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Abstract6

We introduce PhyloJunction, a computational framework designed to facilitate the prototyping, test-7

ing, and characterization of evolutionary models. PhyloJunction is distributed as an open-source Python8

library that can be used to implement a variety of models, through its flexible graphical modeling ar-9

chitecture and dedicated model specification language. Model design and use are exposed to users via10

command-line and graphical interfaces, which integrate the steps of simulating, summarizing, and visu-11

alizing data. This paper describes the features of PhyloJunction – which include, but are not limited12

to, a general implementation of a popular family of phylogenetic diversification models – and, moving13

forward, how it may be expanded to not only include new models, but to also become a platform for14

conducting and teaching statistical learning.15

Keywords: Evolutionary modeling, simulation, graphical model16

Phylogenetic models of lineage diversification have been applied to a wide variety of evolutionary phenom-17

ena spanning the disciplines of paleobiology [9, 26, 66], historical biogeography [8, 22, 39, 58], macroecology18

[11, 81], epidemiology [13, 51, 64], cancer evolution [41], molecular evolution [20, 76], and linguistics [27]. The19

evolutionary processes underlying these phenomena take place across a range of scales – from days to millions20

of years and from individual cells to the entire planet – and are known or hypothesized to operate under21

a similarly broad scope of tempos, modes, and spatial coordinates. Despite the heterogeneity in these bio-22

logical phenomena, however, at the core of such phylogenetic models frequently lies the “state dependence”23

assumption: that the “states” of a lineage’s characters – ecological, geographic, phenotypic or genetic – may24

shape anagenetic and cladogenetic evolution. Stochastic processes that make such assumption, the so-called25
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state-dependent speciation and extinction (SSE) processes, comprise a popular family of models [44] for the26

evolution of phylogenetic patterns.27

In the recent past, many excellent methods for simulating under pure diversification models [e.g. 4, 24, 31,28

43, 69] and SSE processes [e.g. 6, 19, 20, 43, 50] have been published. While overlapping in their capabilities,29

each of those methods was developed and uniquely optimized given a specific intended application; hence,30

they differ in terms of their model assumptions, implementation details and documentation, and execution31

attributes (e.g., speed, ease-of-use, etc.). Amidst this variation, we are unaware of any methods that, within32

a single cohesive codebase, can simultaneously (i) simulate under arbitrarily complex SSE scenarios (but see33

[78]), (ii) support an intuitive model specification grammar (e.g., [14, 30]), (iii) be easily extended by others34

to include new models, and (iv) showcase a built-in graphical user interface for automatic visualization and35

summarization of synthetic data, streamlining user interaction with the software (but see [14]).36

In the hope of filling this gap in the computational biology toolbox, we introduce a new, open-source37

computational framework for evolutionary modeling: PhyloJunction. PhyloJunction ships with a very gen-38

eral SSE model simulator and with additional functionalities for model validation and Bayesian analysis.39

Importantly, we designed PhyloJunction around a graphical modeling architecture, and equipped it with a40

dedicated probabilistic programming language. These features are forward-looking; they will make it easy41

to expand and integrate PhyloJunction’s evolutionary model ecosystem in the future. PhyloJunction comes42

with a graphical user interface (GUI) that allows users to readily inspect and interact with simulation out-43

puts, making this program amenable to classroom use. A command-line interface (CLI) is also available for44

running PhyloJunction remotely and in parallel.45

1 Flexible simulation: prototyping, testing and characterizing evo-46

lutionary models47

PhyloJunction was created first and foremost as an evolutionary model simulator, more specifically a flexible48

simulator of SSE diversification models. A series of related diversification models (Table 1) have been49

implemented in multiple computational methods with varying foci and performance, each making different50

assumptions about how a process starts and ends, whether it flows backward or forward in time, and what51

output is processed and presented to the user. PhyloJunction was born out of the necessity of coalescing the52

strengths of these different implementations in a single, cohesive application with additional capabilities (see53

below). As illustrated in later sections and in the online documentation, our implementation can simulate54

arbitrarily complex SSE processes (all models in Table 1; validation against other software can be found in55
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Table 1: Phylogenetic models that can be simulated with PhyloJunction. Some of these models are nested
within each other (e.g., BiSSE is a special case of MuSSE). “skyline” indicates time-heterogeneous rates
varying in a piecewise-constant manner. “fossilized” means the addition of a fossilization parameter, which
allows for direct ancestors in the reconstructed (sampled) tree. All models can be simulated with incomplete
sampling. Representative papers for each model are listed under references.

