b 500000’. The resulting read coverage profiles were normalized to the maximum and minimum 
for each target and plotted as a heatmap.
Heterochromatin-Associated Chromatin Regulators: Validation of heterochromatin-associated chromatin regulators 
used the K562 50 Antibody Pool Experiment. Genome-wide coverage for 10kB windows and Pearson correlation 
coefficients were calculated using the ‘multiBigwigSummary’ function and ‘plotCorrelation’ function, respectively, 
of the python package deeptools v3.1.3.
H3K4me3-Associated Chromatin Regulators: Analysis of H3K4me3-associated chromatin regulator used the 
mESC 165 Antibody Pool Experiments. Binding profiles of JARID1A, RBBP5 and PHF8 were measured +/- 1kB 
around the TSS of all representative promoters from EPDNew and were clustered using k-means clustering with 
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k=4 by the ‘plotCoverage’ function of the python package deeptools v.3.1.3. H3K4me3 binding profiles from the 
mESC 67 Antibody Pool Experiment were measured over the same four promoter groups.
Polymerase Diversity Analysis
RNAP I, II and III Comparison: Validation of the various RNA polymerases used the mESC 165 Antibody Pool 
Experiment. First, read coverage within a +/- 100bp window surrounding the promoters/TSS of various gene 
groups were calculated. For tRNAs, the TSS of repeatmasker113  tRNAs were used. For snRNAs, the TSS of 
repeatmasker snRNAs (excluding U6 which is transcribed by RNAP III) were used. For mRNAs, EPDNew TSS 
annotations were used. For rDNA, the spacer promoter was used. Next, for each polymerase, coverage was 
normalized to the total reads aligned with any gene group. Finally, an enrichment score of the relative coverage 
compared to IgG was calculated and plotted as a bar graph. 
RNAP II Phosphorylation State Comparison: Validation of the various RNA polymerases used the K562 52 Antibody 
Pool Experiment. Metaplots over the gene bodies of all protein coding genes from GENCODE v38 basic annotation 
were calculated using ‘computeMatrix’ function of the python package deeptools v.3.1.3.
Histone Combinatorial Analyses
Polymerase-Associated Histone Profiles
For RNAP I, track coverage profiles of various histone modifications 1.5kB upstream to 0.5kB downstream of the 
spacer promoter were visualized using IGV.
For RNAP II, metaplots of coverage profiles for various histone modifications were generated around active and 
inactive RNAP II promoters using the deeptools v.3.1.3 ‘computeMatrix’ (reference-point -a 1000 -b 1000) and 
‘plotProfile’ functions. Promoters were defined as the TSS of all representative promoters from EPDNew and were 
grouped into active or inactive based on the read coverage of RNAP II in the surrounding +/-1kB window. 
For RNAP III, metaplots of coverage profiles for various histone modifications were generated around active and 
inactive tRNA genes using the deeptools v.3.1.3 ‘computeMatrix’ (scale-regions -a 1000 -b 1000 -m 75 -bs 25) and 
‘plotProfile’ functions. tRNA genes were grouped into active or inactive based on the read coverage of RNAP III.
For comparison of relative histone levels, total coverage for each histone mark was calculated in the -1.5kB 
to +0.5kB window surround the spacer promoter for rDNA, -0.5kB to +0.5kB window around active RNAP II 
promoters and -0.5kB to +0.5kB window around active RNAP III tRNA gene promoters. To account for differences 
in window size, the coverage of H3K56Ac and H3K4me2 was normalized to the level of H3K4me3. The density 
profiles of these ratios were plotted using the seaborn ‘jointplot’ function with the following kde parameters: 
“common_norm=False, thresh=0.2, log_scale=True, levels=10, cut=True”. For comparison to RNAP I, the total 
sum ratios (e. g. total H3K4me2 coverage across all active RNAP II promoter intervals divided by total H3K4me3 
coverage across all active RNAP II promoter intervals) were also calculated and plotted for RNAP II and RNAP III.  
