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Powdery mildew infection induces a non-canonical route to storage lipid formation at the 1 

expense of host thylakoid lipids to fuel its spore production 2 
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ABSTRACT 19 

Powdery mildews are obligate biotrophic fungi that manipulate plant metabolism to supply 20 
lipids, particularly during fungal asexual reproduction when fungal lipid demand is extensive. 21 
The mechanism for host response to fungal lipid demand has not been resolved. We found 22 
storage lipids, triacylglycerols (TAGs), increase by 3.5-fold in powdery mildew-infected tissue. 23 
In addition, lipid bodies, not observable in uninfected mature leaves, are present in both cytosol 24 
and chloroplasts at the infection site. This is concurrent with decreased thylakoid membrane 25 
lipids and thylakoid disassembly. Together, these findings indicate that the powdery mildew 26 
induces localized thylakoid membrane degradation to promote storage lipid formation. Genetic 27 
analyses show the canonical ER pathway for TAG synthesis does not support powdery mildew 28 
spore production. Instead, Arabidopsis DIACYLGLYCEROL ACYLTRANSFERASE 3 29 
(DGAT3), shown to be chloroplast-localized and to be largely responsible for powdery mildew-30 
induced chloroplast TAGs, promotes fungal asexual reproduction. Powdery mildew-induced leaf 31 
TAGs are enriched in thylakoid associated fatty acids, which are also present in the produced 32 
spores. This research provides new insights on obligate biotrophy and plant lipid metabolism 33 
plasticity and function. Furthermore, by understanding how photosynthetically active leaves can 34 
be converted into TAG producers, more sustainable and environmentally benign plant oil 35 
production could be facilitated. 36 
 37 
 38 
  39 
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INTRODUCTION 40 
 41 

As obligate biotrophic pathogens, powdery mildews acquire nutrients supplied by living 42 

host cells to support their life cycle and have specialized strategies for maximizing the output of 43 

these tissues (Glawe 2008; Wildermuth et al. 2017). In the Arabidopsis thaliana-Golovinomyces 44 

orontii interaction, the establishment of the fungal feeding structure, called a haustorium, occurs 45 

by 24 hours post inoculation (hpi). By 5 days post inoculation (dpi), asexual reproductive 46 

structures called conidiophores form. These conidiophores contain chains of conidia which store 47 

energy in the form of lipids and glycogen (Both et al. 2005; Micali et al. 2008). Thus, the fungal 48 

demand for nutrients is especially high during asexual reproduction. As a response to the 49 

nutritional demands, a metabolic switch occurs in the host infected leaves. Mature leaves are 50 

considered source tissues producing hexoses for transport to growing parts of the plant. 51 

However, powdery mildew infection induces localized signatures of mobilization of 52 

carbohydrates to the tissue underlying the fungal infection site, for fungal acquisition (Clark and 53 

Hall 1998; Sutton, Henry, and Hall 1999; Fotopoulos et al. 2003; Swarbrick, Schulze-Lefert, and 54 

Scholes 2006). Furthermore, localized transcriptome profiling using laser microdissection shows 55 

the expression of genes associated with enhanced glycolysis and respiration to be increased, 56 

while the expression of chlorophyll biosynthesis genes is decreased at the powdery mildew 57 

infection site, in support of a localized source to sink transition (Chandran et al. 2010). Analysis 58 

of powdery mildew genomes found reduced carbohydrate metabolism pathways but relatively 59 

complete fatty acid (FA) metabolism and utilization pathways, suggesting lipids may be a 60 

preferred nutrient (Liang et al. 2018). And, an early study found enhanced lipid accumulation in 61 

powdery mildew infected cucumber leaves compared to uninfected leaves (Abood and Lösel 62 

1989). 63 

Microbial acquisition of host lipids has emerged as a common strategy across host-64 

microbe systems, particularly for obligate biotrophs including human intracellular pathogens  65 

(Atella et al. 2009; Costa et al. 2018). For plant obligate biotrophs, the arbuscular mycorrhizal 66 

fungi (AMF) symbiosis in which AMF colonize plant roots, providing minerals to the plant host 67 

while acquiring host sugars and lipids is best studied (MacLean, Bravo, and Harrison 2017; 68 

Luginbuehl et al. 2017; Kameoka and Gutjahr 2022). AMF induce a specific shift in host lipid 69 

metabolism, catalyzed by enzymes specific to plants colonized by AMF, to yield 2-70 

monoacylglycerols (2-MG), with C16:0 2-MGs preferred. While 2-MGs appear to be the likely 71 
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final product transferred to AMF, this has not been verified, and it is possible other lipids may 72 

also be transported particularly if acquisition is facilitated by exocytotic vesicles. Once these host 73 

lipids are acquired, they are remodeled by the AMF and stored primarily as TAGs in lipid bodies 74 

for future use.  75 

By contrast with the AMF symbiosis, almost nothing is known about how the powdery 76 

mildew fungus manipulates host metabolism for fungal lipid acquisition. Because powdery 77 

mildews have the capacity to synthesize FAs, unlike AMF which are FA auxotrophs (Kameoka 78 

and Gutjahr 2022), we focus our studies on powdery mildew-infected leaves during powdery 79 

mildew asexual reproduction (5+ dpi), when spores replete with lipid bodies (Both et al., 2005) 80 

are formed. We reason that host lipids would be most in demand at this phase of the powdery 81 

mildew life cycle. Furthermore, Jiang and colleagues, as part of their research on AMF, show 82 

host FA manipulation is reflected in powdery mildew spore FAs (Jiang et al. 2017). Specifically, 83 

their introduction of UcFatB, a fatty acid thioesterase that terminates FA elongation early, 84 

terminating with C12:0, into Arabidopsis resulted in increased C12:0 FAs in both host leaves and 85 

powdery mildew spores.  86 

Plant lipid metabolism is dynamic across developmental stages and responsive to 87 

environmental stimuli, modifying energy content of storage tissues, altering membrane fluidity at 88 

different temperatures, minimizing lipotoxicity, and providing chemical signals (Baud et al. 89 

2008; Moellering, Muthan, and Benning 2010; Okazaki and Saito 2014; Cavaco, Matos, and 90 

Figueiredo 2021). In plants such as Arabidopsis, acyl-chains are produced in chloroplasts, with 91 

the exception of a small fraction generated in mitochondria, and their subsequent assembly into 92 

lipids occurs via pathways operating in the chloroplast (prokaryotic pathway) and the 93 

endoplasmic reticulum (eukaryotic pathway). In Arabidopsis leaves, approximately 38% of 94 

newly synthesized FAs are utilized in the prokaryotic lipid-synthesis pathway, whereas the 95 

remaining 62% are directed towards the eukaryotic pathway (Browse et al. 1986). A portion of 96 

acyl-chains from ER-assembled lipids are subsequently transported – likely as PA and/or DAG – 97 

back to the plastid to serve as substrates for thylakoid lipid synthesis (Yao et al. 2023; Hölzl and 98 

Dörmann 2019). Triacylglycerols (TAGs), neutral storage lipids with three fatty acids attached to 99 

a glycerol backbone, are packaged into lipid bodies. Eukaryotes synthesize TAGs in the ER via 100 

two major pathways: the Kennedy pathway and the acyl-CoA independent pathway (C. Xu, Fan, 101 

and Shanklin 2020). Diacylglycerol acyltransferases (DGAT, EC 2.3.1.20) catalyze the final and 102 
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rate-limiting step in TAG synthesis forming TAG from diacylglycerol (DAG) and acyl-CoA in 103 

the Kennedy pathway. Whereas, phospholipid:diacylglycerol acyltransferase (PDAT, EC 104 

2.3.1.158) catalyzes the final and rate-limiting step in acyl-CoA independent TAG synthesis with 105 

TAG formed from DAG and a phospholipid (PL) acyl donor, i.e. phosphatidylcholine (PC) 106 

remodeled from the Lands Cycle (Dahlqvist et al. 2000; Zhang et al. 2009; L. Wang et al. 2012).  107 

In this study, we show powdery mildew-induced TAG accumulation in mature 108 

Arabidopsis thaliana leaves occurs at the infection site concurrent with powdery mildew asexual 109 

reproduction. We employ genetic, microscopic, and lipidomic approaches to uncover a non-110 

canonical route for plant TAG synthesis via AtDGAT3 to support powdery mildew spore 111 

formation. AtDGAT3 is unusual in that, unlike the ER membrane proteins DGAT1 and DGAT2, 112 

it is a soluble metalloprotein containing a [2Fe-2S] cluster (Aymé et al. 2014). We show 113 

AtDGAT3 is localized to the chloroplast and responsible for plastidic TAG synthesis that occurs 114 

at the expense of thylakoid membranes. We further speculate on controls over functional roles of 115 

ER- versus chloroplast- derived lipid bodies in the powdery mildew interaction, powdery mildew 116 

acquisition of the chloroplast-derived lipid bodies, and controls over AtDGAT3 stability and 117 

activity. Our findings open further avenues of investigation with respect to biotroph-host 118 

interactions and plant response to stress or aging (e.g. leaf senescence). Moreover, this work 119 

could facilitate more sustainable production of vegetable oil, biofuels and other specialty 120 

chemicals (X.-Y. Xu et al. 2018). 121 

 122 

RESULTS 123 

Powdery mildew infection increases triacylglycerols in the host leaf while phospholipids 124 

decrease 125 

 Powdery mildew fungi are obligate biotrophs that rely entirely on the host for nutrients. 126 

Powdery mildew asexual reproduction creates a high metabolic demand for lipids as the powdery 127 

mildew feeding structures, haustoria, and newly formed spores are filled with lipid bodies at 5 128 

dpi when asexual reproduction is first apparent (Fig. 1, A-C).   129 

To understand how host lipid metabolism is manipulated to meet this fungal lipid 130 

demand, we performed lipid profiling of uninfected and parallel powdery mildew-infected leaves 131 

at 12 days post inoculation (dpi). This later time point exhibits sufficient powdery mildew 132 
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proliferation to allow us to assess the impact of the powdery mildew in whole leaf analyses. 133 

