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Abstract

Electroencephalography (EEG) has a long history as a clinical tool to study brain function,
and its potential to derive biomarkers for various applications is far from exhausted. Machine
learning (ML) can guide future innovation by harnessing the wealth of complex EEG signals
to isolate relevant brain activity. Yet, ML studies in EEG tend to ignore physiological artifacts,
which may cause problems for deriving biomarkers specific to the central nervous system
(CNS). We present a framework for conceptualizing machine learning from CNS versus
peripheral signals measured with EEG. A common signal representation across the frequency
spectrum based on Morlet wavelets allowed us to define traditional brain activity features
(e.g. log power) and alternative inputs used by state-of-the-art ML approaches (covariance
matrices). Using more than 2600 EEG recordings from large public databases (TUAB,
TDBRAIN), we studied the impact of peripheral signals and artifact removal techniques on
ML models in exemplary age and sex prediction analyses. Across benchmarks, basic artifact
rejection improved model performance whereas further removal of peripheral signals using
ICA decreased performance. Our analyses revealed that peripheral signals enable age and
sex prediction. However, they explained only a fraction of the performance provided by brain
signals. We show that brain signals and body signals, both reflected in the EEG, allow for
prediction of personal characteristics. While these results may depend on specific prediction
problems, our work suggests that great care is needed to separate these signals when the
goal is to develop CNS-specific biomarkers using ML.

Introduction 1

Electroencephalography (EEG) has a long history as a non-invasive technique for measuring 2

brain activity in clinical research and practice. In the past decades, EEG has become 3

increasingly popular as a technique for studying brain function in neurology (Gaubert et al., 4

2019; Jovicich et al., 2019; Schumacher et al., 2020; Sidorov et al., 2017; Sun et al., 2018; 5

Zijlmans et al., 2012) psychiatry (Hegerl et al., 2012; Lenartowicz and Loo, 2014) and drug 6

development (Janz et al., 2022; Leiser et al., 2011). EEG measures electrical potentials 7

induced by cortical large-scale synchrony at dozens to hundreds of electrode locations on 8

the scalp (Nunez and Srinivasan, 2006) and at temporal scales on the order of milliseconds 9

to minutes (Buzsáki and Draguhn, 2004). The resulting multi-dimensional time series contain 10

rich information about brain activity that can be quantified, e.g. as spectral power, spatial 11

patterns, and waveform morphology (Jackson et al., 2019). Therefore, EEG is a valuable 12

source of information that shows promise for deriving biomarkers of cognitive function, CNS 13

pathology, and pharmacodynamics. 14
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EEG signals are intrinsically complex. Analyses focusing on select frequencies, electrodes 15

or time points can be successful in clinical settings characterized by global changes in EEG 16

signals, e.g. related to changes in wakefulness or consciousness induced by sleep (Benca 17

et al., 1999), severe brain injuries (Engemann et al., 2018; Schiff et al., 2014) or anesthe- 18

sia (Purdon et al., 2013). More refined modeling, on the other hand, could uncover subtler 19

EEG signatures and broaden the application of EEG. Propelled by advances in computer 20

science, signal processing and the increasing availability of large EEG datasets, machine 21

learning (ML) has emerged as a promising technology for isolating hidden patterns from com- 22

plex EEG signals. ML, therefore, has the potential to unlock novel types of EEG biomarkers, 23

e.g. to predict progression risk in neurodegenerative disorders (García-Pretelt et al., 2022; 24

Gaubert et al., 2021) or to predict treatment success (Wu et al., 2020; Zhdanov et al., 2020). 25

As ML methods, including deep learning (DL), for EEG are rapidly developing, the field 26

has not yet converged on methodological standards and best practices (Roy et al., 2019). 27

This increases the researcher’s degrees of freedom, and consequently the variability of 28

results, which may hamper unlocking the potential of ML for improving EEG analysis. One 29

potentially important source of such variability arises from handling artifactual signals in 30

the EEG. A recent systematic review of the ML & DL literature for EEG (Roy et al., 2019), 31

found that the majority of studies (72%) did not perform any explicit removal of physiological 32

artifacts related to peripheral body signals (e.g. eye blinks, muscle & cardiac activity) that 33

are well known to leak into the EEG and can overshadow the brain signal of interest. This is 34

particularly problematic as these peripheral sources are often modified by medical conditions 35

and other individual factors and might therefore be predictive too (Golding et al., 2006; Lage 36

et al., 2020; Lindow et al., 2023), which is entirely ignored if EEG is left unprocessed as was 37

recently advocated for (Delorme, 2023). Depending on the relationship between artifacts 38

and variables of interest, high-capacity ML techniques such as deep neural networks may 39

automatically learn how to filter out artifact-generating sources as irrelevant noise, or, instead 40

will use non-brain information to minimize prediction error (Jochmann et al., 2023). The latter 41

case would hamper unambiguous interpretation as brain-specific biomarkers. 42

Artifact removal techniques such as independent component analysis (ICA) or signal- 43

space projection (SSP) have proven effective in reducing the leakage of signals from non- 44

brain generators into the EEG (Hyvärinen et al., 2004; Uusitalo and Ilmoniemi, 1997). In 45

recent years, technological advancements have made it easier to automate and scale these 46

artifact removal techniques (Jas et al., 2017; Pion-Tonachini et al., 2019; Zhang et al., 2021). 47

Yet, they have not been systematically studied in the context of machine learning pipelines 48

for biomarker learning. It remains unclear if and how artifact removal procedures that isolate 49

brain signals from body signals impact model performance and to what extent ML models 50

make use of EEG signals induced by peripheral physiological generators. 51

This work had two principal scientific objectives. 1) We aimed at formalizing the impor- 52

tance of considering potentially predictive physiological signals in a conceptual framework 53

for building interpretable brain-specific EEG biomarkers with ML. 2) We tested if ML models 54

make systematic use of peripheral non-brain signals if EEG signals are not sufficiently 55

preprocessed. 56

We focused on ML approaches for subject-level prediction, where one data point contains 57

one EEG recording and one single outcome measure (Fruehwirt et al., 2017; Sabbagh et al., 58

2020; Wu et al., 2020) as compared to event-related modeling in cognitive decoding (King 59

and Dehaene, 2014; Stokes et al., 2015) or brain-computer interfaces (BCI) (Abiri et al., 2019; 60

Congedo et al., 2017). As ML requires training data, age and sex prediction are promising 61

example problems that are readily accessible across data resources and have received 62

increasing attention in human neuroscience. For example, the brain age approach (Cole 63

et al., 2019; Smith et al., 2019) encapsulates patterns of brain aging via age prediction 64
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models, which, evaluated on atypical or clinical populations, can show informative biases 65

like over-prediction of the chronological age (Cole et al., 2018; Denissen et al., 2022). A 66

similar idea has been recently explored for sex prediction (Floris et al., 2023). Both age 67

and sex prediction are actively investigated with EEG (Binnie et al., 2021; Engemann et al., 68

2022; Jochmann et al., 2023; Sun et al., 2019; van Putten et al., 2018). To study the 69

interplay between predictive brain and body signals captured by the EEG through age and 70

sex prediction, we chose publicly accessible datasets with wide age ranges for which at 71

least 1000 data points were available, i.e. TDBRAIN, the Two Decades of Brainclinics (van 72

Dijk et al., 2022), and TUAB, the Temple University Hospital Abnormal Corpus (Obeid and 73

Picone, 2016). 74

We used a generic framework suited for expressing prior biological assumptions. Pre- 75

vious work has obtained promising results for subject-level prediction of age from EEG by 76

relying on the between-electrodes covariance matrices from different frequency bands as 77

model inputs (Engemann et al., 2022). This approach is backed by statistical theory and 78

defines mathematical tools from Riemannian geometry for building prediction algorithms on 79

covariance manifolds (Barachant et al., 2010; Congedo et al., 2017; Sabbagh et al., 2020). 80

The resulting models are effective at suppressing the distorting effects of volume conduction 81

and electrical potential spread (Sabbagh et al., 2020). Our theoretical framework follows this 82

line of research and extends it by making the role of non-brain predictive artifacts explicit. 83

Moreover, our approach is committed to avoiding hand-picking of frequencies or band defi- 84

nitions and to improving interpretability against classical spectral measures. We therefore 85

computed the covariances using complex Morlet wavelets (Morlet et al., 1982) that have a 86

long tradition in EEG signal analysis (Cohen, 2019; Hipp et al., 2012; Tallon-Baudry et al., 87

1996). This allowed us to cover the entire frequency spectrum with fine-grained resolution. 88

As a second complementary generic approach, we benchmarked a convolutional neural 89

network (Schirrmeister et al., 2017) that has the capability to learn custom oscillatory motifs. 90

Results 91

Conceptual framework for building brain-specific prediction models with EEG 92

We first developed our methodological framework (Figure 1). Prior work (Sabbagh et al., 93

2020) proposed a generative modeling framework for regressing biomedical outcomes on 94

cortical activity in the presence of volume conduction. A central feature of that work are 95

statistical guarantees that yield unbiased prediction models without approximation error – 96

also termed statistical consistency – given specific model assumptions of, e.g. linear field 97

spread, and a log linear relationship between brain activity and the outcome (eqs. 2 and 3). 98

Moreover, the framework can accommodate matrix-rank deficiencies caused by artifact 99

cleaning (Absil et al., 2009; Sabbagh et al., 2019), which is of central importance in our 100

context. 101

Here, we extended that framework to explicitly reflect the role of potentially predictive body 102

signals as compared to non-predictive noise (Figure 1, ÿeq. 2). This inspired us to propose 103

a stringent definition of CNS biomarkers for which we require that the EEG model isolates 104

CNS components from noise and peripheral signals (eqs. 2 and 3). At the theoretical level, 105

this formulation allowed us to see that statistically consistent regression models for prediction 106

from EEG brain activity Sabbagh et al. (2020, 2019) from EEG-sensor-space covariance 107

matrices (eq. 4) are also consistent for predicting from non-brain activity leaking into the EEG, 108

unless dedicated artifact cleaning is applied. It is therefore not necessarily a safe assumption 109

that such machine learning models will automatically learn to ignore artifacts with enough 110

training data (see formal analysis presented in methods, (eqs. 12 to 15). If artifacts are 111
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Figure 1. Conceptual framework for biomarker learning from EEG. Conceptual framework for biomarker learning from
EEG. (a) Individual genetics, medical conditions, and interventions among other factors affect the brain (CNS) and the body
(periphery) simultaneously, enabling predictive modeling as outcome measures related to these conditions become correlated
to physiological measures such as EEG. Predictive CNS generators, predictive peripheral generators (e.g., ocular, cardiac,
muscular) and non-predictive ambient noise (electronics, loose electrodes, electromagnetic interference) induce EEG signals
through linear mixing. An ideal CNS biomarker isolates brain-related signals and ignores the other generators contributing to
the EEG signal. (b) Families of complex Morlet wavelets (left) offer useful representations for disentangling signal generators
inducing EEG patterns in different frequencies (solid and dotted lines represent real and imaginary parts of the complex valued
kernel). Beyond classical log power topographies (middle), we derived covariance matrices (right) through wavelet convolutions.
Covariances play a central role in machine learning (ML) algorithms for EEG as they define representations that help mitigate
distortions and biases due to linear source mixing. (c) Data processing and predictive modeling pipeline. To study the impact of
different EEG generators on ML pipelines, we varied the preprocessing (minimal - numerically stabilizing processing, autoreject
- removal of ambient noise and high-amplitude signals, autoreject & ICA – additional removal of peripheral artifacts). We focused
on Morlet wavelets and covariance-based approaches that emerged as informative baselines in previous work as they imply
different underlying hypotheses about the regression function and make different use of spatial information (Table 1). We also
investigated a convolutional neural network (ShallowNet) capable of learning custom, temporal filters from the data, which leads
to increased model capacity and enables learning of features sensitive to changes in the shape of oscillations or bursting events.
Figure 1 – Figure supplement 1: Prediction results with wavelets versus conventionally defined frequency bands (IPEG).

