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Abstract: Key to understanding many biological phenomena is knowing the temporal ordering of 37 
cellular events, which often require continuous direct observations [1, 2]. An alternative solution 38 
involves the utilization of irreversible genetic changes, such as naturally occurring mutations, to 39 
create indelible markers that enables retrospective temporal ordering [3-8]. Using NSC-seq, a 40 
newly designed and validated multi-purpose single-cell CRISPR platform, we developed a 41 
molecular clock approach to record the timing of cellular events and clonality in vivo, while 42 
incorporating assigned cell state and lineage information. Using this approach, we uncovered 43 
precise timing of tissue-specific cell expansion during murine embryonic development and 44 
identified new intestinal epithelial progenitor states by their unique genetic histories. NSC-seq 45 
analysis of murine adenomas and single-cell multi-omic profiling of human precancers as part of 46 
the Human Tumor Atlas Network (HTAN), including 116 scRNA-seq datasets and clonal analysis 47 
of 418 human polyps, demonstrated the occurrence of polyancestral initiation in 15-30% of colonic 48 
precancers, revealing their origins from multiple normal founders. Thus, our multimodal 49 
framework augments existing single-cell analyses and lays the foundation for in vivo multimodal 50 
recording, enabling the tracking of lineage and temporal events during development and 51 
tumorigenesis.  52 
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Introduction  53 
Mammalian development originating from a fertilized egg (zygote) is a remarkable process, 54 
comprising a highly orchestrated series of cell divisions and lineage diversifications [9]. The 55 
classic reconstruction of the C. elegans cell lineage and temporal histories from the zygote stage 56 
is a significant milestone for the field of developmental biology [10, 11]. Tumorigenesis shares 57 
cellular and molecular events with embryonic development, many of which have been recently 58 
appreciated [12-16]. The molecular mechanisms underpinning these events remain central 59 
questions in cancer biology. Fundamental to understanding these mechanisms is the knowledge 60 
of their origins and temporal ordering [1, 17-21]. Previous work utilized non-reversible genetic 61 
alterations in tumors, such as mutations and copy number changes, in either bulk or spatially 62 
resolved sequencing to track temporal events [22-26]. While these analyses are applicable to 63 
human tumor studies, they provide only inferences of chronological order or only monitor clonality 64 
and lack the precision to track associated cellular events.  65 
 66 
Recent barcoding strategies in mammalian systems [27, 28], when combined with single-cell 67 
sequencing, have shown promise in unraveling the origins and chronological sequence of cellular 68 
events. However, their potential for recording temporal events long term is constrained by limited 69 
barcode diversities [29] and loss of information due to large deletion of multiple adjacent cut-sites 70 
[30, 31]. We are curious about the potential of a multimodal framework, pairing long term temporal 71 
tracking in mice with human single-cell multi-omics data, for addressing questions regarding 72 
cellular origins. For this, we developed a custom multi-purpose single-cell platform called Native 73 
sgRNA Capture and sequencing (NSC-seq) for simultaneous capturing of mRNAs and gRNAs, 74 
that can leverage self-mutating CRISPR barcodes (hgRNAs/stgRNAs) [32-34]  to enable lineage 75 
tracking and temporal recording using accumulative mutation patterns. We utilized NSC-seq to 76 
decipher canonical developmental branching during mouse gastrulation. We demonstrated the 77 
ability of this platform to identify novel embryonic progenitor cell populations and new routes of 78 
cellular differentiation, as well as to provide fresh insights into the timing of tissue diversification. 79 
These results lay the foundation for in vivo multimodal recording for a wide variety of applications. 80 
We further leveraged this tracking approach by pairing it with genome-scale analysis of human 81 
tissues to illuminate the cellular origins of colorectal cancer. As part of the HTAN, we collected 82 
one of the largest multi-omic atlasing datasets on human sporadic polyps to date, comprising 116 83 
polyps with scRNA-seq data and 418 polyps with mutational data. Paired analysis of human 84 
atlasing data, in conjunction with mouse intestinal tumor models, revealed the polyancestral 85 
origins of colorectal tumorigenesis. Our multimodal framework employing natural genetic changes 86 
in human paired with induced genetic changes in the mouse illuminate the complexities of cellular 87 
origins and temporal transitions, and their significance in early tumorigenesis. 88 
 89 
A temporal recording platfom 90 
To enable CRISPR-based temporal recording at single-cell resolution, one must address the 91 
challenges of 1) non-polyadenylated hgRNA (but also sgRNA, stgRNA) capture, and 2) sparsity 92 
of single-cell data. We developed custom capture of non-polyadenylated gRNA that does not 93 
require redesign of whole gRNA libraries [35] or indirect readouts [36-38] (Fig. 1a and Extended 94 
Data Fig. 1a). Nearly 80% of gDNA mutations were detected in hgRNA with NSC-seq (Fig. 1b). 95 
We demonstrated hgRNA mutations were equivalent to gDNA ones for lineage tree reconstruction 96 
using controlled cell passage experiments (Extended Data Fig. 1b). Adaptation of NSC-seq to 97 
single-cell resolution using inDrops [39] demonstrated gRNA detection in 95% of identified single 98 
cells in cell line experiments, with their paired transcriptome data exhibiting similar quality as 99 
regular inDrops (Fig. 1c-d and Extended Data Fig. 1c-f, Supplemental methods). The 100 
effectiveness of using single-cell data is diminished by data sparsity, as illustrated by the 101 
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applications to track cell division history and construct lineage trees. Previous work [5] and our 102 
results here show that gDNA barcode mutation frequency - as defined by the ratio of mutated vs. 103 