Lipids were extracted and identified by LC-MS/MS fragmentation patterns (Supplemental Fig. 134 

1, Supplemental Dataset 1). Our results show that TAGs increase in 12 dpi washed leaf extracts 135 

relative to uninfected leaf extracts, with a 3.5-fold increase in abundance (Fig. 1D). Overall, 136 

there is a shift to TAGs containing longer acyl chains, including very long chain fatty acids 137 

(VLCFA,  >C20), assessed at  >C56:x, which increase 7-fold with infection (Fig. 1E-F, 138 

Supplemental Fig. S1; Supplemental Dataset 1). Examination of the most abundant TAG 139 

class, C54:x, shows an increase of 3.5-fold with infection accompanied by a shift towards a more 140 

desaturated profile in infected leaves (Fig. 1F-G); this reflects increased 18:3 and 18:2 FA 141 

composition (Supplemental Dataset 1). 142 

While TAGs increase, phospholipids decrease in abundance in extracts from infected 143 

leaves at 12 dpi compared to parallel uninfected leaves (Fig. 1H, Supplemental Dataset 1). 144 

Phosphatidylcholine (PC), the dominant phospholipid in mature Arabidopsis leaves, decreases by 145 

30%. Phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) decrease by 50% and 60% 146 

respectively in infected leaves. Although a net decrease in total phosphatidylinositol (PI) with 147 

infection of 20% is observed, it is not statistically significant. Lysophosphatidylcholines (LPC) 148 

increase by ~4-fold in infected leaves. The observed decrease in PC is consistent with increased 149 

TAG synthesis utilizing DAG formed from PC (and PA) via DGATs. The decreases in the other 150 

phospholipids (PE, PI, PG) may facilitate increased flux to TAG accumulation. Furthermore, the 151 

indication that LPC increases at 12 dpi suggests possible operation of the Lands Cycle using 152 

PDAT1.  153 

In summary, our data indicates that the powdery mildew remodels host lipid metabolism 154 

to promote localized TAG accumulation. 155 

Genetic analyses indicate the canonical route for plant TAG synthesis in the ER hinders 156 

powdery mildew asexual reproduction while chloroplast-localized DGAT3 promotes it 157 

We next examined the impact of genes encoding proteins catalyzing the final and rate-158 

limiting step in canonical TAG biosynthesis in the ER (Vanhercke et al. 2019) on powdery 159 

mildew spore production, AtDGAT1 (At2g19450), AtDGAT2 (At3g51520), and AtPDAT1 160 

(At5g13640), using Arabidopsis null mutants and/or spray-induced gene silencing (SIGS). Our 161 

employed SIGS methodology specifically silences targeted genes with minimal off targets 162 
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(Methods; McRae et al. 2023). Furthermore, the Arabidopsis DGATs evolved independently, 163 

contain distinct functional domains, and share little sequence similarity (Yin et al. 2022). In seed 164 

oil accumulation, AtDGAT1 and AtPDAT1 play dominant roles. A null mutant in AtDGAT1 165 

shows a 30% reduction in seed TAGs, while RNAi silencing of PDAT1 in a dgat1-1 background 166 

or DGAT1 in pdat1-1 background results in 70 to 80% decreases in seed oil content (Katavic et 167 

al. 1995; Zhang et al. 2009). While it doesn’t contribute to seed TAG accumulation, AtDGAT2, 168 

along with AtDGAT1 and AtPDAT1, can impact leaf TAG accumulation (Zhou et al. 2013; Fan, 169 

Yan, and Xu 2013). Furthermore, we explored the impact of ATP-binding cassette A 9 170 

(ABCA9), demonstrated to import FA/acyl-CoA into the ER and to exhibit a 35% reduction in 171 

seed TAG accumulation in the abca9-1 mutant (Kim et al. 2013). The ER-localized long-chain 172 

acyl-CoA synthetase 1 (LACS1) was also investigated because it acts on long chain and very 173 

long chain FAs (Lü et al. 2009) which we observed to increase with infection (Fig. 1E-F) and is 174 

the only ER-localized LACS (Zhao et al. 2010) with enhanced expression at the powdery mildew 175 

infection site at 5 dpi (Chandran et al. 2010). 176 

To our surprise, dgat1-1 and abca9-1 null mutants allow for enhanced powdery mildew 177 

spore production, 24% and 50% more, respectively, than wild type (WT) plants, whereas, the 178 

lacs1-1 and pdat1-2 mutants show no significant change in spore production (Fig. 2A). 179 

Knockdown of AtDGAT1 via SIGS results in more than 60% increase in spore production, 180 

whereas, silencing of AtDGAT2 shows no difference in spore production from mock treatment 181 

(Fig. 2B). Taken together, our findings indicate that TAG synthesis in the ER, using the FA 182 

importer ABCA9 and DGAT1, is not used to support powdery mildew spore production, but 183 

instead hinders it.  184 

While AtDGAT1 and AtDGAT2 are ER-localized and membrane-bound, the third 185 

Arabidopsis DGAT protein, AtDGAT3, contains a predicted N-terminal chloroplast transit 186 

peptide (cTP) and no transmembrane domain (Aymé et al. 2018). AtDGAT3 was initially shown 187 

to be localized to the cytosol (Hernández et al. 2012), but this study utilized an N-terminus 188 

truncated form of the enzyme lacking the cTP. By contrast with DGAT1, targeting DGAT3 via 189 

SIGS reduces spore production by 40% (Fig. 2B). To confirm the impact of DGAT3 reduction on 190 

powdery mildew asexual reproduction, we obtained a homozygous null mutant in AtDGAT3, 191 

dgat3-2 (Supplemental Fig S2). dgat3-2 plants support 21% less spore production than WT 192 

(Fig. 2B). The larger impact on spore production shown with SIGS rather than null mutants in 193 
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DGAT1 and DGAT3 may be due to genetic compensation through development in the null 194 

mutant plants. Neither dgat1-1 nor dgat3-2 plants exhibit any obvious developmental or 195 

morphological phenotypes. 196 

To determine the localization of AtDGAT3, we cloned the genomic DNA encoding the 197 

full length AtDGAT3 sequence and fused 35S to its N-terminus and GFP to its C-terminus. 198 

Transient expression of AtDGAT3-GFP in Nicotiana benthamiana leaves via Agrobacterium 199 

infiltration results in intense GFP fluorescence that is colocalized with chlorophyll 200 

autofluorescence, indicating DGAT3 is localized to chloroplasts (Fig. 2C).  201 

Figure 2D places the tested players in the context of integrated chloroplast-ER lipid 202 

metabolism focused on TAG synthesis (Browse et al. 1986; Hölzl and Dörmann 2019; C. Xu, 203 

Fan, and Shanklin 2020; Vanhercke et al. 2019), with the addition of AtDGAT3 chloroplast 204 

localization. In summary, leaf TAG synthesis to support powdery mildew asexual reproduction 205 

occurs using a novel route via DGAT3 in the chloroplast. By contrast, canonical TAG synthesis 206 

in the ER via DGAT1 limits spore production.  207 

Powdery mildew- induced host lipid bodies are present both in the cytosol and chloroplasts 208 

Given our finding that plastidic DGAT3 supports powdery mildew spore production, we 209 

performed confocal imaging of infected leaf tissue at 5 and 10 dpi stained with the neutral lipid 210 

dye BODIPY505/515 and focused on mesophyll cells underlying powdery mildew feeding 211 

structures. As Arabidopsis RPW8.2 is specifically targeted to the fungal extrahaustorial 212 

membrane (EHM), we infected Col-0 lines expressing RPW8.2-YFP with G. orontii to visualize 213 

the haustorium (W. Wang et al. 2009). The haustorium resides in the epidermal cell as depicted 214 

in Fig. 1A and is located above three mesophyll cells (Fig. 3A). At the infection site at 5 dpi, 215 

abundant lipid droplets are highly localized to the three mesophyll cells right underneath the 216 

haustorium (white dashed line in Fig. 3B) and not in distal cells. Almost no lipid bodies are 217 

observed in parallel uninfected tissue mesophyll cells. As the infection progresses to 10 dpi, the 218 

abundance of lipid bodies increases in the neighboring mesophyll cells. The percent area with 219 

fluorescence shows a ~6-fold increase with infection at 5 dpi and ~15-fold increase with 220 

infection at 10 dpi (Fig. 3C). BODIPY505/515-stained lipid bodies are observed both next to 221 

chloroplasts and in the cytoplasm. With closer examination using 3D reconstructions of multiple 222 

z-stacked confocal images, we observe that some infection induced lipid bodies are embedded in 223 
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the chloroplast (Fig. 3D, yellow circled). These chloroplast-embedded lipid bodies (5.2 and 5.9 224 

µm diameter) are similar in size to those that are not embedded; chloroplast adjacent lipid body 225 

mean diameter is 3.7µm (n = 8) and cytoplasmic lipid body mean diameter is 3.4 µm (n=5). 226 

Together, our results indicate that powdery mildew infection shifts host lipid metabolism to form 227 

large storage lipid bodies with some of the lipid bodies inside chloroplasts, others adjacent to or 228 

very near the chloroplast, and others in the cytosol.  229 

Chloroplast TAG accumulation, but not host defense, is altered in dgat3-2  230 

To directly assess whether DGAT3 impacts powdery mildew-induced TAG formation, 231 

we performed lipid extractions on 12 dpi leaves and isolated chloroplasts from 12 dpi leaves of 232 

dgat3-2 and WT plants. Using thin layer chromatography (TLC) we find that the TAG content of 233 

whole leaf extracts does not differ significantly between dgat3-2 and WT (Fig. 4A-B). However, 234 

isolated chloroplast TAG content is reduced by ~60% in dgat3-2 compared to WT plants, 235 

confirming the role of DGAT3 in plastidic TAG synthesis. Furthermore, the TAG TLC profile of 236 

isolated chloroplasts is enriched in TAGs with a higher Rf than those from whole leaves, 237 

overlapping the extra virgin olive oil standard (C18:1 74%, C18:2/3 11%, C16:0 15%).  238 

