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1Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and
Medical Informatics (IBMI), Eberhard Karl University of Tübingen, 72076 Tübingen, DE
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ABSTRACT

Staphylococcus epidermidis, a commensal bacterium inhabiting collagen-rich areas, like human skin, has gained significance due to
its probiotic potential in the nasal microbiome and as a leading cause of nosocomial infections. While infrequently leading to severe
illnesses, S. epidermidis exerts a significant influence, particularly in its close association with implant-related infections and its role
as a classic opportunistic biofilm former. Understanding its opportunistic nature is crucial for developing novel therapeutic strategies,
addressing both its beneficial and pathogenic aspects, and alleviating the burdens it imposes on patients and healthcare systems.
Here, we employ genome-scale metabolic modeling as a powerful tool to elucidate the lifestyle and capabilities of S. epidermidis.
We created a comprehensive computational resource for understanding the organism’s growth conditions within diverse habitats
by reconstructing and analyzing a manually curated and experimentally validated metabolic model. The final network, iSep23,
incorporates 1,415 reactions, 1,051 metabolites, and 705 genes, adhering to established community standards and modeling
guidelines. Benchmarking with the MEMOTE test suite yields a high score, highlighting the model’s high semantic quality. Following
the FAIR data principles, iSep23 becomes a valuable and publicly accessible asset for subsequent studies. Growth simulations and
carbon source utilization predictions align with experimental results, showcasing the model’s predictive power. This metabolic model
advances our understanding of S. epidermidis as a commensal and potential probiotic and enhances insights into its opportunistic
pathogenicity against other microorganisms.

Keywords: Genome-scale metabolic modeling, S. epidermidis, Gram-positive, skin mcirobiota, nasal microbiota, systems
biology, flux balance analysis, linear programming, SBML, FAIR principles

Author summary1

Staphylococcus epidermidis, a bacterium commonly found on2

human skin, has shown probiotic effects in the nasal micro-3

biome and is a notable causative agent of hospital-acquired4

infections. While typically causing non-life-threatening dis-5

eases, the economic ramifications of S. epidermidis infections6

are substantial, with annual costs reaching billions of dollars7

in the United States. To unravel its opportunistic nature, we8

utilized genome-scale metabolic modeling, creating a detailed9

mathematical network that elucidates S. epidermidis’s lifestyle10

and capabilities. This model, encompassing over a thousand11

reactions, metabolites, and genes, adheres rigorously to es-12

tablished standards and guidelines, evident in its commend-13

able benchmarking scores. Adhering to the FAIR data prin-14

ciples (Findable, Accessible, Interoperable, and Reusable),15

the model stands as a valuable resource for subsequent inves-16

tigations. Growth simulations and predictions align closely17

with experimental results, showcasing the model’s predictive 18

accuracy. This metabolic model not only enhances our under- 19

standing of S. epidermidis as a skin commensal and potential 20

probiotic but also sheds light on its opportunistic pathogenic- 21

ity, particularly in competition with other microorganisms. 22

Introduction 23

A prevalent constituent of the human skin flora is 24

the coagulase-negative commensal Staphylococcus epider- 25

midis1, 2. This Gram-positive coccus predominantly inhabits 26

the skin and mucosal membranes in areas such as the axillae, 27

head, legs, arms, and nares. S. epidermidis plays a crucial role 28

in maintaining a balanced microbiome within the human nasal 29

cavity, where harmful pathogens like Staphylococcus aureus 30

commonly establish colonization. There is ongoing discourse 31

regarding whether S. epidermidis, through competition in 32

nutritionally scarce environments like the human nose, may 33
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Figure 1 | A new metabolic network for S. epidermidis ATCC 12228, called iSep23. The computational metabolic network was created
and validated using a two-phase approach. The initial phase encompassed the mathematical representation of the metabolism through the
deployment of genome-scale models. Subsequently, the second phase involved the functional validation, rooted in experimental data.