wild-type barcodes - tracks linearly with cell or organoid culture time when measured in bulk 104 
(Extended Data Fig. 2a-c). Due to single-cell data sparsity, only a fraction of barcodes can be 105 
detected on a per cell basis, invalidating the mutational frequency metric for single-cell use. We 106 
found that mutation density - as defined by the average number of mutations within barcodes - is 107 
immune to data sparsity and also tracks with time in organoid cultures and the renewing intestinal 108 
epithelium (Extended Data Fig. 2d-e). We revealed that mutational density increases at a faster 109 
rate in intestinal organoid cultures than the in vivo intestinal epithelium (Extended Data Fig. 2f), 110 
confirming that epithelial cells in organoid conditions are more proliferative [40]. Cellular turnover 111 
rates of common intestinal cell types, as inferred by mutational density, were also consistent with 112 
current knowledge (Extended Data Fig. 2g). Specifically, tuft cells exhibited a multimodal 113 
distribution of mutational densities, consistent with a heterogeneous cell population with different 114 
lifetimes [41, 42] (Extended Data Fig. 2h). NSC-seq applied to three murine embryonic time points 115 
to profile hgRNAs and mRNAs simultaneously also showed mutation density to increase over 116 
time (Fig. 1e-f), driven by cell type-specific changes (Extended Data Fig. 2i-j), but with no cell type 117 
bias in Cas9 expression or NHEJ activity (Extended Data Fig. 2k-l). While mutation density per 118 
barcode can be used for timing assessments, non-overlapping gRNA barcode expression 119 
detected per cell also limits information content used for cell phylogeny reconstruction. We thus 120 
augmented hgRNA mutational information with somatic mitochondrial variants (mtVars) [43, 44]. 121 
Briefly, we filtered out germline mtVars using a custom ‘germline mtVars bank’ (Supplemental 122 
methods), and then defined a lineage-determining cutoff from mtVar distributions using paired 123 
hgRNA mutations as ‘ground truth’ somatic variants (Extended Data Fig. 3a-d). Using this 124 
pipeline, we showed that mtVars also consistently increased over three embryonic time points 125 
(Fig. 1g-h), similar to hgRNA mutations (Fig. 1f). We further delineated the known developmental 126 
order of different murine brain layers prior to left/right brain segregation (Extended Data Fig. 3e) 127 
[45], and verified previously reported clonal relationships between 3 human breast cancer regions 128 
(Extended Data Fig. 3f), solely using mtVars on published spatial data [46, 47]. Single-cell 129 
analysis using hgRNA, mtVars, or both were able to accurately distinguish lymphoid and myeloid 130 
cells as distinct lineages in PBMCs (Extended Data Fig. 3g-j) and differentiate embryonic tissue 131 
types (Fig. 1i). Together, we developed a comprehensive pipeline of temporal and lineage 132 
tracking that is compatible with paired single-cell transcriptomic analysis (Fig. 1j). 133 
 134 
Embryonic lineage and cell division tracking 135 
We then more deeply analyzed combined single-cell barcoding and transcriptome data of E7.75, 136 
E8.5, and E9.5 embryos to glean biological insights from NSC-seq. Cell type annotation using 137 
conventional gene expression analysis revealed canonical cell types and germ layers at each of 138 
the time points [27, 48, 49] (Extended Data Fig. 4, Supplemental information). Notably, more 139 
defined cell types emerged at E9.5 compared to earlier time points (E7.75/8.5), consistent with 140 
the established timeline of mammalian development. This distinction prompted two separate sets 141 
of cellular annotations (Extended Data Fig. 4a-h). Matching our data with previously generated 142 
scRNA-seq data at E7.0 and E8.0 supported the correct development timing of our single-cell 143 
embryonic data (Extended Data Fig. 4i), and data quality was typical of this experimental platform 144 
(Extended Data Fig. 4j-l, Supplemental methods). Regarding the quality of barcode mutations 145 
called, the distribution of mutations amongst cells, the frequency of different types of mutations, 146 
the incidence of random collision mutations, the number of mutations as a function of cell type, 147 
and the barcode lengths were all consistent with previous reports (Extended Data Fig. 5a-e) [21]. 148 
Early embryonic mutations (EEMs) occur during the initial stages of cell division in development 149 
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and are inherited by a significant portion of cells within the embryo (Extended Data Fig. 5f-g). The 150 
proportional presence of these mutations amongst cells, referred to as the mosaic fraction (MF), 151 
can serve as an indicator of the cell generation (CG) when these mutations originated (Extended 152 
Data Fig. 5h-i) [50]. Progressive restriction of EEMs shared in tissues enable the use of MFs to 153 
model early divergence of germ layers and tissue types (Fig. 2a). Mouse primordial germ cell 154 
(PGC) lineage segregated from other embryonic and extra-embryonic lineages, supporting 155 
possible early allocation of cells to the PGC lineage that has also been reported in mouse [51] 156 
and human [52, 53]. We also found a similar MF between mesoderm and ectoderm that supported 157 
a shared progenitor population, as reported before [54]. Notably, extra-embryonic endoderm 158 
(EEndo) and embryonic endoderm (Endo) appeared to share origins, although they are known to 159 
originate from two distinct tissue layers, hypoblast and epiblast, respectively. However, there is 160 
literature supporting some degree of shared progenitors, lineage convergence, and intermixing 161 
between these tissues [27, 48, 55-58]. We also assessed the clonal contributions of different 162 
EEMs towards germ layers (early) or tissue types (late) and observed unequal contribution 163 
between different early clones (Fig. 2b and Extended Data Fig. 5j-k). We found unequal 164 
partitioning of first cell generation clones across different tissue types (Fig. 2c, p = 1.057e-13), 165 
suggesting that the specific lineage commitment of early embryonic progenitors is not 166 