Manipulation of plant lipid metabolism can result in altered defense signaling and 239 

response including elevated SA responses and/or cell death (Kachroo and Kachroo 2009) that 240 

restrict powdery mildew growth and reproduction (e.g. C. A. Frye and Innes 1998; Reuber et al. 241 

1998; Catherine A. Frye, Tang, and Innes 2001). Similar to WT, no cell death is observed in 242 

epidermal or mesophyll cells at the powdery mildew infection site of dgat3-2 plants (Fig. 4C). 243 

Moreover, induced PR-1 expression, a marker of SA-dependent defense responses, does not 244 

differ between WT and dgat3-2 infected leaves (Fig. 4D). Together, these findings suggest the 245 

reduction in spore production observed for dgat3-2 is due to decreased induced plastid TAG 246 

production, not increased defense. 247 

Powdery mildew infection induces the breakdown of thylakoid membrane lipids 248 

Above, we show powdery mildew-induced lipid bodies are associated with chloroplasts 249 

(Fig. 3) and plastid-localized AtDGAT3 is a dominant contributor to powdery mildew-induced 250 

host TAG synthesis and fungal spore production (Figs. 2, 4). As some stresses induce the 251 

accumulation of storage lipids at the expense of membrane lipids (Lu et al. 2020; Shiva et al. 252 
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2020), we postulated that host chloroplast membranes, dominated by thylakoid membranes, are 253 

being disassembled for TAG synthesis in response to infection. We therefore examined the 254 

abundance of thylakoid membrane lipids by electrospray ionization (ESI)-MS/MS. Uninfected 255 

mature Arabidopsis leaf thylakoid membrane lipids are dominated by 256 

monogalactosyldiacylglycerol (MGDG, 42%), digalactosyldiacylglycerol (DGDG, 13%), and 257 

phosphatidylglycerol (PG, 10%) (Browse et al. 1989). Powdery mildew-infected (washed) leaves 258 

extracted at 12 dpi show that MGDG, DGDG, and PG each decrease by at least 2-fold compared 259 

to uninfected leaf controls indicating the breakdown of thylakoid membranes (Fig. 5A, 260 

Supplemental Dataset 2). Decreased PG, by 60%, was also observed by LC-MS/MS (Fig. 1H). 261 

To understand the change in total FA profiles, lipid extractions were performed on 262 

uninfected leaves, washed infected leaves and spore tissues at 12 dpi. Acyl chains were then 263 

converted to fatty acid methyl esters (FAMEs) for separation by gas chromatography with flame 264 

ionization detection (GC-FID). Principal component analysis (PCA) shows a distinct clustering 265 

of the three tissue types according to the ten FA species detected (Fig. 5B). Acyl chains 266 

associated with thylakoid membrane lipids, C18:3 (dominant), C18:2, and C16:3 (unique to 267 

chloroplast), each decrease by ~50% in 12 dpi leaves compared with uninfected (Fig. 5C). By 268 

contrast, the VLCFA C20:0 increases by ~20 fold in washed infected leaves. In spore extracts, 269 

the VLCFA C20:0 is the dominant species, followed by C18:3, while C18:3 dominates the leaf 270 

profiles even after the reduction shown with powdery mildew infection at 12 dpi. By normalizing 271 

the spore data to nmol/mgDW leaf (Supplemental Dataset 2), we can compare uninfected leaf 272 

total FA abundance with that of the washed leaves plus spores. We find 63% of total FA in the 273 

uninfected leaves is accounted for in the (washed) infected leaf plus spore (Fig. 5D). Moreover, 274 

only the spore C20:0 species abundance is clearly not fully attributed to leaf acquisition as the 275 

spore contains 2-fold more C20:0 than the (washed) infected leaf and 36-fold more C20:0 than 276 

the uninfected leaf on a leaf normalized basis (Supplemental Dataset 2). This also raises the 277 

possibility that some of the C20:0 in the (washed) infected leaf FAME samples and LC-MS/MS 278 

TAG samples (Fig. 1, Supplemental Dataset 1) may be fungal in origin. Only the fungal 279 

haustoria is present in the washed leaf samples as all surface structures are removed. Though 280 

haustoria make up a small percent of washed leaf sample cells on a cell basis, the haustoria are 281 

filled with lipid droplets (Fig. 1) that could include C20:0 remodeled by the fungus. Therefore, it 282 

is possible that a portion of the C20:0 in washed leaf analyses is fungal-derived. 283 
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As our findings above indicate thylakoid membrane breakdown occurs concurrent with 284 

TAG accumulation, we sought to specifically determine whether C16:3 FAs, unique to the 285 

thylakoid membrane (Browse et al. 1986), are present in TAGs from 12 dpi leaf lipid extracts 286 

(Supplemental Dataset 1). Five TAG species were identified as uniquely containing a C16:3 287 

acyl chain, and each of these TAGs also contains at least one C18:3 acyl chain. With infection, 288 

these C16:3 containing TAGs increase by 5.4-fold (Fig. 5E). Furthermore, the presence of C16:3 289 

FAs in spores (Fig. 5C, Supplemental Dataset 2) indicates fungal acquisition of these 290 

thylakoid-derived FAs. 291 

We next sought to examine whether there is an associated change in chloroplast 292 

substructures with infection. We examined the ultrastructures of the powdery mildew haustorium 293 

and haustorium-associated chloroplasts at 5 dpi via transmission electron microscopy (TEM). 294 

The mature haustorium consists of a central haustorium body with peripheral small lobes (Koh et 295 

al. 2005). We see abundant electron-dense particles resembling lipid bodies in the haustorium 296 

body and lobes and in haustorium-associated chloroplasts (Fig. 6A-C). Examination of the 297 

haustorium-associated chloroplast in the epidermal cell shows an intact chloroplast outer 298 

membrane; however, the thylakoids have considerable loss of grana stacking, indicative of 299 

degradation (Fig. 6D). 300 

Furthermore, the mesophyll chloroplast right underneath the haustorium shows severe 301 

degradation, with chloroplast envelope membrane and thylakoid membranes almost totally 302 

degraded (Fig. 6E) compared to mesophyll chloroplast from a parallel uninfected leaf 303 

(Supplemental Figure S3). In addition, no starch is present in this chloroplast. Because the 304 

thylakoid membranes are highly degraded in the infected sample, it is difficult to definitively 305 

ascertain whether these chloroplast lipid bodies are physically associated with the thylakoid 306 

membrane; however, at least one of the three, (Fig. 6E, LB-labeled lipid body), does not appear 307 

to be directly attached. Together, our data shows that concurrent with G.orontii asexual 308 

reproduction (5 dpi+), powdery mildew infection induces the breakdown of host thylakoids, as 309 

observed by TEM, with decreased whole leaf thylakoid galactolipids and thylakoid membrane 310 

lipid associated FAs. 311 
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DISCUSSION 312 

Powdery mildew- induced plastidic TAG synthesis utilizes the soluble metalloprotein 313 

DGAT3 to promote powdery mildew asexual reproduction 314 

Figure 7 builds on the literature (Browse et al. 1986; Hölzl and Dörmann 2019; C. Xu, 315 

Fan, and Shanklin 2020; Vanhercke et al. 2019; C. Xu and Shanklin 2016; Bates 2022) to 316 

integrate our findings into a simplified model that shows rewiring of host lipid metabolism by 317 

the powdery mildew for TAG synthesis at the expense of thylakoid membranes. In this study, we 318 

analyzed the changes in Arabidopsis leaf lipids in response to powdery mildew infection at  319 

>5dpi concurrent with the formation of spores replete with lipid bodies (Fig. 1B). Despite the 320 

highly localized induction of host lipid bodies in mesophyll cells underlying fungal feeding 321 

structures (Fig. 3), powdery mildew infected leaves show a 3.5-fold increase in TAG abundance 322 

at 12 dpi (Fig. 1D). Localized thylakoid unstacking and degradation (Fig. 6), decreased 323 

thylakoid lipids MGDG, DGDG, and PG (Fig. 5A) and decreased thylakoid membrane lipid FAs 324 

(Fig. 5C) all suggest TAGs are formed at the expense of thylakoid lipids. This is confirmed by 325 

the increase in TAGs containing thylakoid membrane derived acyl chains (18:3 dominant, 18:2, 326 

16:3 unique) (e.g. Fig. 1G, 5E, Supplemental Dataset 1) with infection. 327 

We further find that the unusual DGAT enzyme, the soluble AtDGAT3 metalloprotein, is 328 

localized to the chloroplast (Fig. 2C) and responsible for the bulk (60%) of powdery mildew-329 

induced TAG synthesis in the chloroplast (Fig. 4A-B). TLC shows TAGs from chloroplasts 330 

isolated from powdery mildew-infected leaves (Fig. 4A-B) are enriched in TAGs that run 331 

similarly to the extra virgin olive oil standard (85% C18 and 15% C16 FAs). This suggests that 332 

the chloroplast TAGs made via AtDGAT3 are enriched for thylakoid-derived acyl chains, as we 333 

observe in washed infected whole leaves (Figs. 1G, 5E, Supplemental Dataset 1). Furthermore, 334 