Model A.k.a. or acronym Reference(s)
Pure-birth Yule [67, 83]

skyline
fossilized

Birth-death [36, 52]
skyline BDSKY [72]
fossilized FBD [26]

Binary SSE BiSSE [44]
skyline
fossilized

Multistate SSE MuSSE [19]
skyline
fossilized

Geographic SSE GeoSSE [17]
skyline
fossilized

Cladogenetic SSE ClaSSE [22]
skyline
fossilized

Multitype birth-death MTBD [71]
skyline [64]
fossilized

the supplement), and presents the user with a variety of textual and graphical outputs.56

Beyond its immediate goal of simulating SSE processes, however, it was evident early on that PhyloJunc-57

tion could grow and serve more broadly as a computational framework for developing evolutionary models.58

This ultimate purpose manifests from PhyloJunction’s graphical model architecture being written in Python59

– a design and language convenient for prototyping model code, on which we expand below – and from the60

critical role simulation plays in model testing and characterization, two key stages in a model’s life cycle.61

A newly implemented model prototype is typically pitched against data simulated in simple scenarios, with62

the expectation that it returns acceptable parameter estimates given some truth (i.e., a value used in sim-63

ulation). Upon failure, development loops back to implementation so bugs can be patched; this potentially64

iterative process is the testing (or validation) stage. If testing succeeds, the model is released to the public65

and enters a final characterization stage, in which its behavior and adequacy are thoroughly scrutinized by66

the scientific community, again via analysis of simulated data (e.g., [12, 40, 45, 46, 59, 63, 68]).67

In the following sections, we detail the different features that allow PhyloJunction to flexibly specify and68

simulate diversification processes, and to facilitate the different steps involved in computational evolutionary69

model development.70
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2 A graphical model architecture and dedicated language for spec-71

ifying arbitrarily complex models72

Any type of analytical or generative procedure involving statistical models requires some form of infrastruc-73

ture for specifying such models. One example is the framework adopted by the BEAST, BEAST 2 and74

RevBayes platforms, whereby atomic model components can be combined into an arbitrarily large Bayesian75

network – a probabilistic graphical model whose structure can be represented by a directed acyclic graph76

(DAG; or more explicitly as a factor graph, e.g., Fig. 1b; [29]). The popularity of these platforms is elevating77

graphical models to a modeling standard, although every one of these programs differs in how it allows users78

to specify models.79

Here, we take a model specification approach that sits between those adopted by the BEAST and80

RevBayes community. PhyloJunction implements a programming language, phylojunction (written in81

lowercase and abbreviated as pj), together with an interactive development environment for specifying82

phylogenetic models (see the next section). pj is lightweight like popular markup languages (e.g., XML,83

BEAST’s format of choice), but resembles model scripting languages (e.g., Rev, the language introduced by84

RevBayes) in its syntax, hence its retained human-readability.85

Like the Rev language, pj commands can be read as mathematical statements, and are naturally inter-86

preted as instructions for building a node in a DAG (see below). User commands instruct the application87

engine to take some form of user input, produce some value from it, and then store that value permanently88

in a new variable created on the spot. Every command string consists of an assignment operator placed89

between the variable being created (on its left side) and some user input (on its right side). Listing 1 (Fig.90

1a) demonstrates the different ways in which this essential operation takes place as a time-homogeneous91

birth-death model is specified.92

Following the grammar of Rev [30], the behavior of a variable is determined by which assignment operator93

(<-, ∼, or :=) is used for assignment. For example, line 6 in listing 1 (Fig. 1a) creates a variable ‘d’ (the94

death rate), which is then passed and henceforth stores an unmodified user input, constant value 1.0. This95

type of constant value assignment is carried out with the constant assignment operator, ‘<-’. Line 7, in turn,96

shows how the stochastic assignment operator ‘∼’ is used to create a variable named ‘b’ (the birth rate).97