uncorrelated with the outcome of interest, one might choose to leave the data unprocessed 112

and thereby potentially even increase the robustness of the learned representation. However, 113

prior studies have shown that peripheral signals and EEG artifacts can be systematically 114

modulated in different patient groups (Golding et al., 2006; Jongkees and Colzato, 2016; 115

Lindow et al., 2023; Wilkinson and Nelson, 2021). This motivated us to systematically study 116

the relationship between different EEG components attributed to CNS versus peripheral 117

generators, which typically differ in terms of spectral and spatial patterns. 118

In support of this purpose, we combined ML with EEG representations based on Morlet 119

wavelets (Figure 1a, eq. 4; Morlet et al. 1982; Tallon-Baudry et al. 1996). Our approach 120
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to spectral analysis chooses a log-frequency parametrization defining the wavelet families 121

using a base-2 logarithmic grid (Hipp et al., 2012), which is tailored to the natural scaling of 122

brain rhythms that are rather lognormal (Buzsáki and Mizuseki, 2014). That is, the spectral 123

resolution is higher at lower frequencies, and accordingly the spectral smoothing is greater 124

at higher frequencies. This representation is well established for implementing spectral EEG 125

measures (e.g. log power, eq. 7) and a common choice in clinical biomarker studies (Frohlich 126

et al., 2019; Hawellek et al., 2022; Janz et al., 2022). Beyond classical EEG metrics, here, we 127

adapted the Wavelet approach to further derive advanced representations for state-of-the-art 128

ML methods developed for EEG (Figure 1a,Figure 1b). 129

As our principal ML strategy, we focused on the family of covariance-based prediction 130

models (Congedo et al., 2017; Grosse-Wentrup and Buss, 2008; Koles et al., 1990) that 131

were theoretically and empirically analyzed in previous work (Sabbagh et al., 2020). These 132

models provide useful baselines as they enjoy statistical guarantees under different as- 133

sumptions, such that the comparison of their performance can hint at characteristics of the 134

data-generating mechanism (cf. Prediction algorithms). So far, these models have been 135

studied with conventional frequency bands and other than in previous work, we estimated 136

frequency-specific covariances from the real part of the Morlet wavelet representation (Fig- 137

ure 1b). Additional validation confirmed that covariance-based models performed consistently 138

better when implemented under the wavelet approach. For a comparison with frequency 139

bands proposed by the International Pharmaco-EEG Society (IPEG Jobert et al. 2012), see 140

also Figure 1 – Figure supplement 1. 141

We also explored a flexible convolutional neural network approach: Shal- 142

lowNet (Schirrmeister et al., 2017) operates directly on EEG time series data and can 143

overcome the potential limitations of the assumptions of sinusoidal brain oscillations at 144

fixed frequencies (Jackson et al., 2019). Together, these models should be reasonably 145

representative of state-of-the-art ML models used in EEG research. 146

We then used this combination of a high high-resolution spectral representation and 147

powerful covariance-based ML models that can leverage fine-grained spatial features to in- 148

vestigate the impact of artifact preprocessing. We performed analyses across different levels 149

of preprocessing, designed to vary the extent to which environmental versus physiological 150

artifacts are cleaned (Figure 1c). 151

Table 1. Models and implied signal-generating hypotheses

Model Hypothesis

Upper (eq. 8) outcome linear in source power regardless of source mixing
log diagonal (eq. 9) outcome linear in log of source power in absence of source mixing
SPoC (eq. 10) outcome linear in log of source power regardless of source mixing
Riemann (eq. 11) outcome linear in log of source power regardless of source mixing

Impact of Preprocessing on Model Performance 152

We applied our framework to investigate the contribution of brain and non-brain signals to 153

the performance of the different ML models in two benchmark tests, age, and sex prediction. 154

We compared model performance across different levels of preprocessing to assess if ML 155

models would benefit, suffer or be unaffected by artifact removal. We compared the 10-fold 156

cross-validation results for different models on either minimally, moderately, or extensively 157

preprocessed input data ( Figure 2, Table S1, Table S2). Minimally preprocessed data was 158

filtered and resampled. Moderate preprocessing made additional use of autoreject (Jas et al., 159

2017), a method that discards and interpolates bad channels and segments (AR) to remove 160
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Figure 2. Impact of artifact removal on EEG prediction performance. (a): age prediction and (b): sex classification on
the TDBRAIN and the TUAB datasets. Boxplots show 10-fold-cross validation distributions. Color depicts the degree of EEG
processing (minimal, autoreject, autoreject & ICA). Rows present model architectures: Ridge regression & classification based
on covariances with upper vectorization (upper), the log of the variance components (log diagonal), supervised spatial filtering
(SPoC), the Riemannian tangent space (Riemann) and a convolutional neural network operating on raw EEG time series
(ShallowNet). Removing noisy channels and high-amplitude data segments (autoreject) often led to improved performance.
The Riemannian model benefited least from intense preprocessing, whereas simpler models (upper, log diagonal) could be
substantially improved by preprocessing. Performing additional ICA-based rejection of artifacts (muscles, eye blinks, etc.) often
lowered the prediction performance, suggesting that bodily, non-brain generators of the EEG can include predictive information.
Figure 2 – Figure supplement 1: Impact of processing on EEG power spectra, topographies and covariances (TDBRAIN).
Figure 2 – Figure supplement 2: Impact of processing on EEG power spectra, topographies and covariances (TUAB).

high-amplitude artifacts produced by ambient interference, electronics or loose electrodes. 161

Extensive preprocessing added explicit removal of physiological artifacts using ICA (AR & 162

ICA) supported by automatic labeling of brain and artifact components (Ablin et al., 2018; 163

Hyvärinen and Oja, 2000; Pion-Tonachini et al., 2019). 164

The depth of preprocessing affected total power, relative power and covariances across 165

frequencies (Figure 2 – Figure supplement 1 & Figure 2 – Figure supplement 2). Grouping 166

of log power spectra by age showed differences that may enable prediction, regardless of 167

preprocessing. Except for the upper model, all models showed above-chance prediction 168

regardless of processing choices (Figure 2a,b). Pooling over models and datasets, we can 169

observe that autoreject led to an improvement in R2 over minimally preprocessed data of 170

0.151 (CI95% = [0.076, 0.236]) for age prediction (Figure 2) and in area under the curve (AUC) 171

of 0.071 (CI95% = [0.021, 0.126]) for sex prediction (Figure 2b). The additional ICA step did 172

not yield further improvements and instead lowered the performance by on average -0.036 173

(CI95% = [−0.061,−0.004]) in R2 and -0.047 (CI95% = [−0.057,−0.037]) in AUC compared 174

to autoreject preprocessing alone. 175

Detailed model comparisons revealed that simpler models tended to benefit more from 176

preprocessing. The upper model (eq. 8), for instance, failed on the task of age prediction 177

on TUAB when only minimal preprocessing was applied to the input, and performance 178
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was substantially improved with preprocessing. A similar effect was observed for the log 179

diagonal and SPoC models. The Riemann model and the ShallowNet benefited less from 180

preprocessing with autoreject. This might be explained by their increased capacity to use the 181

wealth of information in raw signals or the covariance matrix to suppress irrelevant signals. 182

All cross-validation results including additional metrics are printed in Table S1 and Table S2 183

to facilitate comparisons with other studies. 184

In summary, our results suggest that removal of high-amplitude artifacts using autoreject 185

can be beneficial across models, whereas refined ICA-based removal of physiological 186

artifacts might hamper predictive information. 187

Exploring the relative contribution of peripheral non-brain signals 188

That ICA-based removal of non-brain signals (including muscle activity, eye movements or 189

cardiac activity) led to lower prediction performance could imply that these non-brain signals 190

contained information about the outcome. We next performed an in-depth investigation of 191

the predictive value of these signals that are typically treated as artifacts. To approximate 192

a decomposition of the model performance into brain and non-brain contributions (eqs. 12 193

to 15), we explored two complementary approaches: (1) reconstruction of EEG features from 194

brain and artifactual ICs, and (2) computation of EEG features from auxiliary channels, where 195

available. Specifically, we focused on the auxiliary channels used to record ocular, muscular, 196

and cardiac activity in the TDBRAIN dataset (see Approximate subspace regression and 197

classification). 198

If the drop in performance after ICA preprocessing is due to the removal of predictive 199

information, we should achieve above-chance prediction performance when using only the 200

removed signal as input. To investigate this hypothesis, we first used ICA on the TUAB dataset 201

where no auxiliary channels were available (Figure 3). We reconstructed the signal from 202

the subspaces spanned by the rejected ICA components. As the ICLabel algorithm (Pion- 203

Tonachini et al., 2019) used for labeling of independent components provides categories for 204

the rejected components, we also reconstructed the signal for particular classes of artifacts 205

(e.g. ocular or muscle artifacts). 206

Inspecting the power spectra of the reconstructed artifact signals, ocular artifacts were 207

dominated by low-frequency power, whereas muscle artifacts contained mostly high fre- 208

quency power (Figure 3a). Moreover, the alpha-band peak above 8 Hz was preserved 209

after ICA-cleaning of the EEG (signal-subspace) and not present on the artifact-subspace 210

power spectra (Figure 3a). Grouping by age and sex on subspace power spectra showed 211

average power differences that may enable prediction. We used 10-fold cross-validation to 212

gauge model performances for age and sex prediction (Figure 3b,c). The subspace models 213

achieved above-chance performance, suggesting that non-brain signal generators are pre- 214

dictive of age and sex. The only exception to this pattern was the ShallowNet performance 215

for age prediction, potentially related to data requirements of complex regression models in 216

situations with low signal-to-noise ratio. Jointly predicting from all artifact sources together 217

yielded better performance than predicting from any individual artifact class, but performance 218

results for individual artifact classes were still above chance. Importantly, the performance 219

of models using clean EEG were substantially better and performance distributions were 220

non-overlapping with the artifact subspace models. 221

The second approach, using auxiliary channels instead of ICA subspaces, was explored 222

on the TDBRAIN dataset (see TDBRAIN dataset). The horizontal and vertical EOG electrodes 223

are placed close to the eyes and thus primarily pick up eye movements, which is reflected 224

in high power at low frequencies. The ECG electrode is placed at the cervical bone and 225

provides a measurement of cardiac activity. Finally, the EMG electrode is placed on the 226
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Figure 3. Exploration of the contribution of CNS and peripheral signals as extracted from ICA. (a) Power spectra of EEG
reconstructed from ICA components identified as reflecting brain signals and artifacts, averaged across electrodes. Power in
ocular artifact subspaces is concentrated at low frequencies and muscle activity is concentrated at high frequencies. Note that
the overall lower amount of power for artifacts compared to the cleaned signal is partially explained by the averaging across all
electrodes: artifacts are typically concentrated in a subset of the electrodes. Importantly, alpha power (8-12 Hz) was largely
preserved in EEG and virtually absent in ICA-reconstructed artifact signals. (b) and (c) show model comparisons for cleaned
EEG versus ICA-reconstructed artifact signals. Performance was higher after cleaning with AR (blue) and AR & ICA (yellow), yet
the ICA reconstructions of artifact subspaces (orange) also contained predictive information. The highest performance was
achieved after AR preprocessing, which eliminated large artifact sections but did not eliminate the contribution of physiological
artifacts.