AtDGAT3 preferentially incorporates C18:3, the dominant FA in thylakoid membranes, and to a 335 

lesser extent C18:2 substrates into TAGs (Hernández et al. 2012; Aymé et al. 2018). It is unclear 336 

whether AtDGAT3 may utilize C16:3 as the experimental systems employed by (Hernández et 337 

al. 2012; Aymé et al. 2018) had little available C16:3. Powdery mildew spore production is 338 

significantly reduced when AtDGAT3 expression is silenced or when a null mutant in AtDGAT3 339 

is assessed (Fig. 2B). This reduction in spore production is not associated with a pleiotropic 340 

phenotype, enhanced SA defense, and/or cell death in dgat3-2. (Fig. 4C-D). Therefore, it appears 341 
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that TAGs synthesized by DGAT3 in the chloroplast at the expense of thylakoid lipids promote 342 

powdery mildew asexual reproduction.  343 

At 5 dpi, lipid bodies are observed directly under and in the haustorial complex and are 344 

mainly associated with chloroplasts (Figs. 1C, 3, 6). By 10 dpi, chloroplast-associated lipid body 345 

accumulation extends to neighboring mesophyll cells underneath the haustorial complex (Fig. 3). 346 

As indicated in our model (Fig. 7), 3D reconstructed confocal images suggest chloroplast lipid 347 

bodies may then be released into the cytosol for fungal acquisition, as the chloroplast lipid bodies 348 

embedded in the chloroplast, adjacent to the chloroplast, and in the cytosol are of similar size 349 

(Fig. 3D). It is possible that the induced chloroplast lipid bodies derive (in part) from 350 

plastoglobules as our TEM image indicates some lipid bodies in the chloroplast of the mesophyll 351 

cell adjacent to the haustorium to be directly associated with the thylakoid membrane (Fig. 6). 352 

However, at 5-6 um (Fig. 3D), the lipid bodies are at the top of the size range reported for stress-353 

induced leaf plastoglobules (Arzac, Fernández-Marín, and García-Plazaola 2022; Bouchnak et al. 354 

2023), but common for cytosolic lipid droplets (C. Xu, Fan, and Shanklin 2020).  355 

DGAT3 has not been identified in Arabidopsis plastoglobule proteomics datasets 356 

(Ytterberg, Peltier, and van Wijk 2006; Vidi et al. 2006; Lundquist et al. 2012; Espinoza-Corral, 357 

Schwenkert, and Lundquist 2021); however, stromal proteins have been identified in 358 

plastoglobule subpopulations that also contain thylakoid photosynthetic proteins and lipids but 359 

whose membrane varies in composition from that of thylakoid membranes (Ghosh et al. 1994; 360 

Smith, Licatalosi, and Thompson 2000). Moreover, plastoglobule blebbing into the stroma 361 

and/or release into the cytosol (Ghosh et al. 1994; Springer et al. 2016) has been implicated (C. 362 

Xu, Fan, and Shanklin 2020). If the powdery mildew-induced chloroplast lipid bodies derive (in 363 

part) from plastoglobules, they may contain the thylakoid membrane-bound phytol ester synthase 364 

1 (PES1) and/or PES2 (Ytterberg, Peltier, and van Wijk 2006; Vidi et al. 2006) which, in 365 

addition to phytol ester synthase activity, can synthesize TAGs via DAGs and acyl groups from 366 

acyl-CoA (preferred) (Lippold et al. 2012). As 40% of induced chloroplast TAGs remain in 367 

dgat3-2 (Fig. 4A), it is tempting to speculate that in addition to DGAT3, PES1 and/or PES2 also 368 

contribute to powdery mildew-induced plastidic TAG synthesis. 369 

How these TAGs directly benefit the powdery mildew remains to be determined. While 370 

plastidic TAG catabolism could serve as an immediate energy source, these storage lipids/lipid 371 

bodies could also be transported with or without fungal remodeling to the newly developing 372 
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spores which themselves are filled with lipid bodies containing TAGs (Fig. 1B). The presence of 373 

C16:3 acyl chains in spore lipids (Fig. 5C, Supplemental Dataset 2) indicates fungal acquisition 374 

of the chloroplast TAGs. These spore storage lipids then serve as an energy source to support 375 

spore germination and early colonization events prior to haustorium formation (Both et al. 2005). 376 

It is also possible that a host-derived lipid may be required for a fungal asexual reproductive 377 

signal. For example, in Aspergillus nidulans specific endogenous 18:2-derived oxylipins control 378 

sporulation versus sexual reproduction (Tsitsigiannis et al. 2004). In the arbuscular mycorrhizal 379 

fungi (AMF) - plant host symbiosis, plant derived C16:0 2-MGs are remodeled by the AMF 380 

fungus and act both as energy sources (immediate and stored as lipid bodies in spores) and as 381 

signals for fungal development, including sporulation (Kameoka et al. 2019). Plastoglobules 382 

often contain plant enzymes involved in oxylipin synthesis that could participate in the 383 

production of a fungal reproductive signal (Michel, Ponnala, and van Wijk 2021). This could be 384 

particularly important for obligate biotrophs such as powdery mildews characterized by missing 385 

or incomplete pathways for specialized metabolites as compared to other Ascomycetes including 386 

A. nidulans (Spanu 2012).  387 

ER-associated TAGs hinder powdery mildew asexual reproduction 388 

To our initial surprise, we found mutants that limit TAG accumulation in the ER exhibit 389 

increased powdery mildew spore production (Fig. 2). In Arabidopsis, DGAT1 is responsible for 390 

generating TAG from a rapidly produced pool of DAG derived from PC (Regmi et al. 2020). On 391 

the other hand, PDAT1 and DGAT2 are reported to use a different and larger pool of DAG, 392 

which has a relatively slower turnover (Regmi et al. 2020). Reduced DGAT1 expression results 393 

in enhanced spore production (75% increase, Fig. 2B), while no difference is observed when 394 

PDAT1 or DGAT2 expression is perturbed (Fig. 2A,B). This suggests a rapidly produced pool of 395 

DAG from PC available to DGAT1 is used for powdery mildew-induced TAG production in the 396 

ER (Fig. 7). We further explored the impact of ABAC9 demonstrated to import FA/acyl-CoA 397 

into the ER and found the abca9-1 mutant supports 50% increased powdery mildew spore 398 

production (Fig. 2A). By contrast, the long chain acyl-activating lacs1-1 mutant, the only ER-399 

localized LACS with enhanced expression at the powdery mildew infection site at 5 dpi 400 

(Chandran et al. 2010), did not alter powdery mildew spore production (Fig. 2A). Similarly, a 401 

mutant in ER-localized LACS2 had no impact on powdery mildew growth and reproduction 402 
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(Tang, Simonich, and Innes 2007). As LACS1, LACS2, LACS4, and LACS8 are all ER-403 

localized (Weng et al. 2010; Zhao et al. 2010; Jessen et al. 2015), it is likely that multiple ER 404 

LACS activate imported FAs. 405 

Collectively, our findings indicate induced TAG biosynthesis in the ER via DGAT1 406 

impedes the asexual reproduction of powdery mildew (Fig. 7). AtDGAT1 acyl specificity differs 407 

from that of AtDGAT3. C16:0 is the preferred substrate of AtDGAT1, with little activity with 408 

C18:2 or C18:3 (Zhou et al. 2013; Aymé et al. 2014). C16:0 is a minor component of thylakoid 409 

membrane galactolipids (Browse et al. 1989; Mats X. Andersson, J. Magnus Kjellberg, and 410 

Sandelius 2001), consistent with AtDGAT1 use of precursor pools in the ER distinct from those 411 

used in the chloroplast by AtDGAT3. 412 

How do ER-synthesized TAGs limit the growth of the biotrophic pathogen? TAGs 413 

synthesized at the ER membrane are typically packaged into organelles known as lipid droplets 414 

(LDs) that bud from the ER and accumulate in the cytosol (Guzha et al. 2023). Sequestration of 415 

these TAGs could be a means of nutrient restriction by the host if these LDs are not accessible to 416 

the powdery mildew. Furthermore, given DGAT3-dependent TAG synthesis in the chloroplast 417 

supports powdery mildew spore production, it is likely the competing pathway for TAG 418 

synthesis in the ER via DGAT1 may divert precursors from the chloroplast pathway (Fig. 7). For 419 

example, substrates for plastidic TAG synthesis may be limited by DGAT1 activity pulling 420 

plastidic FAs to the ER and/or reducing export of DAG/DAG precursors from the ER to the 421 

chloroplast. This competition has been observed in engineered tobacco leaves that accumulate oil 422 

at 15% of dry weight (Zhou et al. 2019) and reflects that TAG synthesis drives precursor flux 423 

(Bates and Browse 2012). 424 

In addition, LDs not only contain TAGs and sterol esters, but may be sites of specialized 425 

biochemistry during stress (Shimada, Hayashi, and Hara-Nishimura 2017). Increased LDs have 426 

been observed in leaves infected by the hemi-biotrophic fungus Colletotrichum higginsanium 427 

and proposed to be sites of phytoalexin synthesis, preventing pathogen spread (Shimada et al. 428 

2014). Furthermore, LDs induced in response to avirulent Pseudomonas syringae infection of 429 

Arabidopsis leaves were found to contain camalexin biosynthetic enzymes (Fernández-Santos et 430 

al. 2020). Genes involved in indole-3-acetaldoxime derived phytoalexin production associated 431 

with defense against powdery mildews (Clay et al. 2009; Liu et al. 2016; Hunziker et al. 2020) 432 

exhibit enhanced expression  at the powdery mildew infection site at 5 dpi (Chandran et al. 433 
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2010). This raises the possibility that increased synthesis and/or exposure to defensive 434 

specialized metabolites may contribute to the reduction in powdery mildew spore production 435 

associated with ER-derived LDs (Fig. 7).  436 

Powdery mildew infection offers valuable insights into the intricacy of plant lipid 437 

metabolism 438 

Although TAGs typically do not accumulate to significant levels in vegetative tissues,  439 