H3K4me3 Enriched Regions Clustering 
Combinatorial histone modification analysis for H3K4me3 regions used the 5M condition of the K562 35 Antibody 
Pool Experiment. Read coverage of ten histone targets (H3K79me3, H3K79me2, H3K36me3, H3K4me1, H3K4me2, 
H3K27Ac, H3K27me3, H2AK119ub, H3K9me3 and H4K20me3) was calculated over all H3K4me3 peak regions 
using the ‘multicov’ function of bedtools114. The resulting region vs histone data matrix (A) was normalized using 
log normalization115: 1) The log of the data matrix was computed L=log log (A). 2) The column mean (Li), row mean 
(Lj), and overall mean (L) of the log matrix were computed. 3) All individual cells of the final matrix were computed 
according to Kij=Lij - Li - Lj + L. This method of normalization is intended to capture the “extra” coverage of histone 
modification j in region i that is not explained simply by the overall difference between region i and other regions 
or between histone modification j and other histone modifications. Instead, it is special to the combination of 
region i (a region with H3K4me3 enrichment) and coverage of histone modification j. The regions of the normalized 
data matrix were clustered using cluster.hierarchy.linkage function from scipy v.1.6.2116 with a Euclidean distance 
metric and complete linkage method. The clustered matrix was visualized using the ‘clustermap’ function of python 
package seaborn. 
Gene annotation of H3K4me3 regions was performed using the ‘annotatePeaks.pl’ function from HOMER v4.11. 
ZNF genes, RP genes, and lincRNA genes were defined as regions whose annotation gene description contained 
the terms ‘zinc finger protein’, ‘ribosomal protein’ and ‘long intergenic’, respectively, and had the nearest TSS within 
2000bp. snoRNA genes were defined as all regions whose annotation gene type was snoRNA. Satellite RNA genes 
were defined as regions whose detailed annotation contained the term ‘Satellite’. tRNA genes were defined as all 
regions that intersected with tRNA gene bodies or upstream by 500bp of the tRNA TSS from repeat masker. Cell 
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cycle genes were defined as regions whose gene annotation belonged to the Kegg Cell Cycle Pathway117. Bivalent 
genes were defined as regions whose gene annotation belong to those identified by Court and Arnaud in human 
H1 cells118. Enhancer RNA regions (both antisense and intergenic) were defined as regions that intersected those 
identified by Lidschreiber et al.119 and had the nearest TSS greater than 2000bp away. To visualize enrichments of 
gene annotations in sets and subsets of the hierarchically clustered heatmap, the kernel density estimate (KDE)  
was calculated for each annotation group based on their clustering-defined order. 
RNAP II levels of individual H3K4me3 regions were measured as the summed coverage over each region from 
four antibodies targeting RNAP II (RNAP II, RNAP II NTD, RNAP II Ser5, RNAP II Ser2) from the K562 52 Antibody 
Pool Experiment. Transcriptional levels for sets and subsets of H3K4me3 regions were compared using violin 
plots generated by the python plotting package seaborn. P-values for comparison of transcriptional levels within 
subsets of H3K4me3-enriched regions were calculated using the kolmogorov smirnov test from scipy.stats.
ChromHMM Model of Acetylation 
The ChromHMM genome segmentation model was built using 15 different histone acetylation modifications 
measured in the mESC 67 Antibody Pool Experiment. Bam files were binarized using the BinarizeBam function 
from ChromHMM with a poisson threshold of 0.000001 and other default parameters. The signal threshold was 
increased from default to remove spurious noise. State models with 5-20 states were built using the LearnModel 
function with default parameters. States were manually reordered and grouped based on transition probabilities 
between states. 19 states were selected for the final model to retain state 17, a state with a distinctive enrichment 
and transition profile.  