This variable will then store a random value drawn from a user-specified distribution. Here, the user input98

consists of the moments of a log-normal distribution.99

Finally, the deterministic assignment operator, ‘:=’, is used to assign a value computed deterministically100

from existing variables (or other user input) to a new variable. This is illustrated by lines 10, 11 and 16101

in listing 1 (Fig. 1a). The purpose of deterministic assignments is to transform, combine or annotate one102
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(a) Listing 1: pj script specifying a birth-death model

1 # hyperprior

2 m <- 0.0 # log -normal mean

3 sd <- 0.1 # log -normal standard deviation

4

5 # rate values

6 d <- 1.0 # death

7 b ∼ lognormal(mean=m, sd=sd) # birth

8

9 # deterministic rate containers

10 dr := sse_rate(name="death_rate", value=d, event="

extinction")

11 br := sse_rate(name="birth_rate", value=b, event="

speciation")

12

13 O <- 2.0 # origin age

14

15 # deterministic parameter stash

16 s := sse_stash(flat_rate_mat=[dr, br], n_states=1, n

_epochs =1) # parameter stash

17

18 # phylogenetic tree

19 T ∼ discrete_sse(stash=s, stop="age", stop_value=O,

origin="true")

(b) Model built by listing in (a)

T

s

sse stash

b

lognormal

msd

br

sse rate

d

dr

sse rate

O

discrete sse

Figure 1. A birth-death phylogenetic model (a) as specified with phylojunction, PhyloJunction’s epony-
mous programming language, and (b) shown as a factor graph, a generalization of a directed acyclic graph
(DAG). A few of the symbols in (b) were introduced in the context of phylogenetics by [29]. Briefly, empty
squares and empty circles drawn in continuous lines represent constant and stochastic nodes, respectively.
Circles filled in gray represent stochastic nodes whose values are observed (i.e., data). Empty diamonds
denote deterministic nodes (the output of deterministic functions). Factors capture the conditional depen-
dencies between stochastic nodes and are either (i) filled squares, each associated to a distribution charac-
terized by a density function and from which values can be sampled, or (ii) filled diamonds, denoting each
a deterministic function.
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or more existing variables, and give users more control over model building. Without this class of explicit103

operations, such steps would instead take place out of sight in the backend, or alongside many other actions104

upon a single pj command, both of which can contribute to obscuring model structure.105

Computer variables created with pj are nodes in the DAG that describes all variable dependencies,106

distributions, functions, and values that comprise the full evolutionary model. With every pj command the107

DAG thus grows by a node, which is immediately assigned a value. The nature of the assignment (constant,108

stochastic, or deterministic) reflects which operator was used, as explained above. A thorough treatment109

of the grammar and usage of graphical models for evolutionary inference can be found in [29, 30] and the110

tutorials therein.111

Technical remarks on the phylojunction language112

In PhyloJunction, models are specified through commands written in the eponymous custom language,113

phylojunction (pj). In the current version of pj, created variables are the sole, immutable output of every114

function – and this output depends exclusively on a function’s arguments. Variable immutability has two115

consequences. First, it precludes loop control structures (e.g., for and while loops), with replication and116

“plating” (see [29]) being achieved instead through vectorization, a concept R users should be familiar with.117

(pj also does not support structures such as if-then-else and switch statements, effectively abstracting control118

flow.) Second, apart from the logical dependencies between nested functions – which reflect dependencies119

among DAG nodes – command evaluation order does not affect model specification and simulation. For120

example, in listing 1 (Fig. 1a), commands on lines 2, 3 and 6 are order-interchangeable, and so are those on121

lines 10 and 11, but the command on line 7 must be executed before that on line 11.122

The features described above make pj behave largely as a declarative language like XML. While com-123

mands in pj are Rev-like in syntax, and instantiate and store a DAG object in memory (the state of a124

PhyloJunction section), the similarities with Rev end here. In contrast to an imperative scripting language125

(e.g., R, Python, Rev), pj (i) is easier to learn, understand and write, (ii) enhances reproducibility, (iii)126

leaves less room for programming mistakes (e.g., variable overwriting, container indexing errors), and (iv)127

shifts the user’s attention from how to specify a model to the structure of the model itself. Focus on model128

structure in PhyloJunction is further encouraged by pj’s grammar ignoring actions and settings unrelated129

to model building, such as dependency loading, input/output, Bayesian proposals, MCMC parameters, etc.130

All of these properties make pj a lightweight language that can be particularly useful in the classroom.131
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Figure 2: PhyloJunction’s (a) graphical user interface (GUI) with different features indicated by numbers
(see main text), and plots from (b) “Coverage” and (c) “Compare” graphical exploration functionalities.