predetermined, but rather subject to potential induction or stochastic processes (Extended Data 167 
Fig. 5l-m). This phenomenon has been previously reported in mammals [7, 8, 25, 53, 54], and is 168 
not observed in C. elegans.  169 
 170 
The regulation of organ size is one of the most fundamental processes of embryonic development, 171 
primarily governed by organ-specific cell division rates, and to a lesser extent, rates of apoptosis 172 
[59-62]. Here, we developed a catalog of cell division histories of different organs to reveal insights 173 
into the timing and scale of cell division across tissues during development (Supplemental 174 
methods). Using mutations within NSC-seq barcodes, we quantified the cumulative number of 175 
cell divisions per tissue type at three gastrulation time points (Extended Data Figure 6a-b, 176 
Supplemental Table 2). We observed that the relationship between the number of cell divisions 177 
and the known tissue mass differs among various tissue types, which could be attributed to a 178 
number of variables, including differential progenitor field size, the timing of progenitor 179 
specification, cell death, cellular lifespan, and cell competition across tissue types [63]. 180 
Additionally, our data revealed a widening distribution of tissue-specific cumulative cell division at 181 
both E8.5 and E9.5 stages whereas a narrow unimodal distribution was observed for the E7.75 182 
stage (Figure 2d), suggesting that tissue-specific cell division and diversification initiates after the 183 
E7.75 stage. In general, we observed high proliferation of hematopoietic progenitors during 184 
gastrulation, while cardiomyocytes and endothelium showed low proliferation (Extended Data Fig. 185 
6a-b). We noticed an emergence of various intermediate hematopoietic progenitors at E9.5 with 186 
distinct cellular turnover histories, supporting diverse roots of hematopoiesis during early 187 
embryonic development as previously reported [64-70]. Cumulative cell division levels for 188 
forebrain progenitors were higher than hindbrain progenitors (Extended Data Fig. 6b), supporting 189 
known turnover kinetics to maintain the relative size of brain regions during mammalian 190 
neurogenesis [63, 71-73]. In addition, we found a constant rate of cell proliferation for gut 191 
endoderm over embryonic time points, a rate similar to the turnover of the adult intestinal 192 
epithelium (Extended Data Fig. 6c and 2e). Overall, differential proliferation timing and kinetics 193 
between organs during gastrulation were observed. These variations occasionally corresponded 194 
to the organ size, but not always. We also demonstrated that for certain tissues, proliferation rates 195 
were set during gastrulation and persisted throughout life [53]. Overall, this catalog serves as a 196 
basis for studying embryonic cellular proliferation kinetics and adds a temporal axis in lineage 197 
diversification [1] to complement lineage tracking.  198 
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 199 
Next, a single-cell phylogenetic reconstruction (Supplemental methods) was conducted using 200 
NSC-seq data at a higher information content per cell than previous approaches (Extended Data 201 
Fig. 7a-c). Pseudo-bulk reconstruction of embryonic tissue relationships generally recapitulated 202 
canonical knowledge of germ layer development (Extended Data Fig. 7d). Phylogenetic distance 203 
analysis from single cell tree supports the closer proximity of EEndo to root compared to Endo or 204 
Meso to root (Extended Data Fig. 7e). A wider distribution of the phylogenetic distances across 205 
cell type was observed at E8.5 and E9.5 compared to E7.75 (Extended Data Fig. 7f), supporting 206 
the initiation of tissue-type diversification after E7.75 illustrated above (Fig. 2d) [74]. Furthermore, 207 
computational inference from single-cell lineage tree topology (Supplemental methods) estimated  208 
the number of epiblast progenitors (n=~28) and extrapolated unequal progenitor field size 209 
between ectoderm and mesoderm stemming from these progenitors (Extended Data Fig. 7g-h) 210 
[75].          211 
 212 
Instances of unconventional embryonic lineage diversification  213 
We highlight three examples of unconventional lineage diversification we observed during 214 
embryonic development. Lineage analysis at both E8.5 and E9.5 indicated that Erythroid 215 
Progenitor 1 (EryPro1) share common ancestry with somite (Fig. 3a). We then reanalyzed somite, 216 
endothelium, and hematopoietic cell types, all potential progenitors to EryPro1, and found that 217 
EryPro1 did not express yolk sac (Icam2, Krd, and Gpr182), endothelial (Pecam1), and embryonic 218 
multipotent progenitor (eMMP) markers (Flt3) (Extended Data Fig. 8a-c) [67]. In contrast, EryPro1 219 
expressed somite-specific markers (Twist1, and Sox11) and showed upregulation of WNT 220 
signaling, which comprised an EryPro1-specific gene signature (Extended Data Fig. 8d-f, 221 
Supplemental table 3). Additionally, RNA velocity, MF of EEMs, and clonal analyses all supported 222 
a developmental relationship from somite to EryPro1 (Extended Data Fig. 8g-i). Indeed, multiplex 223 
HCR-FISH of somite and erythroid markers revealed a cluster of Kit+ erythroid cells in the somite 224 
region of the E9.5 embryo (Fig. 3b), supporting a somite-derived erythroid progenitor population. 225 
The EryPro1 population is present at E8.5, but not at E7.75 stage, whereas somite cells were 226 
observable at E7.75 (Extended Data Fig. 8j-m). Gene expression analysis showed some somite 227 
cells from E8.5 co-expressed hematopoietic transcription factors (Gata1 and Gata2) and low level 228 
of hemoglobin gene (Hbb-bt), implying a cell-state transition from somite to EryPro1 (Extended 229 
Data Fig. 8n-o) [76, 77]. Finally, pseudotime analysis revealed a distinct developmental trajectory 230 
from somite to EryPro1, in addition to the expected trajectory from somite to sclerotome (Extended 231 
Data Fig. 8p). Thus, our data supports a somite-derived hematopoietic population during late 232 
gastrulation of mammalian development, similar to zebrafish [66].        233 
 234 