exhibit probiotic effects against formidable pathogens such34

as S. aureus2, 3. Nevertheless, S. epidermidis is recognized as35

a significant causative agent of nosocomial infections under36

specific conditions4. Notably, S. epidermidis stands out as the37

primary source of infections associated with indwelling med-38

ical devices, including intravascular catheters and implants39

such as prosthetic joints1, 5, 6. The high occurrence of these40

nosocomial infections is attributed to S. epidermidis’s ubiq-41

uitous presence on the human skin, increasing the likelihood42

of contamination during the insertion of medical devices7.43

Upon infection, S. epidermidis strains are capable of forming44

biofilms that shield them from antibiotics and host defense45

mechanisms, rendering S. epidermidis infections resistant and46

challenging to eliminate1, 7. Often, removing the foreign ma-47

terial becomes necessary to combat the infection effectively.48

While S. epidermidis infections seldom lead to life-threatening49

conditions, their impact on patients and the public health sys-50

tem is substantial. In the United States alone, the annual51

economic burden of S. epidermidis vascular catheter-related52

bloodstream infections is estimated to be around $2 billion1, 6.53

Besides biofilm formation, also other specific molecular de-54

terminants contribute to the pathogenicity of this particular55

pathogen, enabling immune evasion. Therefore, there is an56

urgent need for a more comprehensive understanding of S. epi-57

dermidis and its opportunistic characteristics to identify novel58

therapeutic strategies1, 7.59

One way to better understand an organism’s lifestyle and 60

capabilities is the reconstruction and analysis of genome-scale 61

metabolic models (GEMs). These models rely on the anno- 62

tated genome sequence of the organism in question. Specifi- 63

cally, genes encoding proteins with metabolic significance are 64

allocated to their respective reactions through gene-protein- 65

reaction associations (GPRs). Within the resulting network, 66

biochemical reactions establish connections between meta- 67

bolites, with enzymatic activities guided by genes associated 68

with these reactions. Such models enable the comprehen- 69

sion of an organism’s metabolism at a systemic level. Díaz 70

Calvo et al. reconstructed the metabolic network of RP62A, 71

a slime-producing and methicillin-resistant biofilm isolate8. 72

However, the resulted model is available only upon request. 73

Figure 1 summarizes the computational and experimental 74

approach of this article. This work introduces iSep23, the 75

first manually curated and experimentally validated GEM of 76

S. epidermidis ATCC 12228. The model comprises 1,415 77

reactions, 1,051 metabolites, and 705 genes and is freely 78

available from BioModels Database9 with the accession iden- 79

tifier MODEL2012220002. Moreover, it aligns with current 80

community standards10, 11, 12 and modeling guidelines13, 14. 81

Semantic benchmarking was conducted utilizing the MEMOTE 82

genome-scale metabolic model test suite15. Consequently, 83

iSep23 upholds the Findable, Accessible, Interoperable, and 84

Reusable (FAIR) data principles16, rendering it a valuable 85
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resource for subsequent research17, 18. To assess the predic-86