3 Standalone command-line and graphical user interfaces132

PhyloJunction integrates its multiple utilities for simulating, testing and characterizing evolutionary models133

via both command-line (CLI) and graphical user interfaces (GUI; Fig. 2a). Through the CLI and GUI, users134

can provide PhyloJunction with a series of DAG-building instructions in the form of a pj script (e.g., listing135

1, Fig. 1a). Users can also build a DAG by entering commands through the GUI’s command prompt (Fig.136

2a, number 1). Synthetic data is then generated while a pj script (or sequence of commands) is processed,137

and can later be exported as text files to a user-specified location. The interfaces can be further used to save138

and load a particular model instance as a serialized byte stream.139

As any modern computer application, PhyloJunction’s GUI exposes its features to users via a menu (Fig.140

2a, number 2). On the main tab (“Model”), one can navigate the DAG and see its node values as a plot,141

text string, or both (Fig. 2a, numbers 3 and 4). Users can also cycle through replicated simulations (Fig.142

2a, number 5), and examine node-value summaries computed for individual simulations or across replicates143

(Fig. 2a, number 6). Node-value summaries include the mean and standard deviation for scalar variables,144

and statistics like the root age and number of tips for phylogenetic trees.145

Automatic summarization and visual inspection of synthetic data expedites model testing and character-146

ization, by helping researchers quickly determine if a model setup is appropriate. Empiricists can promptly147

examine the effect that prior choice may have during Bayesian inference, for example, depending on what148

simulated data sets look like. Under an SSE model [13], high state-transition rates causing saturation would149

be immediately discernible in the state mappings coloring a phylogenetic tree (Fig. 2a, number 3).150
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Workflow functionalities for model testing, characterization, and teaching151

In addition to data simulation, the different stages of model development have a few common denominators.152

Researchers must usually contend with (i) parsing inference results, (ii) comparing parameter estimates and153

their true values, and (iii) displaying the results as graphs. These tasks will commonly be repeated across154

parameter space, and sometimes under different models altogether. Furthermore, testing and characterization155

pipelines are often built, executed and described several times by multiple researchers – even when the156

procedures taking place are very similar (e.g., [28, 48]). This redundancy is not only an inefficient use of157

researchers’ time, but also hinders reproducibility.158

PhyloJunction introduces a suite of utilities for streamlining and automating model specification, testing159

and characterization. These are meant to minimize scripting redundancy and maximize the reproducibility160

of in silico experiments. Different utilities are separately documented and can be invoked by the user from161

within custom Python scripts, as modules. Alternatively, users may access PhyloJunction’s features via its162

standalone interfaces.163

Validation utilities, for example, can be accessed via the GUI’s “Coverage” tab. These were designed164

with Bayesian coverage validation in mind (e.g., [21, 53, 84]). When a simulated data set is analyzed using165

a Bayesian platform, this tab can be used for loading raw or post-processed inference result files. True166

parameter values must be loaded as a table, or if data was simulated with PhyloJunction, users can load a167

model instance (saved previously as a byte stream). Parameter coverage can then automatically computed,168

and Bayesian intervals plotted against true parameter values (Fig. 2b).169

The GUI’s “Compare” tab, in turn, exposes additional model exploration utilities to the user. Here,170

parameter values generated by PhyloJunction under a model can be visualized against theoretical expecta-171

tions, or against values simulated by a different program. Because PhyloJunction automatically computes172

parameter summary statistics, those can also be displayed side-by-side with comparable quantities calculated173

elsewhere (Fig. 2c). These functionalities are useful in a Bayesian context, for example, whenever a model174

has been implemented for inference, but not for direct simulation. In such cases, one can use PhyloJunction175

to rapidly build a direct simulator for the first time, and then use the “Compare” tab to check it against176