TAG accumulation in leaf tissue occurs in response to diverse environmental stresses and leaf 440 

senescence (Lu et al. 2020). While a role for AtDGAT3 has not been assessed in response to 441 

environmental stresses or leaf senescence, our study shows the important role AtDGAT3 plays in 442 

the powdery mildew-host interaction. This indicates AtDGAT3 function should be examined 443 

under other conditions, particularly those in which thylakoid disassembly is observed and 444 

induced TAGs are enriched in thylakoid-derived FAs, such as response to N limitation and 445 

senescence (Kaup, Froese, and Thompson 2002; Gaude et al. 2007; Besagni and Kessler 2013). 446 

Our work also argues for tracking cytosolic lipid droplet (LD) origins, as they were previously 447 

assumed to be ER-derived. And, the powdery mildew system provides a phenotype (impact on 448 

spore production) for distinguishing chloroplast-derived TAGs (via AtDGAT3) from those 449 

produced in the ER via AtDGAT1. Whether this translates to other (obligate) plant biotrophs of 450 

vegetative tissue remains to be investigated.  451 

As shown by the root colonizing- obligate symbiont AMF, TAGs are only one possible 452 

source of lipids for microbial acquisition. AMF manipulate plant root cells to produce 2-MGs for 453 

fungal acquisition (Kameoka and Gutjahr 2022). In both systems, localized endoreduplication 454 

occurs and is associated with enhanced metabolic capacity that may allow for increased flux to 455 

FAs (Wildermuth 2010; Wildermuth et al. 2017). While AMF shifts lipid metabolism to 2-MG 456 

production through the use of enzymes specific to AMF host plants, the powdery mildew 457 

employs DGAT3, present in almost all land plants (Yan et al. 2018), for chloroplast TAG 458 

formation to support asexual reproduction (Figs. 2, 4). Therefore, specific host transporters may 459 

not be required as they are for AMF 2-MGs. Instead, lipid bodies that originate in the chloroplast 460 

have the potential to be directly acquired by the powdery mildew. Similarly, a number of human 461 

intracellular pathogens acquire host lipid bodies for their nutrition and development (Vallochi et 462 

al. 2018).  463 
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DGAT3, a unique class of DGAT enzyme 464 

The three classes of Arabidopsis DGAT enzymes contain distinct conserved domains and 465 

have evolved independently in plants (Yin et al. 2022). The least studied class, DGAT3 enzymes, 466 

are unique in that they are soluble metalloproteins, with no transmembrane domain, and a 467 

thioredoxin-like ferredoxin domain containing a [2Fe-2S] cluster (Aymé et al. 2018). While 468 

AtDGAT3 (Fig. 2C) and Paeonia rockii PrDGAT3 (Han et al. 2022) are clearly localized to the 469 

chloroplast; other DGAT3 enzymes have been characterized as cytosolic (peanut, (Saha et al. 470 

2006); soybean, (Xue et al. 2022); Camelina sativa, (Gao et al. 2021)).  471 

AtDGAT3 is widely expressed at levels often 10-fold higher than AtDGAT1 and 472 

AtDGAT2, with highest expression in the hypocotyl and mature and senescent leaf petioles and 473 

stems (Klepikova et al. 2016). Consistent with findings for powdery mildew infection of mature 474 

Arabidopsis leaves (Chandran et al. 2009, 2010), AtDGAT3 is not strongly induced in response 475 

to pathogen or abiotic stress, assessed using the Arabidopsis eFP Browser (Winter et al. 2007). 476 

As changes in AtDGAT3 expression are minimal, AtDGAT3 activity may depend on the 477 

availability of preferred precursors (e.g. released from thylakoid degradation). Furthermore, 478 

AtDGAT3 activity may be regulated by insertion of preformed [2Fe-2S] into the apoprotein in 479 

the plastid (Przybyla-Toscano et al. 2018) and by redox.  480 

The availability of [2Fe-2S] clusters, along with maturation factors, could therefore 481 

impact DGAT3 metalloprotein levels. We found AtDGAT3 to participate in chloroplast TAG 482 

accumulation (Fig. 4) concurrent with thylakoid membrane degradation (Figs. 5, 6). When 483 

thylakoid membranes are broken down, as we observe in response to powdery mildew, [2Fe-2S] 484 

clusters released from thylakoid metalloproteins may be available for insertion into the 485 

AtDGAT3 apoprotein. The AtDGAT3 metalloprotein could then help minimize lipotoxicity by 486 

converting toxic free fatty acids and DAGs into storage lipids. 487 

Redox state is also likely to regulate the activity of AtDGAT3. Chloroplast redox status, 488 

responsive to environmental cues, controls much of chloroplast function including lipid 489 

metabolism (Hernández and Cejudo 2021). Ayme et al. (2018) found the AtDGAT3 [2Fe-2S]2+ 490 

cluster is stable, while the reduced [2Fe-2S]+ form of the enzyme is rapidly destroyed. When 491 

thylakoid membranes are disassembled and/or degraded, reductant generated from oxidative 492 

phosphorylation would be decreased and could be insufficient to reduce the AtDGAT3 493 
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metallocluster. Similarly, conditions resulting in plastidic oxidative stress (such as high light) 494 

could stabilize DGAT3, reducing lipotoxicity. 495 

Engineered plants with increased TAG yield and low input costs for biofuel or 496 

specialized chemical applications (Pfleger, Gossing, and Nielsen 2015) could be designed to take 497 

advantage of AtDGAT3’s production of TAGs at the expense of thylakoid membranes. The 498 

associated TAG profile would be enriched in C18:3 and C18:2 fatty acids desirable for human 499 

nutrition (Kumar, Sharma, and Upadhyaya 2016). As shown in Figure 4, the TAGs from isolated 500 

chloroplasts infected with powdery mildew appear similar to that of commercial extra virgin 501 

olive oil and to be largely attributed to synthesis via AtDGAT3. By contrast the TAGs from 502 

infected whole leaves are dominated by TAGs with reduced FA chain length, indicated by the 503 

lower Rf, that are likely synthesized in the ER via DGAT1, consistent with its preference for 504 

C16:0 (Aymé et al. 2014). Transient expression of AtDGAT3 or PrDGAT3 in N. benthamiana 505 

leaves increases TAG production by ~2-fold (Hernández et al. 2012; Han et al. 2022), compared 506 

to 7-8-fold increase with AtDGAT1 transient expression (Hernández et al. 2012; Vanhercke et al. 507 

2013). Therefore, in engineered plants, increased flux to plastidic TAG synthesis might be 508 

further enhanced by reducing DGAT1.  In addition, controls over DGAT3 activity and stability 509 

would need to be addressed.  510 

Not only does the powdery mildew system allow us to uncover the role of AtDGAT3 in 511 

plastid TAG biosynthesis, but it can also be used to dissect key regulators driving flux towards 512 

plastid TAG synthesis and lipid body secretion. While the powdery mildew-induced shift in leaf 513 

lipid metabolism is highly localized, heavy infection could further increase induced TAG levels 514 

from the 3-fold induction observed with the low/moderate levels of infection that facilitate our 515 

molecular and microscopic studies. By understanding how mature photosynthetically active 516 

leaves switch their metabolism to break down thylakoids to make and secrete storage lipids, 517 

higher yields of plant oils could potentially be achieved, than from extracted seeds or fruit. 518 

Furthermore, plants suitable for oil production could be expanded and deforestation associated 519 

with palm oil plantations could potentially be reduced, facilitating more sustainable and 520 

environmentally benign production. 521 
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METHODS     522 

Plant lines, growth, and powdery mildew infection     523 

Mutant list: Seeds of abca9-1 (SALK_058070, Kim et al. 2013), lacs1-1 524 

(SALK_127191, Lü et al. 2009), dgat1-1 (CS3861, Katavic et al. 1995), dgat3-2 525 

(SALK_112303, Supplemental Fig. S2),  pdat1-2 (SALK_065334, Zhang et al. 2009) mutant 526 

lines in Col-0 background were obtained from Arabidopsis Biological Resource Center (ABRC) 527 

at The Ohio State University. All lines were genotyped to confirm homozygosity, using primers 528 

in Supplemental Table S1.  529 

Wild type Arabidopsis thaliana ecotype Columbia-0 (Col-0) and mutants were grown in 530 

SS Metromix200 soil (Sun Gro, Bellevue, WA) in growth chambers at 22°C with 12 h light/dark 531 

cycle, 70% relative humidity and PAR of ~120μmol m
-2

 s
-1

. After stratification at 4°C, 532 

alternating Col-0 and mutant seeds were planted in 16.5 cm insert boxes (12 plants/box; 6 533 

boxes/flat). For whole plant spore count phenotyping, boxes of plants were inoculated at 4 weeks 534 

by settling tower with a moderate dose of 10-14 dpi conidia from G. orontii MGH1 at consistent 535 

time of day (Reuber et al. 1998).  536 

Spray-induced gene silencing (SIGS)    537 

SIGS protocol was adapted from McRae et.al. (2023) (McRae et al. 2023). pssRNAit 538 

(https://plantgrn.noble.org/pssRNAit/) was used to design an efficient and specific dsRNA for 539 

DGAT1 (AT2G19450), DGAT2 (AT3G49210), and DGAT3 (AT1G48300). Templates were 540 

amplified (primers in Supplemental Table S1) from Col-0 cDNA and prepared for in vitro 541 

transcription with the HiScribe T7 High Yield RNA Synthesis Kit (New England Biolabs, 542 

Ipswich, MA). After purification with Monarch RNA Cleanup Kit (New England Biolabs, 543 

Ipswich, MA), RNA was reannealed, quantified and aliquoted in nuclease-free water. 12-15 544 

mature fully expanded Arabidopsis leaves from 4-5  4-week old plants were harvested. Petioles 545 

were inserted through a Whatman 1.0 paper overlaid into 1⁄2 MS salts (Research Products 546 

International, Prospect, IL), 0.1% 2-(N- morpholino)ethanesulfonic acid (Merck Millipore, 547 