right masseter muscle and measures (jaw) muscle activity, reflected in large amounts of 227

high-frequency power (Figure 4a). As we expected, comparing power spectra, all auxiliary 228
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channels appeared markedly different from the EEG channels. However, we can still discern 229

alpha peaks between 8 and 12 Hz in the EOG and EMG channels, suggesting that auxiliary 230

channels also picked up brain activity to some extent. As before, the grouping by age and 231

sex on the auxiliary-channel power spectra reveal differences that may enable prediction. 232

In line with results from the ICA-based analysis, predictions based on auxiliary channels 233

were substantially better than chance (Figure 4b,c). In many cases, data from EOG channels 234

explained the larger part of the performance obtained with auxiliary channels. 235

Yet, the combination of all available auxiliary channels led to the highest performance 236

compared to individual auxiliary channels. Again, the performance achieved with EEG 237

data was substantially higher, as evidenced by non-overlapping or weakly overlapping 238

cross-validation distributions. Strikingly, despite the performance observed with auxiliary 239

channels, combining EEG and auxiliary channels did not lead to consistent improvements 240

over pure EEG data for most models. This suggests that the predictive information present 241

in the auxiliary channels was already present in the EEG signal and explained part of its 242

performance. 243

In sum, our findings suggest that across datasets and tasks, non-brain signals contain 244

information predictive of age and sex but that the main driver of prediction performance is 245

brain related. 246

Model exploration through spectral profiling of prediction performance 247

The wavelet-based framework developed in this work not only offers competitive prediction 248

performance (Figure 1 – Figure supplement 1). It provides additional opportunities for model 249

interpretation. How individual frequencies contribute to model prediction can provide insights 250

about the underlying physiological processes. E.g. in motor tasks, the predictive signal 251

was found to occupy a specific frequency range (beta frequency range), possibly reflecting 252

strong associations of outcomes with oscillatory activity in the motor cortex (Schoffelen et al., 253

2011) and not much information was gained by combining multiple frequencies (Sabbagh 254

et al., 2020). On the other hand, specific frequency ranges might not play a prominent role 255

if predictive brain sources are distributed across cortical networks. Moreover, structural 256

anatomical characteristics may systematically influence propagation of brain activity, as 257

recently hypothesized for sex prediction from EEG (Jochmann et al., 2023). Also, changes of 258

states of consciousness (awake, sleep, coma) that go hand in hand with global changes of 259

the EEG signal may enable decoding from broadband power. This included certain drugs 260

like anesthetics (Bojak and Liley, 2005; Drummond et al., 1991). 261

Comparing models with a restricted frequency range versus all frequencies, allowed us to 262

characterize the nature of the predictive signal. We focused this analysis on the SPoC model, 263

which strikes a good compromise between computation time and model performance. As 264

covariances at a single frequency cannot capture local changes across frequencies, we built 265

models capable of deriving local contrasts between neighboring frequencies (Figure 5, left 266

subpanels, blue lines). To this end, we extracted covariances from 5 neighboring wavelets 267

around the center frequency f spanning one octave (see Background: Spectral analysis 268

and machine learning for EEG biomarkers). In addition, we averaged covariances (with 269

fixed equal weights) across the same neighboring frequencies (Figure 5, left subpanels, 270

yellow lines). Comparing these two approaches allowed exploring the complexity of local 271

information as performance should be equal if local changes in the spatial patterns along the 272

spectrum contain no information. 273

To put performance based on these models with a restricted frequency range around 274

center frequencies into perspective with previous results, we replotted the full model joining 275

all frequencies as input (Figure 5, right subpanels, blue markers), corresponding to results 276
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Figure 4. Exploration of the contribution of brain and body signals through analysis of auxiliary (AUX) channels. (a)
AUX channel power spectra generally exhibit different characteristics than EEG (cleaned with autoreject, averaged across
electrodes). (b) and (c) show comparisons of model performance with EEG versus auxiliary physiological channels (AUX) for
age and sex prediction, respectively. It can be seen that modeling from AUX inputs (orange) leads to systematic prediction
performance across tasks and model architectures. The effect of AUX inputs related to ocular activity explained much of the
performance of all AUX inputs together. Predicting from EEG inputs (yellow) yielded consistently higher performance. As a
tendency, model architectures that achieve better results for EEG inputs also achieve better results for AUX inputs. Combining
EEG and AUX features (blue) did not result in systematically better performance. These results suggest that the predictive
information conveyed by AUX channels is already captured by the EEG channels.

shown for SPoC in Figure 2. In addition, we conducted a control analysis using the average 277

of all covariances as input, which basically corresponds to the covariance of the broad-band 278

signal that lacks any frequency information (Figure 5, right subpanels, yellow markers). 279
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Furthermore, we explored the effect of preprocessing on performance in local frequency 280

regions as compared to global effects (Figure 5, dotted lines and markers). 281

We first focussed on age prediction from EEG cleaned with autoreject (solid lines). For 282

TDBRAIN (Figure 5a), performance peaked between 8-16 Hz, around R2 scores of 0.6. A 283

similar peak emerged below 8 Hz. By comparison, adaptively joining all wavelets (as in our 284

previous analysis), increased the R2 score to around 0.8. A similar picture emerged for TUAB 285

(Figure 5 5b), with R2 peaking around 0.4 at similar frequencies, whereas, joining all wavelets 286

increased the score to around 0.6. For orientation, uncertainty estimates (SD) are displayed 287

on the right subpanels. This suggests that the information from different frequencies was 288

complementary for age prediction on both datasets. Applying averaging (yellow lines), a 289

clear drop in performance of around 0.2 in terms of R2 scores was observed on, both, 290

local-frequency (Figure 5a,b, left subpanels) and global broadband models (Figure 5a,b, right 291

subpanels), pointing at complex and local spectral information that is lost upon averaging. 292

A similar picture emerged for sex prediction (Figure 5c,d). For TDBRAIN, peak AUC 293

scores of about 0.8 were observed between 8 and 16 Hz (Figure 5c). Joining all frequencies 294

lifted the AUC score close to 0.9. This was highly similar for TUAB (Figure 5d), except that 295

peak performance was observed above 16 Hz. By comparison, averaging (yellow lines) 296

decreased the performance to AUC scores closer to 0.7. 297

To connect this analysis with our previous results, we analyzed changes in performance 298

profiles as further artifact removal with ICA was added (dashed lines). 299

Changes in performance were small for age prediction in general, especially for the 300

TDBRAIN dataset where frequency-specific models seemed unaffected. Some reduction in 301

prediction performance at the peak above 8 Hz from 0.4 to around 0.3 is seen on the TUAB 302

dataset. By comparison, the effect of removing artifacts was more visible for sex prediction, 303

also for global combined models. 304

Taken together, spectral profiling revealed some spectral specificity in prediction perfor- 305

mance, while prediction was possible across all frequencies. Models combining frequencies 306

at local or global ranges always clearly outperformed averaged models, pointing at synergistic 307

information across the frequency spectrum and ruling out trivial offsets or broadband effects 308

as main drivers of the prediction. 309

Discussion 310

Over the past decade, important advances have been made in EEG-based biomarker 311

exploration with ML. To fully harness the potential of ML for EEG biomarkers, it will be 312

important to optimally use neuroscientific and biophysiological insights from EEG research. 313

Incorporating such prior knowledge into machine learning models can endow them with 314

theoretical grounding and increase their robustness in wide-data regimes (few training data 315

points, many variables) dominating human neuroscience. Our literature review identified 316

an important gap in the conceptualization and practical handling of signal contributions to 317

the EEG originating from non-brain, peripheral generators. Peripheral signals are rigorously 318

treated as artifacts in classical EEG methods but are commonly ignored in ML work. This is 319

potentially due to widespread enthusiasm about the capability of ML models to detect the 320

hidden patterns of interest in data and ignore the noise. 321

Our work addresses the need for a practical yet theoretically grounded machine learning 322

methodology for biomarker discovery and development with EEG. Our proposed framework 323

carefully reconsidered previous theoretical results on regression models for predicting from 324

brain activity in the presence of field spread and volume conduction. As biomedical conditions 325

and therapeutic interventions can affect, both, the brain and the body, related outcomes 326
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Figure 5. Spectral profiling of predictive EEG signatures using the wavelet framework. We inspected the SPoC pipeline
on TDBRAIN (a, c) and TUAB (b, d) datasets for age (a, b) and sex (c, d) prediction by confronting frequency-wise models (left
subpanels) with full cross-frequency models (right subpanels, all wavelets). For frequency-wise modeling, we used 5 wavelets
around the center frequency (x-axis), from which covariances were averaged (yellow) or individually combined by the model
(blue). Solid versus dashed curves depict the preprocessing, i.e., autoreject only and additional ICA, respectively. Horizontal
lines provide an orientation with regard to the results based on all wavelets (right subpanels). The joint model with all individual
wavelets represents the previously investigated standard models. The broadband model averaged all covariances across all
frequencies to capture the global signal. It can be seen that letting the model combine the frequencies consistently led to better
results, pointing at spectrally distributed information.

can potentially be predicted from, both, brain and body signals. This insight has inspired 327

us to study state-of-the-art ML algorithms in empirical benchmarks designed to evaluate 328

and isolate the differential contributions of brain versus body signals mixed in the EEG. Our 329

benchmarks demonstrate that exemplary age and sex prediction problems were substantially 330

affected by non-brain signal generators if these were not explicitly handled. 331

A key insight obtained from our conceptual analysis and our empirical work is that 332

prediction from EEG signals will only yield a brain-specific biomarker model if bodily signals 333

are explicitly removed or controlled for. 334

Furthermore, our empirical results provide new insights into the prediction algorithms, 335

extend the scope from age prediction to sex classification, and unlock model interpretation 336

techniques through the proposed wavelet framework. In the following sections, we provide 337

deep dives into some of the details and their practical implications. 338
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Artifact removal is essential for learning interpretable CNS biomarkers 339