Monte Carlo samples produced by the existing implementation.177

Simulation functionalities as well as those available under the “Coverage” and “Compare” tabs were178

developed because of the ubiquitous (and repetitious) nature of certain tasks involved in validating and179

characterizing a model. In addition to methodological research, however, we anticipate that these features180

will find use in teaching settings – especially considering the growing availability and popularity of technical181

workshops [2, 3], and new pedagogical material [25, 62, 80]. While trying their hand at implementing simple182
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evolutionary models, students could use PhyloJunction to validate said models or to obtain simulation183

benchmarks, and to immediately visualize results via the GUI. PhyloJunction’s pedagogical impact will be184

further enhanced by its implementation in pure Python (see below), a cross-platform, user-friendly language185

that finds widespread use in the classroom.186

4 Longevity through an extensible and user-friendly model ecosys-187

tem188

One hurdle that must be often overcome during model development is the steep learning curve of the low-level189

programming languages many software platforms are written in. RevBayes is written in C++, for example,190

while BEAST and BEAST 2 are developed in Java. This is a choice motivated by compiled programming191

languages generally outperforming interpreted languages (e.g., R, Python), and being preferred over the192

latter whenever speed is a priority, such as when a method is primarily used for inference from challenging193

data sets. Languages like C++ and Java also natively support object-oriented programming – a programming194

paradigm that is critical for erecting vast, extensible and maintainable codebases such as those living inside195

those platforms.196

Despite being conversant in interpreted languages, many biologists with an enthusiasm for evolutionary197

modeling have little to no experience with the commonly abstruse syntax and features of low-level languages198

(e.g., memory management, abstraction, typing). They also have rarely had to contend with the complicated199

pipelines for compiling large programs across different types of computers, and with the configuration of200

industry-grade IDEs (integrated development environment), used for navigating immense codebases. Unless201

working closely with developers of big software platforms, individual scientists are likely to struggle with (i)202

reverse-engineering complex code that may not have been written to be read by others, and (ii) adding new203

code that does not break the behavior of the original codebase.204

One alternative that obviates some of these difficulties is to implement and release models as R or Python205

packages (e.g., [4, 10, 19, 21, 50, 56, 61]). A package has a comparatively small codebase that can be written206

by anyone from scratch, is self-contained and thus easily maintainable, and can be integrated with other207

packages more or less readily, via the scripting language. Furthermore, public package archives such as CRAN208

(the Comprehensive R Archive Network) or PyPI (the Python Package Index) do not restrict how a package209

should be programmed; package source files are immensely variable in their coding language, conventions and210

documentation, and programming paradigm. The minimal package submission and code-design requirements211

of CRAN and PyPI allow researchers freedom and flexibility, both unquestionable advantages to this variety212
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of method development.213

Writing packages has its challenges. Developers who want to add to or combine existing packages will214

likely have to contend with code written in a mix of languages (e.g., R, Python, C, C++, FORTRAN),215

paradigms (e.g., functional, objected-oriented) and styles. Furthermore, CRAN and PyPI put the onus216

on the researcher to choose among (often multiple) packages for the same or different purposes. Packages217

may vary with respect to their underlying algorithms, modeling assumptions and notation (see [70] for an218

example). Lastly, every scientist will adopt a unique R scripting strategy when specifying a model. All of the219

above makes reproducibility of results harder, and leads to code that is often chimeric (in its style, paradigm220

and language), single-use, or redundant.221

The choice of platform for writing modeling software thus involves trade-offs related to technical difficulty,222

speed, distributability, and maintainability. PhyloJunction embodies our attempt at balancing the above223

considerations while introducing an alternative methodology for model development and characterization.224

The brunt of PhyloJunction’s design effort involved conceiving a computational framework that could not225

merely be extended – among other things, our intention is to facilitate the early stages of model prototyping226

and testing – but extended with minimal refactoring and in the most developer-friendly way possible.227

We chose to implement Phylojunction in Python primarily because of its native support for object-228

oriented programming, a paradigm that aids codebase expansion and maintenance. Furthermore, Python229

has clear community standards and many tools (e.g., mypy, Sphinx, pep8 [77], pep20 [57]) for encouraging230

or enforcing conventions on coding style, type hinting and documentation – all of which further contribute231

to codebase clarity and consistency. A Python codebase can also be easily navigated with any of the various232

user-friendly IDEs with support for Python (e.g., Visual Studio Code, PyCharm, Spyder).233

Finally, Python development can profit from a vast array of free, industry-grade scientific libraries for234

data manipulation (e.g., matplotlib [34], pandas), statistics and Bayesian analysis (e.g., scipy [79], PyMC3235