Burlington, MA), and 0.8% agar (BD Biosciences, San Jose, CA) in 150 mm plates. Paired 548 

plates (with mutant and WT leaves) were placed under the settling tower and infected with 10-14 549 
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dpi conidia, as above. 40μg RNA (or nuclease-free mock) was sprayed at 1 hpi  and 2 dpi.  550 

Spore tissue collection and counting 551 

Powdery mildew spore production/mg leaf fresh weight protocol was adapted from 552 

Weßling and Panstruga (Weßling and Panstruga 2012). Briefly, at 8-10 dpi, leaves 7-9 from WT 553 

and mutant plants in a box, or all 12 leaves from mock and dsRNA- treated plates, were 554 

harvested. Spores were washed off leaves by vortexing in 15 mL 0.01% Tween-80 for 30 555 

seconds and filtered through 30μm CellTrics filter (Sysmex America, Lincolnshire, IL) before 556 

centrifugation at 4000xg. The resulting spore pellet was resuspended in 200-1000μL water. For 557 

each sample, nine 1 × 1 mm fields of a Neubauer-improved haemocytometer were counted. For 558 

lipid analysis, tissue was immediately frozen and stored until extraction. For spore counting, 3 559 

paired counts of WT and mutant spore suspensions from a box were performed on a Neubauer-560 

improved hemocytometer (Hausser Scientific, Horsham, PA). Spore counts were divided by the 561 

fresh weight of the plant tissue to determine spores/mgFW, and then normalized to WT counts. 562 

To determine significance, an unpaired, two-tailed Student’s T-test was performed on counts 563 

from at least 5 boxes (p < 0.05).   564 

Trypan blue staining 565 

To visualize cell death, leaf tissues were incubated for 16 h at 24°C in the staining 566 

solution (2.5 mg/ml trypan blue in lactophenol, lactic acid, glycerol, phenol, water (1:1:1:1)), and 567 

two volumes of ethanol were added to this solution. The tissues were cleared in chloral hydrate 568 

solution (2.5g/ml chloral hydrate in water) for 16 h at 24°C. Leaf tissues were transferred to 70% 569 

glycerol and viewed using the AS Laser Microdissection system microscope (Leica 570 

Microsystems, Deerfield, IL). Note that trypan blue also slightly stains fungal structures. 571 

Reverse transcription (RT)-qPCR analysis  572 

Total RNA from leaves was extracted with RNA using Spectrum (Sigma-Aldrich) Plant 573 

Total RNA Kit according to the manufacturer's protocol. Residual genomic DNA was digested 574 

with DNase I (DNaseI, Qiagen). PCR was performed using cDNA using High-Capacity cDNA 575 

Reverse Transcription Kit (ThermoFisher Scientific). The gene specific primers for DGAT3 are: 576 

P1: 5′-ACCAGAACGGTAGGGTTTCG-3′; P2: 5′-CTAACGTTTGGGCCATCACGAC-3′. 577 
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Amplification was performed using the following conditions: 95°C for 2 min and 30 cycles of 578 

95°C for 30 s, 60°C for 30 s, and 72°C for 90 s. 579 

To analyze the expression levels of PR1 in dgat3-2 and Col-0 with powdery mildew 580 

infection, three independently grown biological replicates of two fully expanded leaves (leaves 581 

7-9) at 5 dpi were used for comparison. Tissue was immediately frozen in liquid nitrogen and 582 

stored at -80°C until extraction. RNA was extracted using Spectrum (Sigma-Aldrich) Plant Total 583 

RNA Kit according to the manufacturer's protocol. Residual genomic DNA was digested with 584 

DNase I (DNaseI, Qiagen). Purity and concentration of RNA was confirmed with Nanodrop-585 

1000 spectrophotometer (ThermoFisher Scientific). Complementary DNA (cDNA) was 586 

synthesized from 1μg RNA using High-Capacity cDNA Reverse Transcription Kit 587 

(ThermoFisher Scientific). Quantitative real-time PCR (qPCR) experiments were performed in a 588 

BioRad CFX96 (BioRad) using the iTaq Universal SYBR Green Supermix (Bio-Rad, USA), 589 

following kit instructions. For all genes, thermal cycling started with a 95°C denaturation step 590 

for 10 min followed by 40 cycles of denaturation at 95°C for 15 s and annealing at 56°C for 30 s. 591 

Each run was finished with melt curve analysis to confirm specificity of amplicon. Three 592 

technical replicates were performed for each experimental set. Gene expression (fold change) 593 

was calculated normalized to ACTIN2 (At3g18780) as reference gene, and calculated using the 594 

Do My qPCR Calculations webtool (http://umrh-bioinfo.clermont.inrae.fr/do_my_qPCRcalc/;) 595 

(Tournayre et al. 2019). Primer sequences are provided in Supplemental Table S1. 596 

Golden Gate cloning and transient expression of DGAT3 via Agrobacterium infiltration 597 

The full-length genomic DNA encoding DGAT3 (AT1G48300) without stop codon and 598 

with removal of an internal restriction site for BsaI was utilized. Two BsaI restriction enzyme 599 

sites are added to both 5’ and 3’ end of sequence using PCR primers listed in Supplemental 600 

Table S1. The sequence was cloned into pICSL22010 plasmid (with C-terminal GFP and CaMV 601 

35S promoter) by Golden Gate cloning. The vector was transformed into Agrobacterium 602 

tumefaciens GV3101.  A. tumefaciens transformants were grown in 5 mL liquid LB with 603 

appropriate antibiotics overnight at 28°C, pelleted, resuspended in induction media (10 mM 604 

MES pH 5.6, 10 mM MgCl2, 150 μM acetosyringone) to an OD600 of 0.4-0.60 for transient 605 

expression, and incubated in induction media for approximately 3-4 h before infiltration in  N. 606 
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benthamiana leaves. GFP fluorescence was observed at 48-72 hpi by Zeiss LSM710 confocal 607 

microscope (Carl Zeiss Inc, White Plains, New York) at the RCNR Biological Imaging Facility, 608 

UC Berkeley. 609 

Confocal imaging 610 

Confocal scanning fluorescence microscopy with a Zeiss LSM710 confocal microscope 611 

(Carl Zeiss Inc, White Plains, New York) at the RCNR Biological Imaging Facility, UC 612 

Berkeley was utilized to examine fungal haustoria and lipid droplets.  613 

Col-0 lines expressing RPW8.2-YFP under the native promoter were inoculated with G. 614 

orontii to visualize fungal haustoria (W. Wang et al. 2009). The 3D reconstruction of RPW8.2-615 

YFP was performed using Imaris software. To visualize lipid bodies, tissues were stained with 616 

0.004 mg/mL BODIPY 505/515 and vacuum infiltrated for 10 min before imaging. Excitation of 617 

chlorophyll and BODIPY were at 633 and 488 nm, respectively. Emission wavelength for 618 

chlorophyll and BODIPY-stained lipid bodies was 647-721 nm and 493-589 nm, respectively. 619 

Percent-area of BODIPY fluorescence was quantified using Image J software. The 3D 620 

reconstruction of lipid droplets and chloroplasts was performed using Imaris. 621 

Transmission electron microscopy imaging      622 

Arabidopsis Col-0 4 week old plants were heavily inoculated with G. orontii. Leaves 623 

were sampled at 5 dpi and cut into 2 × 3-mm sections, fixed in buffer containing 2.5% 624 

glutaraldehyde, 2% tween 20, 0.05M sodium cacodylate and 4% formaldehyde in microwave for 625 

2 X 40 s. The fixed tissues were vacuumed for 1 h or as long as possible until they sank to the 626 

bottom. The tissues were rinsed three times in 0.05M sodium cacodylate buffer for 10 min. After 627 

being transferred into 1% Osmium tetroxide buffer, the tissues were fixed by microwaving for 3 628 

X 1 min, with 15 min vacuum between each microwaving. The samples were dehydrated with a 629 

gradient of acetone (35%, 50%, 70%, 80%, 95%, 100%, 100%, 100%) for 10 min each. The 630 

tissues were sequentially infiltrated with 20%, 40%, 60% Resin by microwaving (3 min) and 631 

rotated overhead for 1 h after each microwaving. The samples were rotated in 80% resin for 16 632 

h. The next day, the samples were rotated in 90% resin 16 h. The samples were embedded in a 633 

flat embedding mold and cured in a 60°C oven for 2-3 days. Ultrathin sections were put on mesh 634 

nickel grids. After contrast staining, samples were examined and images were acquired with a 635 
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FEI Tecnai T12 Transmission Electron Microscope at the UC Berkeley Electron Microscopy 636 

Laboratory.  637 

TAGs and Phospholipids via LC-MS/MS 638 

Leaf tissue (leaves 7-9) was harvested at 12 dpi, rapidly weighed, and flash frozen until 639 

ready for extraction. After tissue disruption in the bead beater, modified Bligh & Dyer extraction 640 

with methanol:chloroform:H20 (1:1:0.9) was performed, 300 μL of chloroform phase was 641 

recovered, and dried under nitrogen. The dried extracts were resuspended in 200μL of 642 

Isopropanol (IPA):Acetonitrile (ACN):Methanol (MeOH) (3:3:4), and run immediately. Internal 643 

standard mixes were used to ensure retention time reproducibility. Samples were run on an 644 

Agilent 1290 (Agilent Technologies, Santa Clara, CA) UHPLC connected to a QExactive mass 645 

spectrometer (Thermo Fisher Scientific, San Jose, CA) at the DOE Lawrence Berkeley Lab with 646 

the following chromatographic method, in both positive and negative mode.  Source settings on 647 

the MS included auxiliary gas flow of 20 (au), sheath gas flow rate of 55 (au), sweep gas flow of 648 

2 (au), spray voltage of 3 kV (positive and negative ionization modes), and ion transfer tube 649 

temperature of 400 °C.  650 

Lipids were run on a reversed phase 50mm x 2.1 mm, 1.8 μm Zorbax RRHD (Rapid 651 

Resolution High Definition) C18 column (Agilent Technologies) with a 21 min gradient and 0.4 652 

mL/min flow rate, with 2 μL injections. The mobile phases used were A: 60:40 H2O:ACN 653 