The wavelet methodology allowed us to compile new benchmarks, visualization and analysis 340

techniques for studying the interplay between CNS and peripheral EEG generators. Our 341

benchmarks on artifact removal revealed a colorful picture. For all ML models, removal of 342

high-amplitude artifacts via autoreject improved prediction performance (Figure 2), which 343

contrasts a widespread view according to which minimal processing of EEG is preferable 344

for ML (Delorme, 2023; Roy et al., 2019). On the other hand, additionally regressing out 345

artifacts related to peripheral signals with ICA consistently led to a decrease rather than a 346

further improvement in performance, which suggests that there is predictive information in 347

these signals. 348

One common argument presented in the context of model interpretation is that one cannot 349

tell ad-hoc whether certain features are necessarily bad because the model might use them 350

to denoise the predictive function (Haufe et al., 2014). For instance, if the model has access 351

to a channel that strongly reflects ocular artifacts, it could, in principle, use this channel as an 352

artifact indicator and down-weight the importance of artifacted segments. This might motivate 353

researchers to keep the data minimally processed (Roy et al., 2019). We see our theoretical 354

framework and empirical results in disagreement with this view. The key point, formalized 355

in our generative model, is that it matters whether these artifact signals are themselves 356

correlated with the outcome. If one expects artifact signals to be useful— not because of 357

their own predictive value but only as a means for the model to denoise the actual signal 358

of interest–– one should also expect the removal of high-amplitude artifacts, related to bad 359

channels and segments, to lead to a decrease in model performance. Our benchmarks show 360

the opposite. It is thus much more plausible that the decrease in performance after removal 361

of physiological artifacts with ICA is not explained by the prediction model’s limited capacity 362

to denoise the signal, but instead because the removed signals are themselves predictive of 363

the outcome. 364

A related argument would be to motivate the omission of preprocessing based on the 365

emerging literature on data augmentation in EEG, where noise and perturbations are added 366

to the data to improve model robustness and performance (Rommel et al., 2022). But the 367

critical difference is that data augmentation is performed in a way that breaks the statistical 368

dependence between the noise features and the outcome, which forces high-capacity ML 369

models to better extract the underlying function of interest. The presence of artifacts induced 370

by peripheral signal generators can therefore not be seen as data augmentation as, in 371

their natural state, they can be correlated with the outcome (as shown here for the two 372

example tasks of age and sex prediction). An interesting twist of this observation would be to 373

develop a proper augmentation approach that injects (simulated) peripheral artifacts into the 374

EEG in ways that break their statistical association with the outcome, hence, enforcing true 375

decorrelation. 376

Another objection could be that the predictive signal removed with ICA is not only a 377

pure (physiological) artifact but also contains some genuine brain signal. Given that ICA 378

decompositions and component classification can be imperfect, it is a logical possibility that 379

some brain signal is removed along with artifacts and that this led to the observed drop in 380

performance. This would be compatible with the observation that the removal of segments or 381

channels with autoreject does not result in the same drop in performance. If ICA removes a 382

brain source it does remove it from the entire recording whereas the rejection of individual 383

segments with autoreject is local and preserves brain signals in the retained segments. 384

For at least three reasons, we hold that regardless of ICA quality, one has to consider that 385

artifacts are predictive and risk diluting CNS biomarkers: 1) prior knowledge of the change in 386

peripheral and body variables in aging and pathology (Golding et al., 2006; Jongkees and 387
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Colzato, 2016; Lage et al., 2020; Lindow et al., 2023; Wilkinson and Nelson, 2021). 2) The 388

sensitivity of machine learning models to pick up even weak and hidden patterns. 3) Similar 389

effects were obtained for auxiliary channels where no ICA was applied (Figure 4). The first 390

point deserves some additional reflection. Certain patient populations may be more likely to 391

move, talk or activate facial muscles during the EEG recording than healthy controls. When 392

focusing on a diagnostic analysis and comparing a group of patients with controls, differences 393

in artifact load between diagnoses can therefore lead to a statistical difference that is not 394

driven by differences in brain activity. For example, eye blinks induce major high-amplitude 395

EEG artifacts (Croft and Barry, 2000) and eye blink rate is driven by central dopaminergic 396

function and systematically reduced or increased by pathologies like Parkinson’s disease or 397

schizophrenia, respectively (Jongkees and Colzato, 2016)). Another recent study reported 398

higher artifact probability and fewer clean data segments in children with Fragile X Syndrome 399

as compared to age-matched controls (Wilkinson and Nelson, 2021). 400

In sum, even if we risk losing some brain signals after ICA cleaning, the alternative would 401

be to have models that cannot be unequivocally interpreted with regard to underlying brain 402

signals. 403

Disentangling brain and body EEG generators 404

Our benchmarks present clear evidence that the signal components attributed to peripheral 405

body signals are predictive themselves, hence, should not be used for a model that intends 406

to capture brain-specific signals (Figure 2-Figure 4). Would it then be appropriate to address 407

the problem of disentangling brain and body signals with statistical techniques for decon- 408

founding (Zhao et al., 2020)? A recent line of work has started studying machine learning 409

techniques for addressing confounding in neuroscience applications (Chyzhyk et al., 2022; 410

Qu et al., 2021). While this can lead to practically useful methods, there is an important 411

theoretical mismatch with our perspective. In confounding, a noise factor of non-interest 412

affects both the inputs and the outcomes. For example, age (cofounder) affects neuronal 413

activity (input) and vascular function (Tsvetanov et al., 2021), both of which influence the 414

blood-oxygen-level-dependent (BOLD) signal measured with functional magnetic resonance 415

imaging (fMRI, outcome). This could induce spurious correlations between electrophysiologi- 416

cal measures of neuronal activity and the fMRI signal, as the effects of age on both neuronal 417

activity and vascular function can be mistakenly attributed to a direct relationship between 418

neuronal activity and the BOLD signal. In our theoretical framework, conditions related to the 419

outcome affect latent factors which are mixed in the input signals. 420

A latent factor view of the problem, therefore, lends itself to trying to disentangle the 421

CNS and peripheral signal generators through blind source separation, ICA and related 422

techniques (Hyvärinen et al., 2004). This is anything but new from the view of traditional 423

EEG analysis, where ICA is a standard tool for isolating brain activity in clinical biomarker 424

studies (Jung et al., 2000). However, this thinking has not yet been broadly embraced in 425

applied ML work with EEG. In this work, we applied the generative model and theoretical 426

results developed in Sabbagh et al. 2019 to better connect the two fields. We reformulated 427

the generative model as a latent factor model with three components: The predictive brain 428

sources, the predictive body sources and the non-predictive noise sources (eqs. 1 to 3). This 429

has motivated signal-isolating regression methods (eqs. eqs. 12 to 15). Our work explored 430

two practical ad-hoc methods for isolating brain from body (Figure 3-Figure 4) for virtually 431

any machine learning pipeline, following a same-analysis approach (Görgen et al., 2018). 432

The implementation of both approaches (ICA versus auxiliary channels) within our wavelet 433

framework has allowed us to gauge direct evidence for the quality of the approximation by 434

comparing power spectra from the respective subspace approximations. With ICA, alpha 435
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band oscillations (8-12 Hz) were convincingly isolated and did not seem to leak into the 436

subspace of peripheral models (Figure 3a). On the other hand, alpha band rhythms were 437

clearly visible on the auxiliary channels (Figure 4a). It is therefore unsurprising that the 438

second approach resulted in higher performance estimates for non-brain components as it 439

actually contained some brain signal. The bigger picture was in both cases the same: Mixing 440

of peripheral and CNS signal generators was pervasive across prediction tasks and datasets 441

and deserves explicit handling if the goal is to develop CNS-specific prediction models. 442

Wavelets as flexible method bridging predictive modeling and classical 443

analyses 444

By estimating covariance matrices from convolutions with Morlet wavelets, our framework 445

successfully bridged EEG frequency spectrum descriptors with statistically consistent regres- 446

sion algorithms based on spatial filtering and Riemannian geometry (Barachant et al., 2010; 447

Dähne et al., 2014; Fruehwirt et al., 2017; Gross et al., 2001). These algorithms benefit 448

from theoretical guarantees of zero approximation error under the assumptions (Sabbagh 449

et al., 2020) of constant linear source mixing and a specified nonlinearity (logarithm). Our 450

benchmarks showed that Morlet wavelets can be used as a drop-in-replacement for classical 451

bandpass filtering to obtain the covariance matrix inputs to these types of algorithms without 452

obvious disadvantages, in fact, even leading to improved cross-validation results (Figure 1 – 453

Figure supplement 1). 454

Overall, our modeling benchmarks replicate the bigger picture reported in previous 455

work (Sabbagh et al., 2020, 2019): The upper triangular vectorization that, essentially, uses 456

the covariances as they are, led to the lowest scores. Of note, this model is statistically 457

consistent if one does not make the assumption of lognormal relationships (Buzsáki and 458

Mizuseki, 2014), leading to linear regression on EEG powers. This is interesting as it was 459

the only method for which our logarithmically scaled wavelets did not consistently lead to 460

improvements over the bandpass filtered equivalents. Models with logarithmic nonlinearity 461

performed consistently better and the Riemann model achieved the best results, which 462

taken together suggests that the log-nonlinearity yields models that better match the data 463

generating processes. We noticed that both the theoretically inconsistent log diagonal model 464

(biased in the presence of linear source mixing)— representing the classical EEG approach— 465

and the consistent SPoC model (Dähne et al., 2014) showed improved performance in our 466

work compared to previously reported benchmark results (Figure 1 – Figure supplement 1), 467

especially if artifact removal was applied (Figure 2). This can be explained in at least two 468

ways. First, we harmonized the processing of covariances across the different pipelines, in 469

particular the handling of data rank and regularization parameters (see methods for details). 470

This was particularly important to enable prediction with minimally processed data that 471

suffer from high-amplitude artifacts, which can lead to ill-conditioned covariance matrices. 472

Second, the improvement could be attributed to the higher performance achieved with the 473

wavelet approach observed across all models (Figure 1 – Figure supplement 1), which could 474

potentially be due to the more adapted frequency smoothing. It is also conceivable that for 475

the less complex log diagonal model, the availability of additional frequencies increased 476

model capacity. Compared to previous work (Sabbagh et al., 2020, 2019), where the SPoC 477

approach was interpreted as superior to the log diagonal approach, here, we observed 478

similar performance for the two models. From the perspective of biomarker development, this 479

would be a welcome result. It gives empirical justification to the less theoretically grounded 480

but far simpler practice in clinical biomarker studies to directly model outcomes from EEG 481

power spectra. Importantly, we do not necessarily expect this result to hold for the (cryogenic) 482

MEG context where the issue of source mixing might be different due to the increased 483
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distance between generators and sensors and variable head position. However, the same 484

reasoning might apply for optical MEG (Brookes et al., 2022; Hill et al., 2020). 485

The Riemann model was particularly advantageous when preprocessing was minimal, 486

confirming its potential role as an ad-hoc model in early exploratory phases of research as 487

was initially proposed in (Sabbagh et al., 2020). On the other hand, handling this model 488

with intensified data processing was cumbersome as the model makes the strict assumption 489

that the data is full rank (see prediction algorithms - Riemann in methods). SPoC and the 490

log diagonal model, therefore, emerged as potential alternatives as they do not make these 491

strong assumptions. 492

The more expressive ShallowNet (Schirrmeister et al., 2017) did not achieve consistently 493

better results and its performance in the age prediction benchmark (Engemann et al., 2022) 494

was now also reached by the Riemann model with wavelets (Figure 1 – Figure supplement 495

1). In a previous benchmarking study on age prediction, the ShallowNet showed clearer 496

advantages over Riemann models with a classical filterbank approachk (Engemann et al., 497