Non-Negative Matrix Factorization of Acetylated Regions
Non-negative matrix factorization analysis utilized the histone acetylation mark data from the mESC 67 Antibody 
Pool Experiment. NMF is a matrix factorization technique to reduce dimensionality and explain the observed data 
using a limited number of combinatorial components115. NMF decomposes the original data matrix (dimensions: 
N x M) into a basis matrix (dimensions: N x k) and a mixture coefficient matrix (dimensions: k x M). In this case, 
N represents genomic regions of interest, M represents individual histone acetylation marks and k represents the 
number of combinatorial histone acetylation states. High coverage regions were defined using the results of the 
ChromHMM Model. Specifically, the 200bp genomic bins corresponding to states with enrichment of multiple 
histone acetylation marks (states 1,2,3,4,6,9,10,11,12,15,16) were merged to form high coverage regions. Then, 
to reduce the number of fragmented or spurious regions, bins with 400 base pairs (2 genomic windows) were 
merged and regions with size less than 400 base pairs (2 genomic windows) were filtered out. A initial normalized 
data matrix (N x M) was generated by computing the coverage of each histone modification over each region and 
normalizing for region size and histone abundance. Specifically, to account for differences in region size between 
regions, the total reads per region was scaled by region size and, to account for differences in total measured 
histone abundance between marks, sigmoidal scaling was used120,121. NMF was then performed using ‘Nimfa’122, 
a python library for nonnegative matrix factorization, with the nndsvd initialization method. The rank k was selected 
empirically, taking into account the biological assignability of the resulting states, the complexity of the model and 
the stability of the factorization (the number of iterations the algorithm required to coverage). 
After factorization, the resulting basis matrix (N x k) contained the coefficient of each combination i for each genomic 
region. A sorted heatmap of the basis matrix was generated by grouping the regions according to the combination 
that contributed the greatest coefficient for each region. For visualization, this heatmap was normalized by dividing 
the coefficients for each region by the total coefficient sum of the region.
To profile and assign a biological interpretation to individual combinations, each region was assigned to the 
combination with the maximum coefficient. Identification of transcription factors with significant binding overlap to 
regions assigned to a single combination was performed using the Cistrome Data Browser, an interactive database 
of public ChIPseq123. For each combination, the top 100 scores were filtered for targets with at least 2 hits in any 
cell type. Motif enrichment was calculated using the HOMER function ‘findMotifs’ on all genomic regions assigned 
to each combination. For comparison of enrichment levels in C4 versus C5, enrichments were calculated using 
bedgraphs from the mESC 165 Antibody Pool Experiment and the ChromHMM program ‘OverlapEnrichment’ (java 
-jar ChromHMM.jar OverlapEnrichment -binres 1 -signal). Interval bars for these enrichments were generated by 
bootstrap resampling; enrichments were recalculated for 200 independent draws of 75% of the regions assigned 
to C4 or C5.   
High Density Regions of NANOG-OCT4-SOX2
High density regions of pluripotency associated transcription factors were calculated using the NANOG, OCT4 and 
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SOX2 data from the mESC 165 Antibody Pool Experiment. Specifically, high-density and low-density regions were 
defined using the super-enhancer setting of the ‘callPeaks’ function from HOMER on the merged tag directors 
of the three transcription factors. To remove nonspecific background peaks, the merged tag directories of the 
background models for these three factors was used as input.  Briefly, the super enhancer setting with default 
parameters first identifies peaks, then stiches together individual peaks that are within 12.5kb of each other, 
calculates a ‘super enhancer score’ for each region based on input-normalized read coverage, generates a ‘super 
enhancer plot’ (regions sorted by score vs number of regions) and identifies the regions where the slope of the plot 
is greater than 1. These regions are labeled as putative ‘super enhancers’ while all remaining regions are labeled 
as ‘typical enhancers’. We consider the ‘super enhancer’ regions as high-density regions (HDR) and the ‘typical 
enhancer’ regions as low-density regions (LDR). 
TF and CR enrichments over HDRs versus LDRs were calculated using the ‘computeMatrix’ function with scale-
regions setting from deeptools v.3.1.3. To account for the differences in typical region size between LDRs and 
HDRs, which tended to be much larger, the -m parameter was set to approximately the median region size for 
each group. 
GO terms associated with the intersection of HDRs, LDRs and NMF-based acetylation combinations were 
calculated using the GO analysis function of ‘annotatePeaks’ from HOMER. To limit the number of terms under 
consideration, only terms assigned to the biological process category that received a cutoff p<0.001 were used. 
Terms were then manually grouped into larger categories (e. g. developmental, metabolic). Enrichment scores 
were calculated by normalizing for the total number of possible unique terms assigned the category and the total 
number of terms assigned to the intersection group. 
Statistics
Pearson correlation coefficients for coverage comparisons versus ENCODE were calculated using pearsonr function 
of scipy.stats library116. Pearson correlation coefficients for heatmaps were generated using the ‘plotCorrelation’ 
function from deeptools v.3.1.3104.
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