[35], ArviZ [38]), and machine learning (e.g., TensorFlow [1], scikit-learn [55]). Of particular relevance to236

PhyloJunction’s is PyPI’s growing list of modules specifically aimed at phylogenetic or population genetic237

analysis (e.g., DendroPy [73], PyRate [65], MESS [54], ete3 [33], msprime [5]), some of which have already238

been or may be integrated with PhyloJunction in the future. Below we suggest a few ways in which the239

latter may be done.240

5 Availability and resources241

PhyloJunction’s source code is publicly available on https://github.com/fkmendes/PhyloJunction. Doc-242

umentation on how to install and use the program can be found on https://phylojunction.org. Phylo-243
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Junction is licensed under GNU General Public License v3.0.244

6 Future directions245

We introduced PhyloJunction, an open-source package for simulating state-dependent speciation and ex-246

tinction (SSE) processes, a large family of diversification models that has found success across a range of247

scientific domains [13, 27, 75]. Most implementations of SSE models have prioritized inference and effi-248

ciency over simulation and generality; the latter is the relatively vacant niche PhyloJunction was designed249

to fill. In addition to model-specification and simulation tools, our program ships with a series of utilities250

for summarizing and visualizing simulation outputs, as well as data-wrangling functions for model validation251

and characterization. These utilities are integrated and exposed to users by standalone command-line and252

graphical interfaces, which simplify the execution and reproduction of in silico experiments.253

Models in PhyloJunction are embedded within a graphical modeling architecture, which also underlies254

the package’s dedicated probabilistic-programming language, phylojunction. These features make Phy-255

loJunction’s model ecosystem extensible beyond SSE processes, and allow its components to be promptly256

integrated. Future software releases are planned to include distributions for different types of data models257

(e.g., DNA and protein sequences, [23, 74, 82]; discrete and continuous characters, [18, 42]), evolutionary258

clock models (e.g., [15, 16]), population-genetic and phylogeographic processes (e.g., [37, 60]), or models259

combining any of the above (e.g., [7, 32, 47]). A richer selection of evolutionary processes should widen the260

range of potential applications of PhyloJunction in research and teaching.261

PhyloJunction was primarily designed to be a framework for simulation and prototyping of evolutionary262

models, but we expect its future development to further take on the task of statistical inference. Moving in263

that direction may involve introducing subroutines for creating textual instructions for Bayesian inference,264

for example, as required by popular platforms (e.g., RevBayes, BEAST, BEAST 2). Bayesian inference is265

also possible within a Python environment, although it is unclear how immediately useful existing libraries266

(e.g., [35]) may be in terms of parameter estimation in phylogenetic space. Porting or implementing Bayesian267

inference utilities in our platform would in the very least allow synthetic data to be simulated under simple268

models, and immediately plotted. Such an extension would further empower PhyloJunction as a teaching269

tool. Alternatively, it should be straightforward to integrate PhyloJunction’s functionalities for summarizing270

data together with Python machine learning libraries. There is increasing evidence [49] backing machine-271

learning methods as viable alternatives to frequentist and Bayesian evolutionary inference, especially when272

the latter is very onerous or impossible [75].273

It is our long-term hope for PhyloJunction that it not only increasingly facilitates research in evolutionary274
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modeling, but that its capabilities can be diversified and enhanced by (and according to the needs of) the275

scientific community at large.276
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[2] J Barido-Sottani, V Bošková, L D Plessis, D Kühnert, C Magnus, V Mitov, N F Müller, PecErska J,295

D A Rasmussen, C Zhang, A J Drummond, T A Heath, O G Pybus, T G Vaughan, and T Stadler.296

Taming the BEAST – a community teaching material resource for BEAST 2. Syst. Biol., 67:170–174,297

2018.298
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Michael R. May, Fáabio K. Mendes, Walker Pett, Benjamin D. Redelings, Carrie M. Tribble, April M.301

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2023. ; https://doi.org/10.1101/2023.12.15.571907doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.15.571907
http://creativecommons.org/licenses/by-nc-nd/4.0/


Wright, Rosana Zenil-Ferguson, and Tracy A. Heath. Lessons learned from teaching virtual phylogenetics302

workshops. BSSB, 1:8245, 2022.303
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