2022). It appears that using a pre-defined Morlet wavelet family to extract temporal features 498

can outperform temporal convolution layers learned in the ShallowNet architecture, which, 499

in principle, can overcome the limited fixed-frequency sinusoidal oscillations stipulated by 500

Morlet wavelets. However, it may also simply be a matter of the size of the training data and 501

it does not follow from this that the oscillatory model implied by wavelets is neurobiologically 502

more precise (Cole and Voytek, 2017; Jackson et al., 2019; Schaworonkow and Nikulin, 503

2019). More importantly, the utility of deep learning is not captured exhaustively by looking at 504

prediction performance in standard settings. As far as custom loss functions, generalization 505

across datasets, or multi-task and multimodal learning are concerned, a deep learning 506

approach is more amenable to the implementation of the latest developments in machine 507

learning research (Banville et al., 2020; Rommel et al., 2022; Wilson et al., 2022). We 508

therefore recommend keeping a good deep learning baseline among the benchmarks in 509

future work. 510

In sum, machine learning based on covariances derived with log-parametrized Morlet 511

wavelets (as compared to conventional frequency bands) led to improved prediction perfor- 512

mance, especially for simpler, hence, potentially more interpretable models. Thus, wavelets 513

emerged as a practical tool to extend established spectral EEG analysis with elements of 514

machine learning. 515

A new benchmark for sex prediction from EEG 516

Interestingly, we observed highly similar trends for sex prediction for both TUAB and 517

TDBRAIN. For sex prediction, only few EEG-based ML studies are available at this 518

point (Jochmann et al., 2023; van Putten et al., 2018) and it was a priori not clear if previ- 519

ous methods studied for age prediction would generalize. Comparing our results with the 520

amplitude-based neural network from (Jochmann et al., 2023) shows a favorable picture 521

for the models benchmarked in our work. Jochmann and colleagues reported a balanced 522

accuracy score of around 78% on the TUAB dataset. In this work, the ShallowNet and 523

Riemann benchmarks reached a score around 84% (Table S2). This argues for the utility of 524

the generative modeling framework and the covariance-based models derived from it beyond 525

its initial exploration for age prediction and brain age (Banville et al., 2023; Mellot et al., 2023; 526

Sabbagh et al., 2020, 2023). 527
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Additional considerations for model interpretation 528

Importantly, the proposed framework was not initially motivated by considerations of predic- 529

tion performance, which emerged as a welcome byproduct of our work. We see the true 530

advantage of the proposed wavelet methodology in its ability to bridge classical results from 531

EEG research on clinical biomarkers with machine learning enabling frequency-by-frequency 532

comparisons between classical measures like EEG power (Figure 1,Figure 3-Figure 4) and 533

machine learning analyses (Figure 3-Figure 5). This not only enhances model interpretation 534

but may also facilitate approximations of models by simpler spectral characteristics that can 535

be more easily operationalized and used in clinical studies and subsequent bio-statistical 536

analyses that are highly regulated in drug development and clinical applications. 537

This brings us to another important point of interest in CNS biomarkers: an interpretation 538

of the signature in terms of brain activity versus variance in brain structure. Our explorations 539

resulted in a mixed picture in which certain frequencies, often around 8-16 Hz, yielded the 540

best results when used as stand-alone models (Figure 5). On the other hand, for most tasks 541

and datasets, above-chance prediction was possible at any frequency and the best perfor- 542

mance was obtained by adaptively combining all frequencies. This signature does not rule 543

out the possibility that the prediction models picked up anatomical differences and ensuing 544

changes in the geometrical configuration of signal generators to the electrodes rather than in 545

brain activity. This hypothesis was considered in related work on sex prediction (Jochmann 546

et al., 2023) and age prediction (Sabbagh et al., 2020) from MEG. In the former work, the 547

researchers noted the predictive importance of spatial patterns and frequencies untypical to 548

EEG. In the latter context, the researchers estimated that around half of the performance 549

might be explainable by source geometry, which was estimated by reconstructing fake covari- 550

ance matrices from the MEG forward models from individual magnetic resonance imaging 551

(MRI) scans. Alternatively, one might assume that intrinsic long-term autocorrelations are 552

affected by the outcome of interest, translating into changes in the 1/f slope (Cesnaite et al., 553

2023; Chaoul and Siegel, 2021; Voytek et al., 2015), even if it remains unclear to which extent 554

both explanations might overlap or interact as the link between individual anatomy and brain 555

activity is actively investigated (Pang et al., 2023). While it remains challenging to quantify 556

the impact of anatomical imprinting onto EEG signatures without anatomical measurements, 557

the model inspection techniques presented here can instantly provide an ad-hoc sense of 558

whether the model is driven by specific frequencies or diffuse distributed changes in brain 559

activity that might be related to individual anatomical differences. 560

Limitations and future directions 561

Our work focused on cross-sectional observational data from two large quasi-public datasets 562

and the two exemplary tasks of sex and age prediction. While this offers versatile opportu- 563

nities for developing ML models and benchmarking EEG methods relevant for developing 564

biomarkers, we did not predict clinical outcomes in our work. Promising biomarker applica- 565

tions that may be in reach for the methods studied in this work include diagnostic (Blennow 566

et al., 2015), pharmacodynamic (Gautam et al., 2023), prognostic (Lokhande et al., 2022), 567

predictive (Bar-Or et al., 2023; Sechidis et al., 2021) or surrogate-efficacy (Budd Haeberlein 568

et al., 2022; Downing, 2001) questions. 569

We hope that our work can inform both biomarker developers and machine learning 570

researchers in terms of concepts, methods and empirical benchmarks. We believe that there 571

are several direct applications of our results. Biomarker scientists could reuse our models 572

and techniques on their own clinical data, if the size of the datasets support a machine 573

learning approach. Moreover, the techniques presented here could inform a transfer learning 574
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approach where age and sex prediction tasks are used for representation learning (Mourragui 575

et al., 2021) or model predictions are used as downstream variables as in brain age (Cole 576

et al., 2018; Denissen et al., 2022). A second direct application of the models presented 577

here would be proper deconfounding, i.e., when the scientific task requires removing age 578

and sex related components from an outcome of interest (Chyzhyk et al., 2022). 579

Furthermore, we approximated subspace regression from ICA on individual EEG record- 580

ings and automated labeling. The quality of the decomposition therefore stands or falls with 581

the quality of ICA. We hope that our work can inspire the development of novel end-to-end 582

solutions for disentangling brain and non-brain sources, ideally directly built into the prediction 583

models. Promising directions for this effort may lay in the nonlinear ICA (Monti et al., 2020; 584

Zhu et al., 2023), self-supervision (Banville et al., 2020; Tong et al., 2023; Yang et al., 2021) 585

and disentanglement literature (Chen et al., 2018; Lynch et al., 2023; Mathieu et al., 2019; 586

Shu et al., 2018). 587

Finally, it should be noted that our conclusions are based on two prediction tasks, age 588

and sex. While it is plausible that our findings in principle generalize to other prediction tasks 589

the details (e.g. prediction performance based on peripheral signals, spectral specificity) will 590

be task-dependent. 591

Conclusion 592

Through conceptual analysis, prediction using wavelet-based features and visualization of 593

modeling results across different levels of preprocessing and along the frequency spectrum, 594

our work exposed the risk of applying ML approaches to EEG in the context of biomarker 595

development. Our results emphasize that ML models may not automatically learn the function 596

of interest from mixed signals. When it comes to CNS biomarkers, we think that one has 597

to follow Carl Sagan’s principle that extraordinary claims require extraordinary evidence. 598

This certainly does not question the exploratory value of applied ML in neuroscience and 599

there may be situations in which the best prediction is the priority, regardless of its source. 600

We believe that a new generation of ML techniques is urgently needed to support inter- 601

pretable disentanglement of latent factors alongside larger clinical trial datasets, potentially 602

enhanced through simulations, for ground-truth assessment and ranking of ML methods for 603

biomarker discovery. To support these developments, in a future updated version of this 604

article, we will share the research code and a Python and Matlab implementation of the 605

log-frequency-parametrized Wavelet method (Hipp et al., 2012) as open-source software 606

with the community. 607

Materials and Methods 608

Datasets 609

In this work we used two large quasi-public EEG datasets (institutionally controlled access). 610

We selected these datasets because their size is sufficient for conducting machine learning 611

benchmarks and their demographic and biomedical heterogeneity and EEG setup sufficiently 612

resembles clinical studies. 613

TUAB dataset 614

The archival Temple University Hospital Abnormal (TUAB) dataset (de Diego and Isabel, 615

2017) contains a subset of recordings from the Temple University Hospital EEG Corpus 616
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(Harati et al., 2014; Obeid and Picone, 2016) that have been annotated as normal or abnormal 617

by medical experts. In the present work we used only the normal recordings (N = 1363). 618

The number of female and male participants in this subset is 766 (56%) and 597 (44%), 619

respectively. The age of the participants ranged from 0 to 95 years. EEG was recorded with 620

uninstructed resting state and may therefore contain data from eyes-open and eyes-closed 621

conditions. For convenience, we provide the following description of the TUAB dataset, 622

adapted from our previous work (Engemann et al., 2022): EEG data were recorded using 623

Nicolet devices (Natus Medical Inc.) with 24 to 36 electrodes. The 10-5 system (Oostenveld 624

and Praamstra, 2001) was applied for channel placement. All sessions have been recorded 625

with a common average reference(Nunez and Srinivasan, 2006). Sampling rates varied 626

between 250 Hz and 512 Hz. To the best of our knowledge, the settings for hardware filters 627

are not available. 628

Rationale. We chose this EEG dataset as it represents a heterogeneous sample of 629

the general population of patients from the Philadelphia area seeking medical counsel- 630

ing. Furthermore, the dataset has been popular among applied machine learning re- 631

searchers (Banville et al., 2020; Darvishi-Bayazi et al., 2023; Gemein et al., 2023, 2020; 632

Sabbagh et al., 2020; Wagh and Varatharajah, 2020; Zhu et al., 2023) and therefore provides 633

a point of reference for algorithmic benchmarking. 634

Data curation and preparation. We identified 21 common channels across recordings 635

which comprise the clinically relevant 10-20 configuration and two mastoid electrodes. Be- 636

cause channel numbers were different between recordings, we re-referenced the data to the 637

average across channels. As the order of the channels was variable, we explicitly reordered 638

all channels consistently. For many patients, multiple recordings were available. For simplicity 639

we only considered the first recording. To ensure comparability, we cropped all recordings to 640

a length of 15 minutes, which was the shortest common recording length. 641

TDBRAIN dataset 642

The two decades brainclinics research archive for insights in neurophysiology (TDBRAIN) 643

dataset (van Dijk et al., 2022) contains resting state EEG data of 1274 individuals from 644

a heterogenous population of psychiatric patients and healthy volunteers. The age of 645

subjects ranged from 5 to 89 years and the number of female and male participants is 646

approximately equal with 620 female (49%) and 654 male (51%) participants. The recordings 647

were acquired with a 26 channel Compumedics Quickcap or ANT-Neuro Waveguard Cap 648

based on the 10-10 system. In addition to the EEG, seven auxiliary channels were recorded: 649

five channels to measure vertical and horizontal eye movements (electrooculogram; EOG), 650

one to measure the electromyogram (EMG) at the right masseter muscle, and one to record 651

the electrocardiogram (ECG) at the cervical bone. All sessions were referenced against 652

the average of the A1 and A2 mastoids. Hardware filters were set to 0.03 Hz and 100 Hz. 653