We next sought to understand gut endoderm development in context of regionalization and 235 
progenitor specification timing. Endoderm (definitive and visceral) cell populations from E7.75 and 236 
E8.5 embryos were plotted together to reveal region-specific markers as early as E7.75, implying 237 
regionalization (spatial patterning) at that early time point (Extended Data Fig. 9a-d). We then 238 
focused our analysis on region-specific progenitors of the gut at E7.75. Analysis of foregut 239 
population from E7.75 revealed three distinct clusters: hepatopancreatic (HPC) progenitors 240 
(Hnf4a+), lung progenitors (Foxa2+), and thyroid/thymus (TT) progenitors (Eya1+) (Fig. 3c). Gene 241 
expression, regulon activity, and lineage analysis showed that the HPC population is relatively 242 
distinct from lung and TT progenitors (Fig. 3d-e, Extended Data Fig. 9e-f). Similar progenitor 243 
populations from the foregut were found at E8.5 (Extended Data Fig.9g-h) but not at E7.5 244 
(Extended Data Fig.9i), implying precise timing of progenitor specification at E7.75. Analysis of 245 
the remaining definitive endoderm populations similarly revealed distinct gene expression 246 
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between midgut (Gata4, Pyy, and Hoxb1) and hindgut (Cdx2, Cdx4, and Hoxc9) progenitors as 247 
early as E7.75 (Fig. 3f, Extended Data Fig.9j). Regulon analysis also suggested distinct region-248 
specific activities for midgut (Gata4, Foxa1, and Sox11) and hindgut (Cdx2, Sox9, and Pax2) 249 
progenitors at this time point (Extended Data Fig. 9k). Pseudo-time and CytoTRACE analyses 250 
resulted in a logical developmental trajectory from E7.75 to E9.5 (Extended Data Fig. 9l). We 251 
found notable region-specific differences in WNT and BMP signaling over developmental pseudo-252 
time (Extended Data Fig. 9m). Significantly higher WNT signaling activity was observed in hindgut 253 
compared to midgut progenitors at E7.75 (Extended Data Fig.9n-o). Consistent with the literature, 254 
the WNT target gene Lgr5, a canonical intestinal stem cell marker [78], was highly expressed in 255 
hindgut [79], whereas Lgr4 and Lgr6 were expressed in the midgut (Extended Data Fig. 9p). Our 256 
results revealed early differential usage of developmental signaling pathways between 257 
progenitors of different regions, supporting an early progenitor specification model during 258 
endoderm development [80, 81].     259 
 260 
We also examined the lineage relationship between visceral endoderm (VE) and definitive 261 
endoderm (DE) during embryonic development. We derived a VE score using reported VE 262 
infiltration-specific marker genes and showed that the score could accurately mark sorted VE-263 
derived cells (Extended Data Fig. 10a). Application of this score to our data identified cells that 264 
demonstrated high VE-intermixing in the developing hindgut (Fig. 3g, Extended Data Fig. 10b). 265 
Unexpectedly, we found that the VE-intermixing score correlated with WNT signaling score and 266 
genes (Lgr5, Axin2, and Fzd10) (Fig. 3h, Extended Data Fig. 10c), which was supported by higher 267 
Lgr5 expression in sorted VE-derived cells than DE-derived cells (Extended Data Fig. 10d). 268 
Multiplex HCR-FISH showed the presence of cells with co-expressing VE-marker gene Cthrc1 269 
and Lgr5 in the posterior gut region (dotted line) (Extended Data Fig. 10e). Lineage analysis using 270 
mutational barcodes supported a lineage relationship between hindgut and VE, likely resulting 271 
from VE-derived cells mixing into the hindgut during gastrulation (Fig. 3i). This relationship 272 
persists at E9.5, as supported by differential lineages between midgut and hindgut (Extended 273 
Data Fig. 10f-g). To determine the role of VE-derived cells in post-gastrulation, we analyzed 274 
midgut and hindgut tissues at the E14.5 time point and found that hindgut epithelium has a higher 275 
VE intermix score than the midgut epithelium (Extended Data Fig. 10h-i), consistent with the 276 
results above. We then assessed the ability of these cells to contribute to epithelial development 277 
by performing a ‘parent-childless’ clonal analysis using a reported approach [17] (Extended Data 278 
Fig. 10j). VE-derived cells have a high parent clone fraction, implying that they have a higher 279 
potential to give rise to progeny (Extended Data Fig. 10k). Mutation density analysis also 280 
demonstrated VE-derived cells have accumulated more divisions at E14.5 compared to other DE-281 
derived cells, demonstrating their post-gastrulation activities (Extended Data Fig. 10l). Finally, we 282 
performed mutational barcode analysis of adult tissues derived from foregut, midgut, and hindgut 283 
and found that hindgut-derived tissues maintain a separate lineage branch from midgut- and 284 
foregut-derived tissues even into adulthood (Extended Data Fig. 10m). Thus, our data support 285 
previous reports of VE-derived cells intermixing with DE (Extended Data Fig.10n) predominantly 286 
in hindgut [48], and their potential contribution to gut epithelial development [27, 48, 55-58].    287 
 288 
Identification of an early embryonic progenitor of gut epithelium  289 
NSC-seq applied to the adult gut identified a unique cell population related to enterocytes in the 290 
small intestine, which we labeled embryonic revival stem cells (eRSCs) (Extended Data Fig. 11a-291 
c). A gene signature derived from this cell population was also able to identify the same cells in 292 
another publicly available dataset (Extended Data Fig. 11d-e). Mutational lineage analysis 293 
demonstrates a developmental relationship between crypt-based columnar cells (CBCs) and 294 
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eRSC cells, indicating they potentially derive from each other (Extended Data Fig. 11f). However, 295 
eRSCs exhibit a significantly higher mosaic fraction, implying that they are derived from much 296 
earlier cell generations compared to CBCs, which develop relatively late during fetal intestinal 297 
development [82] (Extended Data Fig. 11g). A smaller number of progenitors that give rise to 298 
these cells inferred from single-cell lineage tree topology (Extended Data Fig. 11h) supports their 299 