(60:40) with 5mM ammonium acetate, 0.1% formic acid, and B: IPA:ACN (90:10) with 5mM 654 

ammonium acetate (0.2% H2O), 0.1% formic acid. The system was held at 20% B for 1.5 min, 655 

followed by an increase to 55% B over 2.5 min, and a subsequent increase to 80% B over 6 min. 656 

The system was then held at 80% B for 2 min, before being flushed out with 100% B for 5 min, 657 

and re-equilibrated at 20% B over 5 min. The QExactive parameters were as follows: MS 658 

resolution was set to 70,000, and data was collected in centroid mode from 80-1200 m/z. MS/MS 659 

data was collected at a resolution of 17,500 with a collision energy step gradient of 10, 20, and 660 

30. Lipids were identified by comparing detected vs. theoretical lipid m/z and MS/MS 661 

fragmentation patterns, with lipid class and fatty acid composition determined based on 662 

characteristic product ions or neutral losses (see Supplementary Dataset 1).  TAGs were 663 

detected in positive ionization mode as [M+NH4]+ adducts, with FA tails determined by neutral 664 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2023. ; https://doi.org/10.1101/2023.12.15.571944doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.15.571944
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 23 

loss of ions detected in MS/MS fragmentation spectra. Phospholipids PC, lysoPC, PE, PI, and 665 

PG were detected in positive ionization mode as [M+H]+ adducts, with PCs and lysoPCs having 666 

a characteristic product ion of 184, PEs a neutral loss of 141, PIs a neutral loss of 260 and PGs a 667 

neutral loss of 172 (Murphy 2014). Metabolomics raw data is deposited in the MassIVE data 668 

repository (https://massive.ucsd.edu/), accession number MSV000093317 669 

(doi:10.25345/C5N873941). Only lipid classes that have peak heights above the upper bound of 670 

the 95% confidence interval of the negative controls are included in Supplemental Dataset 1 for 671 

further analysis.  672 

Thylakoid Membrane Lipid Analysis     673 

Tissue harvest and lipid extraction: Leaves 7-9 were harvested from mock infected and 674 

infected plants, washed of spores, frozen in liquid nitrogen, and stored at -80°C until extraction. 675 

Extraction was performed following lipase inactivation in 75°C isopropanol for 15 min 676 

according to (Devaiah et al. 2006) and electrospray ionization tandem mass spectrometry was 677 

performed at the Kansas Lipidomics Research Center Analytical Laboratory (Manhattan, KS) as 678 

below. 679 

Electrospray Ionization Tandem Mass Spectrometry Conditions: The samples were 680 

dissolved in 1 ml chloroform. An aliquot of 10 to 20μl of extract in chloroform was used. Precise 681 

amounts of internal standards, obtained and quantified as previously described (Welti et al. 682 

2002), were added in the following quantities (with some small variation in amounts in different 683 

batches of internal standards): 0.36 nmol di14:0-PG, 0.36 nmol di24:1-PG, 0.36 nmol 14:0-684 

lysoPG, 0.36 nmol 18:0- lysoPG, 2.01 nmol 16:0-18:0-MGDG, 0.39 nmol di18:0- MGDG, 0.49 685 

nmol 16:0-18:0-DGDG, and 0.71 nmol di18:0-DGDG. Samples were combined with solvents, 686 

introduced by continuous infusion into the ESI source on a triple quadrupole MS/MS (API 4000, 687 

Applied Biosystems, Foster City, CA), and neutral loss scans were acquired as described by 688 

(Shiva et al. 2013). 689 

The background of each spectrum was subtracted, the data were smoothed, and peak 690 

areas integrated using a custom script and Applied Biosystems Analyst software. Peaks 691 

corresponding to the target lipids in these spectra were identified and the intensities corrected for 692 

isotopic overlap. Lipids in each class were quantified in comparison to the two internal standards 693 
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of that class. The first and typically every 11th set of mass spectra were acquired on the internal 694 

standard mixture only. A correction for the reduced response of the mass spectrometer to the 695 

galactolipid standards in comparison to its response to the unsaturated leaf galactolipids was 696 

applied. To correct for chemical or instrumental noise in the samples, the molar amount of each 697 

lipid metabolite detected in the “internal standards only” spectra was subtracted from the molar 698 

amount of each metabolite calculated in each set of sample spectra. Finally, the data were 699 

corrected for the fraction of the sample analyzed and normalized to the sample leaf dry weight 700 

(DW) to produce data in the units nmol/mg DW. 701 

FAME analysis 702 

Leaves 7-9 were harvested from mock infected and infected plants, washed of spores, 703 

frozen in liquid nitrogen, and stored at -80°C until extraction. Extraction was performed 704 

following lipase inactivation in 75°C isopropanol for 15 min according to (Devaiah et al. 2006) 705 

and FAME analysis was performed by the Kansas Lipidomics Research Center Analytical 706 

Laboratory (Manhattan, KS) as below. 707 

Total lipid extracts were spiked with 25 nmol pentadecanoic (C15:0) acid as internal 708 

standard. Samples were evaporated under a stream of nitrogen. Samples were resuspended in 1 709 

mL 3 M methanolic hydrochloric acid and heated at 78°C for 30 min. Two mL H2O and 2 mL 710 

hexane were added followed by three hexane extractions and then dried down under a stream of 711 

nitrogen. Samples were then redissolved in 100 μL hexane and analyzed on GC-FID (Agilent 712 

6890N) after separating sample using a DB-23 capillary column (column length, 60 m; internal 713 

diameter, 250 μm; film thickness, 0.25 μm). The carrier was helium gas at a flow rate of 1.5 714 

mL/min. The back inlet was operating at a pressure of 36.01 psi and temperature of 250 °C. The 715 

GC oven temperature ramp began with an initial temperature of 150 °C held for 1 min and 716 

increased at 25 °C/min to 175 °C. Then the temperature was increased at 4°C/min to 230°C and 717 

held at 230°C for 8 min. The total run time was 23.75 min. The flame ionization detector was 718 

operated at 260 °C. The hydrogen flow to the detector was 30 mL/min, air flow was 400 mL/min 719 

and sampling rate of the FID was 20 Hz. The data were processed using Agilent Chemstation 720 

software. As for above, only data with CoV < 0.3 were included. Data are presented as nmol/mg 721 

DW of the tissue utilized. Spore nmol/mg DW was multiplied by 0.12995 to indicate the 722 
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corresponding leaf mg/DW from which the spores were obtained.  723 

TLC of lipids from isolated chloroplasts and whole leaves  724 

Chloroplast isolation: Leaf tissue from about 40 Arabidopsis plants, infected with G. 725 

orontii MGH1 at 4-weeks, was harvested at 12 dpi and immediately homogenized by blending 726 

for 3x5 s in isolation buffer (30 mM HEPES-KOH pH 8, 0.33M sorbitol, 5 mM MgCl2, 0.1 % 727 

[w/v] BSA). The resulting homogenate was briefly filtered through one layer of Miracloth 728 

(Chicopee Mills Inc., Milltown, N. J.) Chloroplasts were pelleted with 5-min centrifugation at 729 

1500 g and 4ºC, and washed twice with washing buffer (30 mM HEPES-KOH pH 8.0, 0.33M 730 

sorbitol). Washed chloroplasts were normalized by chlorophyll concentration and resuspended in 731 

an osmotic stress buffer (10 mM Tricine pH 7.9, 1 mM EDTA, 0.6 M sucrose) and stored at 732 

−80°C for future analysis.   733 

1-3 mg chloroplasts (normalized by chlorophyll concentrations) or 1-2 g grounded whole 734 

leaf tissues from 4-5 week old plants (normalized by fresh weight) for infected samples at 12 dpi 735 

were sonicated with 4 pulses of 10 sec and 20% wattage (Model VCX 130, Sonics & Materials 736 

INC, Newtown, CT). 1 mL of 2:1 Chloroform Methanol (v/v) with 0.01%BHT was added and 737 

placed on a vortex for 5 min. 266 µL of 0.73% (w/v) NaCl solution was added, and the mixture 738 

was inverted 5-6 times to mix. Samples were then centrifuged for 5 min at 10,000 × g. The lower, 739 

solvent phase was used and dried under an N2 stream and resuspended in 20 µL chloroform. In 740 

total, 10 µL of the concentrated lipid extract was loaded onto a clean silica TLC plate 741 

(MilliporeSigma™ TLC Silica Gel 60 F254: 25 Glass plates, M1057150001) and developed 742 

hexane:diethyl ether:glacial acetic acid (91:39:1.3) for 30 min. Lipids were visualized by sulfuric 743 

acid spray and charring (25% H2SO4 in 50% ethanol, 135 °C for 10 min). Trader Giotto’s extra 744 

virgin olive oil (0.01ug loaded) was used as a standard. TLC was conducted for four separate 745 

experiments, each serving as a biological replicate. Relative TAG content analysis was 746 

performed using ImageJ software.  747 

 748 
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ACCESSION NUMBERS 749 

ABCA9 (AT5G61730), LACS1 (AT2G47240), PDAT1 (AT5G13640), DGAT1 (AT2G19450), 750 

DGAT2 (AT3G51520), DGAT3 (AT1G48300), PR1 (At2g14610), MassIVE data repository 751 