Signals were acquired with a sampling frequency of 500 Hz. 654

Rationale. This large dataset was only recently opened for public access and covers a 655

clinically heterogeneous population. The data was acquired using research-grade equipment 656

and a single assessment protocol. The dataset comes with a rich set of auxiliary channels that 657

capture peripheral physiological activity. This renders the TDBRAIN dataset an interesting 658

platform for developing machine learning benchmarks and studying the interplay between 659

CNS and peripheral signals. 660

Data curation and preparation. For many patients, multiple recordings were available. For 661

simplicity we only considered the first recording. Contrary to the TUAB dataset, here, EEG 662

was collected under 2-minute eyes-closed and eyes-open conditions. We pooled the entirety 663

of data, ignoring the conditions. 664
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Preprocessing 665

To study the impact of environmental interference and peripheral artifacts on model predic- 666

tions, we systematically varied the depth of EEG preprocessing across three levels ranging 667

from basic numerically stabilizing processing and harmonization (minimal processing) over 668

automated bad segment removal (autoreject) to full-blown identification and removal of 669

non-brain artifacts (autoreject & ICA). 670

Minimal processing 671

This level comprises cropping to a recording length of 15 minutes (only applies for TUAB), 672

filtering (FIR filter with pass-band from 1-100 Hz), resampling to a sampling frequency of 673

250 Hz, epoching into 10 second epochs, and average referencing. 674

Autoreject 675

This preprocessing level comprises all the steps of minimal preprocessing and additional 676

removal and repair of high-amplitude data segments and bad channels using the autoreject 677

algorithm (Jas et al., 2017). Autoreject is designed to identify and interpolate bad segments 678

and channels based on outlier peak-to-peak amplitude ranges. We used autoreject with the 679

following hyperparameters. For consensus, we tested 11 values between 0 and 1 in steps of 680

0.1. (default). For n_interpolates we tested {1, 4, 8} which we adapted to our settings of 681

around 20 EEG channels as we did not want to allow rejecting more than half of the EEG 682

channels (the default would have tested 32 instead of 8). To improve computation time, we 683

used an internal cross validation with 5 iterations instead of the default of 10. 684

Autoreject & ICA 685

This processing level included all previous steps and added artifact removal via independent 686

component analysis (ICA). For the ICA decomposition, we used a fast approximation of the 687

FastICA model (Hyvärinen et al., 2004) offered by the PICARD algorithm (Ablin et al., 2018) 688

as interfaced through MNE-Python (Gramfort et al., 2014). We used the ICLabel algorithm 689

via its Python implementation in the MNE-ICLabel package (Li et al., 2022) for automatic 690

labeling of the components. Following Rodrigues et al. 2021, components were rejected 691

if any of the artifact probabilities reported by ICLabel (but ignoring the “other” class) were 692

larger than the reported “brain” probability. This labling was later used for ICA-subspace 693

regression (see Approximate subspace regression and classification). 694

Background: Spectral analysis and machine learning for EEG biomarkers 695

Spectral analysis 696

As noted early on, EEG comprises oscillatory, i.e. band-limited components and spectrally 697

resolved representations are generally considered useful. A historically grown practice is to 698

evaluate EEG signals in specific frequency bands (alpha, beta, gamma,. . . ). No universally 699

agreed definitions of these bands exist, which results in substantial variability across studies 700

and is hampering progress in biomarker development. There are important efforts to stan- 701

dardize band definitions, e.g. by the IPEG (Jobert et al., 2012). However, such frequency 702

bands are descriptive categories by human observers and not an operating principle of 703

the human brain. Specific definitions of frequencies may not be the right choice for all 704

applications. Moreover, by restricting analyses to pre-specified bands it remains elusive if the 705
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choice of these frequency ranges was optimal. We think that given current knowledge about 706

EEG and in the context of ML applications, an unbiased spectrally continuous representation 707

that avoids any band definition is the best choice. 708

A recent body of literature estimated spectral EEG features (power, phase interactions, 709

power envelope correlations) from complex Morlet wavelets (Forsyth et al., 2018; Frohlich 710

et al., 2019; Hawellek et al., 2022; Hipp et al., 2021) with a logarithmic frequency grid and 711

log-linear scaling of spectral smoothness (Hipp et al., 2012). This approach takes into 712

account prior knowledge about lognormal scaling of brain structure and function (Buzsáki 713

and Mizuseki, 2014), leading to fewer and spectrally wider wavelets with increasing frequency 714

and log-frequency integration over orders of magnitudes (octaves) rather than frequencies. 715

We defined the wavelet families using a base-2 logarithmic grid. As a consequence, the 716

spectral resolution is higher at lower frequencies and spectral smoothing is greater at higher 717

frequencies. Importantly, our implementation parametrizes the wavelets based on their 718

center frequency and their spectral standard deviations in octaves and not in the time 719

domain (Cohen, 2019; Tallon-Baudry et al., 1996). 720

Details of the implementation and configuration choices are provided below (Generative 721

latent factor model and CNS-biomarker model). Spectral power is provided in units of 722

µV 2/oct , which corresponds to µV 2/ log2(Hz). The frequency axis is scaled logarithmically 723

but is labeled in Hz for better readability. For analyzing local frequency effects, we defined 724

groups of five wavelets centered around a center frequency f and spanning the range 725

of f · 2−0.5 to f · 20.5 Hz, hence, covering one octave. For comparison against classical 726

approaches based on bandpass filtering in frequency bands Figure 1 – Figure supplement 1, 727

we used the band definitions provided by the IPEG (Jobert et al., 2012), see also Table 2. 728

Machine Learning 729

To improve the generality of our study, we focused on state-of-the-art ML methods for 730

EEG that avoid hand-crafted features motivated by specific theories, clinical populations or 731

cognitive processes (Engemann et al., 2022; Gemein et al., 2020; Zhdanov et al., 2020). 732

Spatial filtering and Riemannian-geometry (Dähne et al., 2014; de Cheveigné and Parra, 733

2014; Grosse-Wentrup and Buss, 2008; Roijendijk et al., 2016) enable a general approach 734

that can adapt to specific applications. These methods focus on the between-electrodes 735

covariance matrix as input and therefore can even avoid the pre-specified selection of 736

electrodes or frequencies by algorithmically weighting all inputs (Ang et al., 2008; Sabbagh 737

et al., 2020) through the objective function of the prediction model. They are, therefore, 738

well-suited for isolating the overlapping patterns of distinct EEG-signal generators. 739

Deep learning (DL) approaches such as convolutional neural networks push this reasoning 740

one step further by not only learning predictive combinations of electrodes but also learning 741

relevant temporal filters (which in turn implies resonance to specific frequencies) from EEG 742

signals (Jing et al., 2020; Schirrmeister et al., 2017; Tveit et al., 2023). 743

Importantly, results from statistical machine learning in EEG (Sabbagh et al., 2020, 2019) 744

allowed us to map our research question (how EEG-based prediction models are affected by 745

non-brain signals) onto formal model hypotheses (see also, Table 1), which we developed 746

below. 747
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Generative latent factor model and CNS-biomarker model 748

Generative model of EEG 749

The brain contains billions of neurons whose synchronization is reflected in EEG signals. 750

Yet, their activity remains hidden to the observer, and by constraints of linear systems, one 751

cannot distinguish between more linearly independent brain sources of EEG activity than 752

one has EEG channels. Instead of using individual brain anatomy conveyed by MRI scans, 753

machine learning techniques for EEG approach isolation of brain sources statistically through 754

the construct of statistical sources, also known as latent factors. 755

We extend the model described in Sabbagh et al. 2020, which assumes that the EEG 756

signal x i (t) ∈ RP , recorded on the i th subject with P electrodes, results from the mixing 757

of brain sources. To describe the fact that x i (t) actually results from the mixing of CNS 758

sources and additional peripheral souces, we denote those by sc
i (t) ∈ RQc and sp

i (t) ∈ RQp 759

respectively. The resulting generative model of the observed EEG can be expressed as 760

x i (t) = Acsc
i (t) + Apsp

i (t) + Anζi (t) (1)

where Ac ∈ RP×Qc , Ap ∈ RP×Qp , An ∈ RP×(P−Qc−Qp) denote the mixing matrices associated 761

with the different signal generators and ζi the noise source (not correlated with the outcome). 762

Further assuming that the subspaces of the CNS, peripheral sources and noise are not 763

mixed, we obtain A = [Ac , Ap, An] ∈ RP×P the mixing matrix and η>i (t) = [sc
i (t), sp

i (t), ζi (t)] ∈ 764

RP the column vector of sources plus noise, we can then use the compact matrix notation 765

x i (t) = Aηi (t). 766

From this notation, when isolating the CNS and peripheral sources from the noise, we can 767

write As = [Ac , Ap] = [a>1 , ... , a>Qc+Qp
] ∈ RP×(Qc+Qp), a>k being the k th column of the mixing 768

matrix and si = [sc
i , sp

i ] ∈ RQc+Qp the column vector of sources. 769

As a result, our statistical modeling can only resolve P linearly independent sources, 770

which, obviously, stands in contrast with the complexity of the true biological brain. Of 771

note, this constraint is shared with linear inverse solution techniques such as minimum 772

norm estimates or beamforming (Gross et al., 2001; Hämäläinen and Ilmoniemi, 1994; 773

Van Veen et al., 1997), which project the limited number of linearly independent vectors onto 774

a predefined set of thousands of MRI-defined dipole locations. 775

Generative model of outcome and biomarker model 776

Next we want to formalize outcome measures (including e.g. age, sex, cognitive performance, 777

presence of pathologies, CNS-active drugs) that can modulate source activity and can 778

therefore be predicted from EEG signals. 779

Denoting x i (t) ∈ RP a time point from the EEG time series recorded using P electrodes, 780

and X i ∈ RP×T the EEG recording of subject i with T time samples, we can now conceptual- 781

ize the outcome of interest yi as a function of the sources g(S i ) and some additive noise εi 782

(Equation 2). A common assumption for g is a linear function (weighted sum) of the log of 783

the power of sources S i (Sabbagh et al., 2020). 784

yi = g(S i ) + εi (2)

For defining prediction algorithms, it will be convenient to decompose this function into two 785

parts g′ and h which reconstruct the (power of) sources from the EEG signal: 786
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ŷi = g′ ◦ h(X i )

= g′ ◦ [hi (X i ), ... , hF (X i )]
(3)

Where: 787

• S i ∈ R(Qc+Qp)×T : The vector of statistical sources (CNS and peripheral sources). 788

• g : R(Qc+Qp)×T → R is the true but unknown function generating the outcome yi . 789

• X i ∈ RP×T : The EEG recording signal of the subject i , with T time samples. 790