earlier specification stemming from fewer progenitors available at earlier development. Clonal 300 
contribution analysis using hgRNA mutations demonstrates that the eRSCs population possesses 301 
a larger clone size, thus contributing more progenies to the intestinal epithelium than CBCs (Fig. 302 
3j-k). This result was repeatable, supporting that the eRSC population acts as a stem/progenitor-303 
like population during intestinal development (Extended Data Fig. 11i-n). We selected Transducer 304 
of Erbb2.2 (Tob2) as a marker of eRSC cells and found that they are located at the bottom of the 305 
adult small intestinal crypt via immunofluorescence analysis (Extended Data Fig. 11o-p). These 306 
data support that eRSCs can act as stem/progenitor-like cells to populate the gut during 307 
embryogenesis, in contrast to the limited contribution of the CBC population at that time [82].  308 
 309 
Clonal analysis of colorectal precancers 310 
We next tackled the question of clonality during tumor initiation in the gut. While individual crypts 311 
comprised of a single clone, different ancestral models of tumorigenesis have been proposed and 312 
are still being debated [83]. The prevailing model, with support from human colorectal cancer 313 
data, is the monoclonal model, where a tumor is initiated from a single stem cell residing in a crypt 314 
[84, 85]. However, selection and clonal sweeps that occurred in advanced cancers tend to erase 315 
clonal histories occurring earlier in tumorigenesis [86]. Further, lineage tracing studies in the 316 
mouse have shown that some tumors can be initiated from multiple ancestors, resulting in tumors 317 
with multiple lineage labels [87, 88]. An accompanying paper in this issue leveraging intra-patient 318 
embryonic clone sharing amongst multiple familial adenomatous polyps (FAPs) within the same 319 
patient demonstrates the possibility of polyancestry in tumor formation [89]. While embryonic 320 
clone mixing can only be leveraged in hereditary diseases such as FAP, we sought to find 321 
evidence of polyancestry in sporadic human polyps. We expect polyancestry to only occur in a 322 
minor subset of polyps, thus requiring a large sample size analysis for our study. Thus, we 323 
collected new scRNA-seq data, resulting in a total of 116 polyp datasets (AD=70, SER=42, 324 
UNK=4) from 3 different cohorts of patients at Vanderbilt University Medical Center (VUMC) [90] 325 
(Fig. 4a, Extended Data Fig. 12a). Out of these, 96 polyps (AD=63, SER=33) had matching WES 326 
data. These data were generated from distinct regions of the colon from a distribution of 96 327 
patients with diverse racial backgrounds and ages (Supplemental table 4). In addition, we 328 
analyzed targeted DNA sequencing from ~300 polyps from Tennessee Colorectal Polyp Study 329 
(TCPS) to assess APC mutations [90]. Here, we present several analyses drawn from this human 330 
data to support conclusions regarding the clonality of colorectal tumor initiation. 331 
 332 
APC is considered the gatekeeper gene in FAP and the majority of sporadic CRCs.  Loss of 333 
function of both APC alleles, resulting in WNT pathway activation, is thought to initiate 334 
tumorigenesis [91]. Thus, the number of unique APC mutations can be used to assess clonality 335 
in conventional adenomas (ADs) [92]. In a diploid genome, a monoancestral adenoma should 336 
present at most two unique APC mutations that lead to loss of function of both alleles [93], given 337 
that there is no selective advantage for additional mutations. Using our TCPS data, we found that 338 
~20% of polyps show ³3 unique APC mutations, implying more than one founder clone in those 339 
polyps (Fig. 4b, Extended Data Fig. 12b). Similar to these results, WES data from our VUMC 340 
polyp dataset showed potential polyancestry to occur at ~15% of the polyps (Fig. 4b-c, 341 
Supplemental table 4). APC mutation analysis using multi-regional WES in a cohort of 23 342 
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colorectal carcinoma (CRC) samples from VUMC [23] showed only 1 specimen to exhibit potential 343 
polyancestry (Fig. 4d). This is consistent with the occurrence of clonal sweeps during tumor 344 
progression, as seen in external cohort datasets, that erases the clonal history of tumor initiation 345 
(Extended Data Fig. 12c) [94, 95]. 346 
 347 
To provide additional ancestry evidence, we called somatic SNVs from single-cell transcriptomics 348 
data of colorectal polyps using two independent pipelines (Extended Data Fig. 12d) [96, 97]. 349 
Clonal composition was then assessed using the variant allele frequency (VAF) distribution of 350 
somatic SNVs (Supplemental method). If a polyp is derived from a single founder clone, the VAF 351 
distribution of its somatic SNVs would be higher than that of a polyancestral polyp due to a higher 352 
fraction of shared SNVs across a single founder-derived population (Fig. 4e) [98-101]. We 353 
calculated median VAF from polyps (n=86) and found a wide variation across polyps, implying 354 
existence of both monoancestral and polyancestral polyps (Extended Data Fig. 12e). To establish 355 
a polyancestry cut-off based on VAF distribution, we leveraged the concept of X-linked 356 
inactivation in female polyps (n=46). During early embryonic development in females, one X 357 
chromosome in somatic cells becomes randomly silenced to balance X-linked gene dosage [102]. 358 
This pattern persists in daughter cells, creating a mosaic of inactivated X chromosomes in adult 359 
female tissues. Therefore, somatic SNVs within X-linked transcripts can be used as 360 
developmental markers to track the clonal origin of cells in females (Fig. 4f, Supplemental method) 361 
[103, 104]. In males with a single X chromosome, mosaic expression of X-linked genes is absent, 362 
and thus male polyps can stand in as “monoancestral” when solely considering X-linked SNVs 363 
(Extended Data Fig. 12f). We thus used simulations, mixing male polyps to establish baseline 364 
distributions of X-linked SNVs that distinguish between monoancestral and polyancestral polyps. 365 
As anticipated, the proportion of X-linked clonal SNVs decreased in relation to the degree of 366 