(https://massive.ucsd.edu/) accession number MSV000093317. 752 

 753 

 754 

SUPPLEMENTAL MATERIALS 755 

Supplemental Table S1. Genotyping, cloning, and SIGS dsRNA template primers used for this 756 

work. 757 

Supplemental Figure S1. Abundance of TAG species detected in infected leaves at 12 dpi, 758 

compared to uninfected leaves.  759 

Supplemental Figure S2. Identification of dgat3-2 (SALK_112303) mutant.  760 

Supplemental Figure S3. Transmission electron microscopy image of mesophyll chloroplast 761 

from uninfected Arabidopsis leaf. 762 

Supplemental Dataset 1: LC-MS/MS analysis. 763 

Supplemental Dataset 2: FAME and ESI-MS/MS analysis. 764 
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1150 
Figure 1. TAG abundance is increased in infected Col-0 leaves.  1151 
A) Cross-section depicting powdery mildew infection of Arabidopsis leaf at 5dpi. B-C) BODIPY 505/515 neutral lipid-1152 
stained powdery mildew structures: B) Asexual reproductive structure, conidiophore (cp), bar= 40µm. C) haustorium, 1153 
bar= 10µm, white dashed line outlines haustorium. D) Total TAGs (C50-C64) detected in uninfected (UI) and 12dpi 1154 
leaf lipid extracts ±STD, n= 3. E) Distribution of TAG classes in UI and 12dpi leaf lipid extracts. F) Log2 fold change 1155 
(LogFC) of TAG abundance by class in 12 dpi vs UI leaf lipid extracts ±STD, n= 3. G) Abundance of C54:x 1156 
subclasses in UI and 12 dpi leaf lipid extracts. Assumes TAGs within this m/z range have similar desorption/ionization 1157 
properties. H) Summed abundance of detected phospholipids (M0/mgFW) in UI (grey) and 12dpi (black) leaf lipid 1158 
extracts ±STD, n= 3. Significance between UI and 12 dpi tested by 2-tailed T-test * p < 0.05, ** p < 0.01. 1159 
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 1160 
Figure 2. Canonical TAG synthesis in the ER hinders powdery mildew asexual reproduction while 1161 
chloroplast-localized DGAT3 promotes it.   1162 
A) Spore counts/mg leaf FW at 9dpi of mutants normalized to WT Col-0 for mutants involved in the canonical route 1163 
for TAG synthesis in the ER (±STD, n= 5-8). B) Comparison of spore counts/mg leaf FW on WT plants with DGAT 1164 
genes silenced via spray-induced gene silencing (SIGS) and dgat3-2 mutant vs. WT at 9dpi (±STD, n= 4-8). 1165 
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Significance by 2-tailed T-Test *p < 0.05, **p < 0.01. C) AtDGAT3 protein is predicted to have a chloroplast transit 1166 
peptide by the DeepLoc 2.0 and LOCALIZER program. Confocal microscopy images of transient expression of 1167 
35S:AtDGAT3-GFP in Nicotiana benthamiana. D) Simplified model of tested players that may have contributed to 1168 
Arabidopsis TAG production. Abbreviations: ABCA, ATP-binding cassette A; BF, bright field; DAG, diacylglycerol; 1169 
DGAT, Diacylglyceroltransferase; FAS, fatty acid synthase complex; LACS, long chain acyl-CoA synthetase; LPC, 1170 
lysophosphatidylcholine; phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, 1171 
phosphatidylinositol; PS, phosphatidylserine; PDAT, phospholipid:diacylglycerol acyltransferase; TAGs, 1172 
triacylglycerols. See Figure 1 for data on phospholipids. 1173 
 1174 

 1175 
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 1183 

Figure 3. The powdery mildew induces the formation of lipid droplets in the host.  1184 
A) Representative images of extrahaustorial membrane (EHM) targeted RPW8-YFP showing haustoria in epidermal 1185 
cell above three mesophyll cells in rosette leaves at 5 days post inoculation (5dpi). B) Representative images of 1186 
BODIPY 505/515 staining of neutral lipids in mesophyll cell layers of rosette leaves at 5 and 10 dpi. White dash line: 1187 
position of haustorium in the epidermal cell. C) Percentage of BODIPY fluorescence per image area of 50,000 μm

2
 1188 

quantified by Imaris software. Data are mean ± SD of 10 images. Significance is determined by one-way ANOVA. *** 1189 
p < 0.001, n = 10. D)  Representative images of 3D reconstruction of BODIPY fluorescence (green) and chlorophyll 1190 
fluorescence (red) using Imaris software. Yellow circle: BODIPY fluorescent bodies inside the chloroplast. White 1191 
circle: BODIPY fluorescence bodies right next to the chloroplast.   1192 
 1193 
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 1194 
 1195 
Figure 4. TAG content in infected chloroplasts is decreased in dgat3-2 mutant while defense is not impacted. 1196 
A) Relative TAG content in whole plants and chloroplasts of Col-0 and dgat3-2 at 12dpi were quantified by ImageJ 1197 
software. Data are mean ± SD of 4 biological replicates. Significance is determined by one-way ANOVA, *p < 0.05, n 1198 
=4. B) Thin-layer chromatography of lipids extracted from either whole plant or isolated chloroplast at 12 dpi. Lipids 1199 
were visualized with 5% sulfuric acid by charring. C) Trypan blue staining to visualize cell death in Col-0 and dgat3-2 1200 
plants at 5dpi. Top panel, epidermal cell layer. Bottom panel, underlying mesophyll cell layer. H, haustorium; C, 1201 
germinated conidium. Note that fungal structures are stained slightly by trypan blue. D) Quantitative real-time PCR 1202 
(qRT-PCR) analysis of PR1 expression in Col-0 and dgat3-2 plants at 5dpi normalized to housekeeping gene ACTIN-1203 
2 (± SD, n=3); significance determined using unpaired, two-tailed Student’s T-test. ns= not significantly different at p < 1204 
0.05. 1205 
 1206 
 1207 
 1208 
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 1209 
Figure 5. Thylakoid membrane lipids and thylakoid-enriched FAs decrease with infection. 1210 
A) Abundance of thylakoid membrane lipids (MGDG, monogalactosyldiacylglycerols; DGDG, 1211 
digalactosyldiacylglycerols; PG, phosphatidylglycerols) in uninfected (UI) and 12dpi leaf lipid extracts (±STD, n= 5). 1212 
B) Principal component analysis plot based on abundance of FAME species detected (C16-C22) in UI, 12dpi, and 1213 
spore tissue lipid extracts, n= 5. C) Abundance of FA species detected in the same tissues as in B, normalized to 1214 
mgDW of that tissue. D) Percentage of total FAME abundance in Col-0 Inf + Col-0 Spore relative to Col-0 UI after 1215 
conversion of spore data to nmol/mgDW leaf. E) Abundance of TAGs that contain 16:3 in UI and 12 dpi leaf lipid 1216 
extracts (n=3). Significance between UI and infected leaf samples: 2-tailed T-test *p < 0.05, **p < 0.01.  1217 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2023. ; https://doi.org/10.1101/2023.12.15.571944doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.15.571944
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 

 42 

 1218 
Figure 6. The powdery mildew induces the degradation of host chloroplasts.  1219 
A) 3D illustration of the powdery mildew haustorium associated with host chloroplasts at 5dpi. B) TEM image of the 1220 
haustorium. Note this slice does not include the haustorium neck. C) TEM image, slice includes epidermal chloroplast 1221 
and mesophyll chloroplast associated with the haustorium. D) Zoom-in TEM image, haustorium adjacent epidermal 1222 
chloroplast. E) Zoom-in TEM image, haustorium adjacent mesophyll chloroplast. Chl, Chloroplast; EHM, 1223 
Extrahaustorial Membrane; EMX, Extrahaustorial Matix; HB, Haustorium Body; HL, Haustorium Lobe; LB, Lipid Body; 1224 
M, Mitochondria; PCW, Plant Cell Wall; PM, Plasma Membrane. 1225 
 1226 
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 1227 

Figure 7. Simplified model for host lipid metabolism rewiring by powdery mildew during its asexual 1228 
reproduction. 1229 
Infected Arabidopsis leaves have increased abundance of TAGs and chloroplast-associated and cytosolic lipid bodies 1230 
concurrent with degradation of thylakoid membranes. In addition, confocal imaging suggests the plastid lipid bodies 1231 
bleb into the cytosol as shown. Thylakoid lipids and derived fatty acids (FA) decrease with infection and are 1232 
incorporated into accumulated TAGs. Plastidic TAGs are mostly synthesized by the chloroplast-localized AtDGAT3, 1233 
which prefers C18:3 and C18:2 substrates, and have a unique profile compared to ER TAGs. Plastid DAGs may be 1234 
derived from thylakoid membrane breakdown and/or import of DAG/DAG precursors from the ER. Knockdown of 1235 
DGAT3 and mutation of DGAT3 reduced powdery mildew spore production, indicating its function benefits the 1236 
fungus, likely by supplying energy dense lipids for asexual reproduction and/or providing precursors for a fungal 1237 
reproductive signal. In contrast, TAGs synthesized via DGAT1 in the ER hinder powdery mildew spore reproduction 1238 
as assessed using knockouts in the ER fatty acid importer AtABCA9 and AtDGAT1. It is likely that multiple ER LACS 1239 
activate imported FAs as a knockout in AtLACS1 alone was insufficient to alter powdery mildew spore production. 1240 
AtPDAT1 and AtDGAT2, known to use a distinct ER DAG pool for TAG synthesis, do not contribute to powdery 1241 
mildew asexual reproduction and are not included in the model. ER TAG synthesis via DGAT1 may reduce powdery 1242 
mildew spore production by limiting substrates for plastidic TAG synthesis and/or supplying lipid droplets that contain 1243 
TAGs and defensive compounds. Abbreviations: ABCA, ATP-binding cassette A; DAG, diacylglycerol; DGAT, 1244 
diacylglycerol acyltransferase; FAS, fatty acid synthase complex; LACS, long chain acyl-CoA synthetase; LPC, 1245 
lysoPC; PC, phosphatidylcholine; PDAT, phospholipid:diacylglycerol acyltransferase; TAGs,triacylglycerols. Dashed 1246 
lines = proposed. 1247 
 1248 
 1249 
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