• hf : Function extracting features from the signal in the frequency range defined by the 791

f th element of a set of filters that isolate frequencies of interest. This function, and 792

the dimension of the output space will depend on the method used, see prediction 793

algorithms for more details on the different methods. The function is constructed 794

in a way to approximate statistical sources or equipped with invariances to mitigate 795

distorting field spread produced by As. 796

• g′ : RF×(Qc+Qp)×T → R is a function that concatenates the feature vectors and maps 797

them to the outcome. It is based on the estimated representation of the source. This 798

mapping can be a linear function that can be estimated with ridge regression or a more 799

complex nonlinear function. 800

Feature Engineering 801

Raw 802

The ShallowNet model (Schirrmeister et al., 2017) operates directly on the epoched (10 803

second windows) multidimensional time series data (see also section Preprocessing). Here 804

we refer to this as “raw” to indicate that there is no explicit feature extraction step. This is not 805

to be confused with the preprocessing state of the data. Thus, when we refer to the “raw” 806

features, it does not mean that the data has not been preprocessed. 807

Covariance estimation (bandpass filter) 808

The other baseline models used between-channel covariance matrices estimated from 809

different EEG frequencies as their inputs. 810

IPEG frequency bands. The classical approach explored in previous work applies band- 811

pass filtering before estimating the covariance matrix (Engemann et al., 2022; Sabbagh et al., 812

2020). We used the IPEG frequency band definitions designed for pharmacological EEG 813

studies (Jobert et al., 2012). 814

Table 2. IPEG frequency bands

Name δ θ α1 α2 β1 β2 β3 γ

Hz 1-6 6.5-8.5 8.5-10.5 10.5-12.5 12.5-18.5 18.5-21 21-30 30-40

After bandpass filtering X i in frequency f we obtain X f
i . The empirical covariance matrix 815

in that frequency is then given by 816

C f
i = X f

i X
f>
i /T . (4)
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To improve conditioning of the covariance matrices (Engemann and Gramfort, 2015), and 817

for consistency with previous benchmarks, we used Oracle Approximating Shrinkage (OAS) 818

which adaptively downweighs the off-diagonal terms based on the number of samples 819

and number of variables used (Chen et al., 2010). As the covariance was computed over 820

the entire recording, the OAS estimate can be expected to be very close to the empirical 821

covariance. 822

Covariance estimation (Morlet wavelets) 823

Alternatively, we used convolutions with Morelet wavelets (Morlet et al., 1982) constructed as 824

complex sinusoids windowed by a Gaussian window: 825

w f (t) = (σt
√
π)−1/2 exp(−t2/2σ2

t ) exp(−i2πft) (5)

Morlet wavelets have the convenient property that the Gaussian windowing in time, with 826

a standard deviation σt , translates into a Gaussian smoothing in frequency, with standard 827

deviation σf = (2πσt )−1. We used the frequency-domain parametrization described in previ- 828

ous work (Hipp et al., 2012) while implementing a logarithmically spaced grid of frequencies 829

ranging from 1 - 64 Hz. The spectral smoothing was set to σf = 0.25 octaves. The spacing 830

of wavelets was set to half the standard deviation, i.e. 0.125 octaves. This resulted in 49 831

wavelets. To obtain spectral estimates, we convolved the signal X i with the complex-valued 832

wavelets w f (t), leading to the complex valued signal Z f ∈ CP×N where N is given by the the 833

number of windows and stride length used for numerically approximating the convolution. 834

The kernel widths were trimmed to 5 standard deviations. For computational efficiency, 835

convolution results were derived at a lower temporal resolution than the original signals, i.e., 836

steps of 1/4 of the kernel width. The covariance was then derived as 837

C f
i = Re(Z f

i (Z
f
i )
>/c), (6)

where (Z f
i )
> is the conjugate transpose, Re is the real part and c is a normalizing constant 838

number representing the number of elements of the convolution result composed of the 839

number valid convolutions defined by the availability of good data segments multiplied by the 840

squared `2 norm of the wavelet w f (t), which helps estimating the effective sample size T . 841

The classical EEG log power-spectral density (PSD) was then derived from the diagonal of 842

the covariance matrix as 843

log PSDi = log[diag(C1
i )>, ... , diag(C f

i )
>] (7)

Note that this is identical with the log diagonal vectorization used for predictive modeling, 844

which is detailed below. 845

To improve the conditioning of covariance matrices across different degrees of prepro- 846

cessing and to ensure that the matrices were positive semidefinite, we applied algorithmic 847

correction to all covariances (Higham, 1988) with a regularization value of 1 × 10−15 and 848

covariances scaled in volts squared (V 2, related to default scaling of the MNE-Python 849

software Gramfort et al. 2013). 850
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Prediction algorithms 851

Our benchmark includes four covariance-based methods (upper, log diagonal, SPoC, and 852

Riemann) and one Neural Network architecture (ShallowNet). All of the covariance-based 853

methods consist of a frequency-wise transformation stage followed by a ridge regression (or 854

classification) stage. The regression (or classification) stage is the same across all models 855

such that they only differ in the transformation of the covariance matrix features. 856

The covariance-based algorithms follow previous work (Sabbagh et al., 2020) and provide 857

useful baselines as they enjoy guarantees under different assumptions about the underlying 858

regression function and degree of signal mixing and can lead to competitive performance in 859

different settings Table 1. Observed differences in prediction performance between these 860

models can, therefore, be practically used to guide interpretation of the underlying regression 861

function and data-generating scenario. 862

For covariance-based models, we used ridge regression (Hoerl and Kennard, 1970) 863

and ridge classification as supervised learning algorithms. Ridge classification uses ridge 864

regression to predict class labels ∈ {−1, 1}, such that the decision is obtained from the 865

sign of the prediction. The hyperparameter α was controlled through generalized cross- 866

validation (Golub and von Matt, 1997) considering a logarithmic grid of 100 candidate 867

values between 1 × 10−5 and 1 × 1010. This configuration was adapted from previous 868

work (Engemann et al., 2022; Sabbagh et al., 2020). We preferred ridge classification over 869

logistic regression as a probabilistic treatment of predictions was not necessary for this study 870

and hyperparameter selection for ridge classification was fast, hence, well suited for repeated 871

large-scale benchmarking. 872

Upper 873

The upper model (Sabbagh et al., 2020, 2019) vectorizes the upper triangular coefficients of 874

the covariance matrices. This model is thus consistent with a linear relationship between the 875

power and interaction coefficients and the target variable. 876

hf : RP×P → RP(P+1)/2

C f 7→ upper(C f
i )

(8)

Where upper : RP×P → RP(P+1)/2 is an operator that takes as a vector the upper triangular 877

coefficients of a matrix with off-diagonal terms weighed by a factor
√

2 so that the `2 norm of 878

the vector is equal to the Frobenius norm of the matrix. Of note, this leads to a statistically 879

consistent regression model if no nonlinearity is assumed and the outcome is linear in the 880

source power and not its log (Sabbagh et al., 2020, 2019). 881

log diagonal 882

The log diagonal model (Sabbagh et al., 2020, 2019) extracts the diagonal elements of 883

the covariance matrices (corresponding to the average signal power of each channel) and 884

applies a log transform. This is consistent with a logarithmic relationship between signal 885

power and the target variable. Of note, this leads to a sstatistically inconsistent regression 886

model if linear mixing is applied (Sabbagh et al., 2020, 2019). 887

hf : RP×P → RP

C f 7→ log diag(C f
i )

(9)
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SPoC 888

The Source Power Comodulation (SPoC) model (Dähne et al., 2014) aims to learn spatial 889

filters in order to unmix the signal into components with high correlation to the target variable 890

and can be thought of as a regression version of Common Spatial Patterns (Koles et al., 891

1990). This is similar to Blind Source Separation (BSS) approaches like ICA, where the 892

signal is mapped from sensor space to source space, but special in the sense that the 893

target variable is directly used in the optimization process to maximize correlations between 894

the resulting components and the target variable. This leads to a statistically consistent 895

regression model if the outcome is assumed to be linear in the log of the source power. 896

hf : RP×P → RQp+Qc

C f 7→ log diag(W f
SPoCC f

i W
f>
SPoC), W f

SPoC ∈ R(Qp+Qc )×P
(10)

Where W f
SPoC = [w>1 , ... , w>p ] is obtained from solving the generalized eigenvalue problem 897

Cy w = λC̄w to find the filters that maximize the ratio wCy w>

wC̄w> with Cy denoting the covariances 898

averaged weighted by the outcome and C̄ the arithmetic mean of all covariances (Dähne 899

et al., 2014). 900

Riemann 901

As an alternative to SPoC, the Riemann model projects the covariances to a Riemannian 902

embedding space, motivated by their positive definite nature (Barachant et al., 2010; Congedo 903

et al., 2017; Sabbagh et al., 2019). In previous work, this has been observed to yield high 904

robustness to noise and good model performance even with minimally preprocessed data. 905

This leads to a statistically consistent regression model if the outcome is assumed to be 906

linear in the log of the source power. 907

hf : RP×P → RP(P+1)/2

C f 7→ upper logM(C̄ f−1/2C i
f C f−1/2)

(11)

Notably, the Riemann model assumes full-rank inputs. In particular, when rank-reducing 908

preprocessing approaches such as ICA are employed, one should therefore be careful not to 909

violate this assumption. Here we ensured that the input has full rank after ICA preprocessing 910

by applying Principal Component Analysis (PCA) as suggested by Sabbagh et al. 2019 911

by choosing the smallest common rank value, which we obtained from analysis of the 912

eigenvalues of individual covariances. 913

Of note, it is useful to study both SPoC and Riemann models as – despite expressing the 914

same signal-generating hypothesis – can behave differently in the face of model violations 915

and noise (Sabbagh et al., 2020, 2019). The Riemann model tends to be more robust in the 916

face of noise and model violations. On the other hand, the SPoC model is computationally 917

lighter and readily provides compact visualizations of its spatial patterns (Dähne et al., 2014; 918

Mellot et al., 2023), which, taken together, facilitates model interpretation. 919

ShallowNet 920

The ShallowNet architecture proposed in (Schirrmeister et al., 2017) is a convolutional 921

neural network architecture inspired by the Filter Bank Common Spatial Patterns (FBCSP) 922

algorithm (Ang et al., 2008), which can be seen as the classification version of SPoC. The 923

architecture presented by Schirrmeister et al. 2017 consists of the following operations 924
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1. Temporal convolution 925

2. Spatial convolution 926

3. Square 927

4. Mean pooling 928

5. Logarithm 929

6. Linear regression / classification 930

and directly maps the raw signal X i ∈ RP×T to the outcome. The parameters of each layer 931

are described in the original publication. We adapted the ShallowNet as a regression model 932

based on a previous publication (Engemann et al., 2022). 933

Of note, while a proof has never been formally undertaken to the best of our knowledge, 934

the ShallowNet expresses the same types of operations as the SPoC model. We can 935

therefore assume that the ShallowNet can learn the same regression function as the SPoC 936

model and can, therefore be statistically consistent for the same scenario. As the model 937

has more trainable parameters and can learn the temporal convolution filters, its expressive 938

capacity is higher, hence, it can cover additional regression functions that the SPoC model 939

cannot capture. 940

Approximate subspace regression and classification 941

When exploring the relative contribution of peripheral non-brain signals the previous models 942

are used with alternative data inputs to the different feature extractors h(f ). These are ob- 943

tained by applying data selection or processing so that the resulting input can be interpretable 944

as an approximation of the subspaces of interest. In fact, applying the theoretical results 945

from (Absil et al., 2009; Sabbagh et al., 2020), if predictive latent factors related to peripheral 946

body signals are fully silenced through low-rank projection, the remaining subspace leads to 947

a consistent prediction model of brain activity predicting from covariances. 948

yi = g(Sc
i ) + εi (12)