polyancestry (as simulated by the number of mixed male polyps) (Extended Data Fig. 12g). 367 
Examining female polyps on the same scale revealed a significant number of female polyps to 368 
potentially be polyancestral (Fig. 4g); many of those were also classified as polyancestral from 369 
APC mutation assessment (Extended Data Fig. 12h). A wide distribution of clonal X-linked SNVs 370 
in female polyps also indicated the potential for different numbers of founder clones (Fig. 4g). To 371 
extend analysis to all single-cell SNVs in addition to X-linked SNVs, we examined VAF 372 
distributions in female polyps that have been assigned as monoancestral or polyancestral based 373 
on X-linked SNVs. Assigned monoancestral polyps exhibited higher median VAF compared to 374 
polyancestral polyps, and we were able to establish a median VAF distribution cut-off of 0.20 to 375 
identify polyancestry (Extended Data Fig. 12i-j, Supplemental table 4). Applying VAF distribution 376 
analysis to all polyps, we found ~29% of polyps to be polyancestral (Fig. 4h, Supplemental table 377 
4), comparable to APC mutation-based assessment (Fig. 4b). Thus, analysis of multiple data 378 
types supports that a substantial subset of human colorectal precancers arose from multiple non-379 
cancer ancestors. 380 
 381 
For additional orthogonal confirmation, we applied WES data to a linear model that distinguishes 382 
between neutral and selective evolution (Extended Data Fig. 12k-l) [86]. We found that higher 383 
proportion of the assigned monoancestral polyps showed a signature of clonal selection (R2<0.98) 384 
compared to the assigned polyancestral polyps (Extended Data Fig. 12m). With some 385 
polyancestral tumors transitioning to clonal selection, about 60% of the polyps overall showed 386 
clonal selection by this analysis (Extended Data Fig. 12n), consistent with previous reports of 387 
selective pressures exerted during malignant progression [86, 94]. Moreover, adenoma-specific 388 
cells (ASC) of assigned monoancestral polyps showed higher expression of genes associated 389 
with cell cycle, nucleic acid synthesis, and protein translation signatures than polyancestral 390 
polyps, which can be attributed to a highly proliferative, stem cell-expansion phenotype that may 391 
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drive clonal selection (Extended Data Fig. 12o-s) [105]. These data suggest that clonal selection 392 
can occur during the premalignant stage, and that increased selective pressures resulting in 393 
decreased clonality may be a hallmark of precancer to cancer transition.            394 
 395 
Whereas data analysis can infer ancestry from human tumors, our single-cell barcoding mouse 396 
model provides a valuable resource for validating clonal composition of tumors in vivo. We 397 
generated barcoded tumors from the ApcMin/+ murine model of colorectal cancer where 398 
tumorigenesis occurs as a result of random mutations inactivating the second allele of Apc. We 399 
found that the tumor is comprised of both normal and tumor-specific cells, similar to human 400 
adenomas (Extended Data Fig.13a-c, Supplemental methods) [90]. Evaluating tumor-specific 401 
cells using NSC-seq demonstrated an increased proliferation signature, stemness, fetal gene 402 
expression (Marcksl1), and clonal contribution compared to normal CBC stem cells (Extended 403 
Data Fig.13d-e), consistent with the tumorigenicity of these cells. Examination of phenotypically 404 
normal cells within the tumor showed normal-like progenies of tumor-specific cells which can be 405 
distinguished from their normal counterparts by their higher barcode mutation densities and 406 
shared barcode mutation profiles with tumor cells (Extended Data Fig. 13f). Interestingly, these 407 
progenies consisted of enterocytes and Paneth cells, consistent with WNT-restricted aberrant 408 
differentiation of intestinal tumor cells [106]. To delineate clonality, we first used shared barcode 409 
mutations in lymphocytes, demonstrating that tumor infiltrating lymphocytes have expanded 410 
clonally compared to peripheral blood lymphocytes, which were mostly polyclonal (Extended Data 411 
Fig.13g). Similar analysis revealed three founder clones within tumor-specific cells (Fig. 4h). The 412 
three clones were distinct in many characteristics, including mutation density, clonal contribution, 413 
biased differentiation, and various gene expression signatures (Fig. 4i, Extended Data Fig. 13h-414 
k). More importantly, single-cell phylogenetic analysis showed independent tumor founder clones 415 
to arise from distinct normal epithelial ancestors (Extended Data Fig. 13l). We also performed 416 
WES and found 5 of the 13 murine intestinal tumors have ³3 unique mutations in the Apc gene, 417 
implying multiple founder clones similar to human adenomas (Figure 4j). Moreover, ~ 40% of 418 
murine tumors showed evolutionary selection pressure comparable to human adenomas 419 
(Extended Data Fig. 13m). The normal cell-of-origin of tumor cells can also be examined by early 420 
embryonic clonal intermixing using barcode mutations in both tumor and adjacent normal tissues 421 
from the same mouse [107-110]. Early embryonic clonal intermixing was seen in 4 out of 5 mouse 422 
polyancestral tumors (Extended Data Fig. 13n-o, Supplemental table 4). Thus, our data showed 423 
instances of widespread EEM sharing, indicating that barcode mutations used to determine 424 
polyclonality were also found in adjacent normal cells. Taken together, our results generated from 425 
human sporadic polyps and validated in a mouse model provide insights into the evolutionary 426 
dynamics at the earliest stage of tumorigenesis in the mammalian colon.  427 
 428 
Discussion  429 
Identifying origins of cells is an important endeavor in both developmental biology and cancer 430 
studies. This challenge becomes particularly pronounced when the progenitor cell is manifested 431 
within a specific subset of a given cell type. As an example, tumors can arise from a subset of 432 
normal cells in a seemingly random fashion [111] or under the influence of factors that push them 433 
towards this fate [112, 113]. Using single-cell genomic information from 116 human colorectal 434 
polyps, we present orthogonal evidence from different analyses to demonstrate the substantial 435 
number of instances where colorectal polyps emerge from multiple distinct clonal origins. Results 436 
from this study and the companion study by Schenck et al. [89] support wide prevalence of 437 
polyancestral composition of human polyps in both genetic and sporadic settings. This finding in 438 
the gut is in line with recent reports on polyancestral human breast cancer initiation [101, 114]. 439 
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Considering that advanced cancer typically presents as monoclonal, and clonal selection can be 440 
observed in some, but not all, polyps, it raises an intriguing possibility that the subset of polyps 441 
undergoing a selection process may be primed to progress to advanced cancer. Hence, future 442 
research may elucidate whether clonality can serve as a predictive biomarker for precancers that 443 
will advance to malignancy, in contrast to polyps that maintain polyclonality. Nevertheless, 444 
approaches to functionally study the origins of predetermined cell fates in model systems are 445 
lacking. Here, we additionally leveraged clonal progeny generated by synthetic barcode mutations 446 
in a single-cell platform (NSC-seq) to enable retracing cell lineage origins backwards in time.  447 
 448 
We first applied this lineage tracking platform to study mammalian development over different 449 
time scales from zygote to adult. Our analysis of gut endoderm development revealed 450 
regionalization of endoderm and progenitor specification to initiate earlier than previously 451 
appreciated, and suggested that these two processes may occur simultaneously [80]. In addition, 452 
our gut lineage analysis showed convergence of cells from extra-embryonic origin to an 453 
embryonic endoderm state, supporting previous observations [27, 48, 55-58], and extended the 454 
contribution of extra-embryonic cells to gut epithelial development. Moreover, temporal analysis 455 
of embryonic development revealed a significant shift in tissue-specific cell expansion after E7.75. 456 
Hence, our study provides clues about developmental timing of lineage diversification that can 457 
prompt studies into extrinsic and/or intrinsic signaling that govern cellular turnover and organ size 458 
during development [59-61]. Lastly, clonal analysis and temporal recording applied to the ApcMin/+ 459 
mouse model functionally validated the possibility of polyancestral tumor initiation, to the extent 460 
that barcoded mutations can be traced back to multiple normal epithelial cell ancestors. The 461 
integrative analysis of the HTAN colorectal precancer atlas and mouse barcoding data allowed 462 
us to delineate factors that affect the earliest stages of tumor development, including clonal 463 
composition [107, 115, 116] and molecular signatures influencing the clonal fitness landscape 464 
[94, 105, 117]. Overall, our data suggests a continuum of selective pressures during 465 
tumorigenesis that modulates transition from a polyancestral composition in the early precancer 466 
stage to a monoancestral composition in the advanced cancer stage [20, 85, 94, 118]. In future, 467 
we may leverage evolutionary processes of human colorectal polyps to chart the multi-step 468 
progression of precancer to cancer that may illuminate strategies for early intervention.  469 
 470 
Our multi-purpose platform is scalable and broadly applicable to a variety of studies beyond 471 
developmental recording. For example, in a companion paper (Islam et al.), we showed that NSC-472 
seq enables single-cell CRISPR screens (Perturb-seq) using conventional vector libraries. This 473 
can be multiplexed with barcoding for simultaneous in vivo genetic perturbation and lineage 474 
tracking at single-cell resolution [119]. In addition, using biological signal-responsive Cas9 475 
promoters [32], NSC-seq can be used for multifactorial recording of cellular and molecular 476 
activities [5, 7], as well as single-cell mapping of the neuronal connectome in the brain [120]. 477 
Overall, we envision that NSC-seq platform will expand the application of CRISPR technologies, 478 
and together, they will form powerful tools for the scientific community.   479 
 480 
 481 
 482 
 483 
 484 
 485 
 486 
 487 
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 848 
Fig. 1: Optimization of a multi-purpose single-cell capture platform. (a) Guide RNA (gRNA) 849 
capture schematic for the NSC-seq platform. Target site of gRNA scaffold anneals to NSC-seq 850 
capture sequence (CS) with a cellular barcode (blue) and UMI (green). An additional sequence 851 
(gray) is added to the 3’-end of the cDNA via template switching during reverse transcription to 852 
enable downstream library amplification. This gRNA capture approach is compatible with any type 853 
of gRNAs (sgRNA, hgRNA, and stgRNA) that contains the target site sequence in the scaffold 854 
(see Extended Data Fig. 1). (b) Cas9-induced mutations recovery by direct hgRNA capture as 855 
compared to mutations detected in DNA of the same samples. (c) Guide RNA capture efficiency 856 
by NSC-seq assessed in an experiment where all cells from a drug-selected cell line should 857 
contain sgRNAs. (d) Comparative transcriptome capture efficiency between standard inDrops 858 
[39] and NSC-seq experiments. (e) NSC-seq experiments on developmentally barcoded whole 859 
embryos where Cas9 is constitutively expressed (top). Accumulative mutations on homing 860 
barcode regions increase over time (bottom) [5, 32]. (f) Average mutation density over embryonic 861 
time points (see Extended Data Fig. 2a). Black dot represents geometric mean for each time point 862 
and p-value derived from Student’s t-test. (g) Somatic mitochondrial variants (mtVars) calling from 863 
mitochondrial RNA (mtRNA) (top) [43, 44]. Approach to filter informative mtVars for lineage 864 
tracking using hgRNA mutations as ‘ground truth’ (bottom) (see Extended Data Fig. 3b-d). (h) The 865 