ŷi = g′ ◦ hc(X i )

= g′ ◦ [hc
i (X i ), ... , hc

F (X i )]
(13)

Of note, hc is a function that approximates reconstruction of the brain sources. This can be 949

inverted, and the same reasoning can be used to define non-brain source models to estimate 950

the relationship between peripheral signals and the outcome. 951

yi = g(Sp
i ) + εi (14)

ŷi = g′ ◦ hp(X i )

= g′ ◦ [hp
i (X i ), ... , hp

F (X i )]
(15)

Here, hp is a function that approximates reconstruction of the peripheral sources. We used 952

two different approaches to estimate the function hp and to assess the predictive value of 953

physiological (non-brain) signals: (1) the signal reconstructions from ICA artifact subspaces 954

and (2) additional auxiliary channels that were recorded along with the EEG in the TDBRAIN 955

dataset. 956
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Subspace regression & classification with ICA 957

The artifact ICA subspaces provide a complementary source of physiological information 958

that can be extracted from any dataset. First, ICA is used to decompose the data into 959

source components. Next, the components are categorized into brain sources and different 960

classes of artifacts. This step can be automated with a tool like ICLabel (Pion-Tonachini 961

et al., 2019). Finally, the signal corresponding to the artifact subspaces can be reconstructed. 962

Applying eqs. 14 and 15, hp, here, involves reconstructing the EEG from the subspace of 963

ICA components that were labeled as artifact. 964

Compared to the analysis of auxiliary channels, which requires the acquisition of additional 965

information during the recording, this approach is more flexible and allows us to also extract 966

auxiliary information for the TUAB dataset. 967

Subspace regression & classification from auxiliary-channels 968

As described in the Dataset section, the TDBRAIN dataset contains auxiliary channels in 969

addition to the EEG channels. These channels are designed to record physiological signals 970

including eye movements, (jaw) muscle activity, and cardiac activity. Applying eqs. 14 and 15, 971

hp, here, involves reconstructing selecting the channels that better expose the artifacts, i.e., 972

the 7 auxiliary channels from the TDBRAIN dataset. 973

Statistical Analyses 974

Model performance 975

To estimate and compare generalization performance, we performed 10-fold cross-validation 976

with reshuffling using a fixed random seed. For the TDBRAIN dataset, which comes with a 977

high cardinality of psychiatric descriptors and diagnoses, we stratified the data to approxi- 978

mately equalize the proportion of psychiatric indications across the cross-validation splits. 979

Of note this only supports qualitative comparisons and cannot be readily converted into 980

hypothesis tests as cross-validation splits are not statistically independent. We practically 981

assessed the chance level by all cross-validation splits exceeding an R2 of 0 as this score 982

quantifies the improvement over the mean predictor based on the training data. 983

Hypothesis testing 984

To compare types of features or degrees of processing across models and datasets, we 985

treated the cross-validation estimates for a given model as a random variable. To obtain 986

uncertainty estimates of pairwise differences in cross-validation performance, we conducted 987

bootstrap resampling with 9999 iterations using the percentile method. We further computed 988

an empirical null-distribution through permutation testing with 9999 iterations. For both 989

analyses, we used the bootstrap and permutation_test functions from scipy (Virtanen 990

et al., 2020). 991

Software 992

All analyses were performed using Python 3.9.17. M/EEG data processing, BIDS conver- 993

sion and subsequent data analysis steps were carried out with the MNE-Python software 994

(v1.5, Gramfort et al. 2013, 2014), the MNE-BIDS package (v0.13, Appelhoff et al. 2019) and 995

Picard (v0.7, Ablin et al. 2018) for an efficient implementation of FastICA. For artifact removal 996

the autoreject package (v0.4.2, Jas et al. 2017) and MNE-ICLabel (v0.4, Li et al. 2022) were 997
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used. The joblib library (v1.2) was used for parallel processing. For feature computation, 998

the PyRiemann (v0.4, Barachant 2015) and coffeine (v0.3, Sabbagh et al. 2020) libraries 999

were used. Analyses were composed of custom scripts and library functions based on the 1000

Scientific Python Stack with NumPy (v1.24.4, Harris et al. 2020), SciPy (v1.9.1, Virtanen 1001

et al. 2020), pandas (v.2.0.3, McKinney and Others 2011) and polars (v0.18.15). For clas- 1002

sical machine learning, models were implemented using scikit-learn (v1.3.0, Pedregosa 1003

et al. 2011). Deep learning was implemented using the PyTorch Paszke et al. 2019) and 1004

braindecode Schirrmeister et al. 2017 packages. All visualizations were performed using 1005

matplotlib (v3.7.1, Hunter 2007). Figure 1A was created with BioRender.com. 1006
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Figure 1 – Figure supplement 1. (a) Covariance baseline models benchmarked with two alternative sets of covariances
along the frequency spectrum. Either the raw signal was bandpass filtered in IPEG (Jobert et al., 2012) frequency bands prior
to covariance computation or covariances were computed after convolution with Morlet wavelets. Across models, wavelets
consistently led to better results. Wavelets performed on average better by an R2 of 0.05 (CI95% = [0.022, 0.079]) and AUC
of 0.03 (CI95% = [0.022, 0.036]) across baseline models, tasks and datasets. The upper model is an exception as it benefited
less consistently. All models with logarithmic nonlinearity visibly improved, which may be related to the explicit logarithmic
scaling of wavelets and ensuing balanced representation of signals around the center frequency. For a detailed description of
these models,see eqs. 1 to 3 in the main text. (b) A high number of wavelets led to favorable performance, saturating above 10
wavelets. EM22-RM and EM22-SN depict the filterbank-riemann and ShallowNet benchmarks from (Engemann et al., 2022),
respectively. Importantly, the superiority of wavelets over classical frequency bands was, therefore, not trivially driven by the fact
that more frequencies were distinguished. Further investigations suggested that the particular selection of wavelets was not
critical. Moreover, wavelet-derived covariance features still outperformed the band-pass filtering approach when the wavelets
were averaged within the IPEG frequency bands, hence leading to the same number of covariances. This suggests that the
distinct factor is not the frequency bands per se but how spectral information is weighted in bandpass filtering as compared to
wavelet convolution. Our approach based on (Hipp et al., 2012) integrates by log2 octaves rather than Hz, hence, providing
more equal weighting of low and high frequencies within one bin. Taken together, these results suggest that the established
Morlet wavelet methodology can be effectively extended to support covariance-based machine learning approaches and even
lead to improvements.
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Figure 2 – Figure supplement 1. Illustration of spectral signatures across different degrees of preprocessing (minimal,
autoreject, autoreject & ICA) on the TDBRAIN dataset. (a) Power spectral density grouped by age (error bands correspond to
2 standard errors of the mean). Differences in average power spectra across age groups were apparent and dampening of
signal power with stronger preprocessing could be observed particularly in low and high frequencies. (b) Covariance matrices at
2 and 8 Hz. Activity in neighboring channels was generally positively correlated due to volume conduction. Clusters of high
activity emerged in frontal areas at 2 Hz (minimal, autoreject) and in occipital areas at 8 Hz. (c) Topographic distributions of
log power at 2 and 8 Hz, which correspond to the diagonal elements of the covariance matrices. Attenuation of frontal power
with increasing preprocessing can be observed, whereas the topography at 8 Hz remains relatively unchanged and reveals the
posterior-dominant alpha rhythm. Preprocessing can affect the EEG at different electrode locations and frequencies, which
might remove noise or signals that are potentially informative for prediction models based on machine learning.
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Figure 2 – Figure supplement 2. Illustration of spectral signatures across different degrees of preprocessing (minimal,
autoreject, autoreject & ICA) on the TUAB dataset (same conventions as in Figure 2 – Figure supplement 1).

Model Processing
Age Prediction (Regression) Sex Prediction (Classification)

R2 MAE Balanced Accuracy AUC
Mean Std Mean Std Mean Std Mean Std

Riemann
Minimal 0.79 0.06 6.58 0.62 0.85 0.05 0.91 0.04
AR 0.79 0.04 6.71 0.63 0.81 0.04 0.89 0.04
AR & ICA 0.73 0.04 7.67 0.57 0.75 0.05 0.83 0.05

SPoC
Minimal 0.75 0.06 7.2 0.79 0.81 0.04 0.89 0.02
AR 0.78 0.03 6.94 0.57 0.81 0.05 0.88 0.03
AR & ICA 0.75 0.05 7.41 0.85 0.77 0.04 0.84 0.04

log diagonal
Minimal 0.77 0.04 7.09 0.69 0.78 0.03 0.85 0.04
AR 0.78 0.04 6.97 0.66 0.77 0.05 0.83 0.05
AR & ICA 0.76 0.04 7.22 0.77 0.73 0.05 0.8 0.05

upper
Minimal -1249 3951 34.98 64.05 0.51 0.02 0.65 0.05
AR 0.49 0.12 10.48 0.8 0.72 0.03 0.8 0.04
AR & ICA 0.54 0.07 10.18 0.66 0.67 0.04 0.78 0.05

ShallowNet
Minimal 0.64 0.13 8.21 1.95 0.75 0.04 0.84 0.04
AR 0.77 0.08 6.55 1.22 0.82 0.03 0.89 0.03
AR & ICA 0.75 0.08 6.83 1.09 0.76 0.03 0.84 0.03

Table S1. TDBRAIN Benchmark Results (10-fold cross-validation)
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Model Processing
Age Prediction (Regression) Sex Prediction (Classification)

R2 MAE Balanced Accuracy AUC
Mean Std Mean Std Mean Std Mean Std

Riemann
Minimal 0.58 0.06 8.08 0.5 0.8 0.05 0.88 0.03
AR 0.64 0.07 7.5 0.59 0.84 0.02 0.91 0.01
AR & ICA 0.54 0.07 8.52 0.48 0.75 0.03 0.83 0.03

SPoC
Minimal 0.31 0.09 10.66 0.64 0.68 0.03 0.76 0.04
AR 0.6 0.07 7.95 0.52 0.8 0.03 0.89 0.02
AR & ICA 0.55 0.06 8.46 0.39 0.76 0.02 0.84 0.03

log diagonal
Minimal 0.37 0.05 10.11 0.44 0.68 0.04 0.74 0.05
AR 0.59 0.06 8.18 0.33 0.77 0.03 0.86 0.02
AR & ICA 0.57 0.07 8.24 0.34 0.76 0.03 0.83 0.03

upper
Minimal -0.03 0.09 13.51 0.51 0.5 0.01 0.61 0.06
AR 0.35 0.15 10.09 0.62 0.77 0.04 0.83 0.04
AR & ICA 0.23 0.16 10.9 0.59 0.74 0.04 0.8 0.04

ShallowNet
Minimal 0.51 0.06 8.88 0.62 0.78 0.03 0.87 0.03
AR 0.64 0.06 7.38 0.56 0.84 0.02 0.92 0.02
AR & ICA 0.57 0.05 8.21 0.58 0.79 0.02 0.88 0.02

Table S2. TUAB Benchmark Results (10-fold cross-validation).
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