Number of somatic mtVars per cell over embryonic timepoints. Black dot represents geometric 866 
mean for each timepoint and p-value derived from Student’s t-test. (i) Pearson correlation 867 
coefficient heat map of variant proportions combining hgRNAs and mtVars for selected tissue 868 
types presented as pseudobulk from an E9.5 embryo (see Extended Data Fig. 4). (j) Multi-modal 869 
application of the NSC-seq platform.                        870 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 19, 2023. ; https://doi.org/10.1101/2023.12.18.572260doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.18.572260


 20 

 871 
Fig. 2: Lineage and temporal recording of mouse embryogenesis. (a) Normalized mosaic 872 
fraction (MF) of early embryonic mutations (EEMs) heat map for E7.75 embryo to reconstruct 873 
lineage relationships within the major germ layers (see Extended Data Fig. 5 and 7). (b) 874 
Contribution of different EEMs towards various germ layers at E7.75. (c) Clonal contribution from 875 
a 1st cell-generation mutation (Clone 1) at E7.75 across individual tissue types (p = 1.57e-13, 876 
Kolmogorov-Smirnov test for the null hypothesis of symmetry) compared to all other clones 877 
aggregated as “Clone 2” (see Extended Data Fig. 5l-m). (d) Density plots representing cumulative 878 
turnover of different tissue types across three embryonic timepoints. The widths of the mutation 879 
density distributions represent the variation by which different cell types have proliferated across 880 
timepoints (see Extended Data Fig. 6 and Supplemental table 2 for mutation density per cell type). 881 
Ecto, embryonic ectoderm; Meso, embryonic mesoderm; Endo, embryonic endoderm; EMeso, 882 
extra-embryonic mesoderm; EEndo, extra-embryonic endoderm; PGC, primordial germ cell. 883 
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 890 
Fig. 3: Embryonic lineage diversification and gut development. (a) Pearson correlation 891 
coefficient heat maps of variant proportions (hgRNAs and mtVars) presented as pseudobulk 892 
within hematopoietic and somite cell types from E9.5 (top) and E8.5 (bottom) embryos. (b) 893 
Multiplex HCR-FISH staining of somite (Twist1) and hematopoietic (Kit) markers in a E9.5 894 
embryo. A cluster of hematopoietic cells (white arrowhead) in somite area is shown in inset image 895 
(right). Inset mono-color images represent Dapi (i), Twist1 (ii), and Kit (iii) (see Extended Data 896 
Fig. 8). (c) Force-directed layout of foregut cells (E7.75) that are colored by annotated tissue 897 
types. HPC, hepatopancreatic cells. Gene expression of HPC (Hnf4a), lung (Foxa2), and 898 
thyroid/thymus (Eya1) markers are overlaid here. (d) Heat map of differentially expressed genes 899 
among three foregut tissue types at E7.75. Tissue type-specific genes are labeled on the right. 900 
(e) Pearson correlation coefficient heat map of distinct tissue types from gut region (E7.75) 901 
presented as pseudobulk, similar to panel a (see Extended Data Fig. 9). (f) Force-directed layout 902 
of midgut and hindgut cells are colored by embryonic time points and regions. (g) Visceral 903 
endoderm (VE)-intermix score overlay onto f. Quantification of the VE intermix score in hindgut 904 
compared to midgut cells (Student’s t-test). (h) WNT signaling score overlaid onto f. Correlation 905 
analysis between the WNT signaling score (y-axis) and VE-intermix score (x-axis). (i) Pearson 906 
correlation coefficient heat maps of gut regions with VE as pseudobulk from E7.75 and E8.5 907 
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embryos. See Extended Data Fig. 10c for VE annotation. (j) Distribution of clones across cell 908 
types in adult mouse small intestinal epithelium (see Extended Data Fig. 11). Number at the top 909 
represents the total number of detected clones per cell type. Heat map color represents the 910 
number of cells found comprising a clone within a given cell type. A plot (below) showing the 911 
fraction of parent and childless clone comprising each cell type, as defined in Extended Data Fig. 912 
10j. EEC, enteroendocrine cells; CBC, crypt-based columnar cells; eRSC, embryonic revival stem 913 
cells; EC; enterocytes; TA, transit-amplifying cells. (k) Violin plots of CBC-rooted and eRSC-914 
rooted clone sizes. 915 
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 951 
Fig. 4: Clonal origin of colorectal precancer. (a) Overview of experimental design for profiling 952 
clonal origin across multiple human datasets. (b) Bar plots summarize the number of APC 953 
mutation per polyp using targeted DNA sequencing and whole-exome sequencing (WES). (c) 954 
OncoPrint plot represents the number of APC mutations across human polyps using WES. Here 955 
we only show polyps with at least one deactivating APC mutation. See Extended Data Fig. 12 for 956 
more details. (d) Multi-region (punch biopsy) WES of a human CRC sample represents distinct 957 
APC mutations and Pearson correlation coefficient heat map (bottom) of somatic mutations within 958 
the regions of interest (ROI) [23]. (e) Expected median VAF distribution under different clonal 959 
architectures. (f) Mosaic X chromosome inactivation patterns in female polyps can delineate the 960 
clonal origin of cells using expression-based X-linked somatic clonal SNVs. Male polyps are 961 
considered as monoancestrol due to single X chromosome in male. See Extended Data Fig. 12f-962 
h and supplemental method section. (g) Box plots represent distribution of X-linked clonal SNVs 963 
(%) between male and female polyps. Red line is a cut-off to assign ancestry in female polyps. 964 
See Extended Data Fig. 12i-j. (h) Summary of median VAF-based polyp profiling. (i) Pearson 965 
correlation coefficient heat maps of variants (hgRNAs and mtVars) from mouse intestinal tumor 966 
(ApcMin/+)-derived single cells. Distinctly correlated regions are marked by three clones within the 967 
same tumor. See Extended Data Fig. 13. (j) Estimated mutation density for the three assigned 968 
clones in i. (k) OncoPrint plot represents the number of Apc mutations across mouse tumors using 969 
WES. Five tumors (asterisk) show more than 2 distinct Apc mutations.  970 
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