tive capacity of the model, growth simulations in various87

media were compared against laboratory experiments. The88

model’s predictions regarding the utilization of diverse car-89

bon sources were cross-referenced with experimental findings.90

Altogether, our model establishes a foundation for improved91

comprehension of the organism’s phenotypes and behavior92

under different nutritional conditions.93

Results94

Properties of the constructed GEM95

The initial CarveMe draft comprised 1,295 reactions, 93396

metabolites, and 722 genes, yielding a Metabolic Model97

Testing (MEMOTE) 15 score of 36 %. Subsequent manual98

refinement involved the addition of 120 reactions, 118 me-99

tabolites, and 63 genes, as illustrated in Figure 2, result-100

ing in an overall MEMOTE score of 88 %. The 63 mass-101

and charge-imbalanced reactions were reduced to one mass-102

imbalanced and nine charge-imbalanced reactions, resulting103

in a MEMOTE mass balance score of 99.7 % and a charge104

balance score of 99.3 %. Based on literature evidence, we105

corrected the directionality of 34 enzymatic reactions in the106

model to ensure proper constraints during model simulations.107

Moreover, the final metabolic network does not include in-108

feasible energy generating cycle (EGC) that could inflate the109

simulation results (see Materials and Methods). We annotated110

the model instances with cross-references to various databases111

and additional information to increase the model’s interoper-112

ability and re-usability. The reaction annotations are divided113

into three different biological qualifier types:114

(i) The cross-references to the nine databases are stored115

under the biological qualifier type BQB_IS.116

(ii) The ECO terms are stored under BQB_IS_DESCRIED_BY.117

(iii) Pathways associated with a reaction are saved with the118

biological qualifier type BQB_OCCURS_IN.119

The metabolites and genes were annotated with twelve and120

three external databases, respectively, using the biological121

qualifier type BQB_IS (Table 1). The inclusion of ECO terms122

ensures a comprehensive understanding of evidence and asser-123

tion methodologies36, thereby facilitating robust quality con-124

trol measures and evidence queries. The ECO term with the125

lowest evidence level is ECO:0000001, coding for inference126

from background scientific knowledge (Figure 2). This term127

was ascribed to 30.2 % of the biochemical reactions within128

the network. Notably, this percentage encompasses pseudo-129

reactions, such as exchanges, sinks, demands, and the biomass130

function. Within the group of 431 reactions associated with131

this ECO term, 170 pertained to pseudo reactions. The ECO132

term ECO:0000251 denotes similarity evidence used in auto-133

matic assertion and was assigned to 28.5 % of all reactions.134

Moreover, the terms ECO:0000251 (computational inference135

used in automatic assertion) and ECO:0000044 (sequence sim-136

ilarity evidence) annotated 9.3 % and 31.9 % of all reactions,137

Table 1 | Cross-references to various reaction, metabolite, and gene
databases.

Reactions Metabolites Genes

BiGG Models20 BiGG Models20 NCBI protein21

MetaNetX22 MetaNetX22 UniProt23

KEGG24 KEGG24 KEGG24

ModelSEED25 ModelSEED25

BioCyc26 BioCyc26

UniPathway27 UniPathway27

Reactome28 Reactome28

IntEnz29 ChEBI30

Rhea31 HMDB32

InChIKey33

SABIO-RK34

LIPID MAPS35

respectively. A minimal fraction (0.1 %) of reactions exhibits 138

protein assay evidence, identified by the ECO:0000039 term. 139

Additionally, the SBOannotator was utilized to annotate the 140

model with precise and descriptive SBO terms19 (Figure 2). 141

Totally, 25 terms were incorporated describing classes of bio- 142

chemical reactions and further model elements. 143

The final curated metabolic model was stored as a Systems 144

Biology Markup Language (SBML) Level 337 file. This for- 145

mat version supports the integration of various plugins, such 146

as the fbc package38 and the groups package39, which are 147

both enabled in iSep23. The groups package facilitates the 148

incorporation of additional information without impacting the 149

mathematical interpretation of the model. We defined all path- 150

ways and subsystems identified from the Kyoto Encyclopedia 151

of Genes and Genomes (KEGG) database24 as an individual 152

group and added corresponding reactions as members. Over- 153

all, we added 99 distinct groups to the model that facilitate 154

pathway-related analysis. 155

Validation of the Metabolic Network 156

Besides the syntactic evaluation, data structure, and file for- 157

mat validation, the model also underwent assessment for its 158

predictive value. A standard approach for such evaluations 159

involves comparing simulation outcomes with empirical lab- 160

oratory data. Given the adaptability of microbes to diverse 161

environmental conditions, our focus was on investigating their 162

growth behavior across various nutrient media. To enable 163

comparability between simulation and laboratory results, en- 164

suring that the simulated conditions represented those in the 165

actual experiments was imperative. 166

Evaluation of Different Growth media 167

Therefore, we used chemically defined media for the growth 168

simulation. In more detail, we utilized three synthetic min- 169

imal media: synthetic minimal medium (SMM)40, AAM41, 170

and AAM-42. Developed initially to explore the metabolic 171

requirements of S. aureus, these media definitions served as 172
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A B

C D

Figure 2 | Properties of the network reconstructed for S. epidermidis ATCC 12228 (A) The initial draft network consisted of 1,295
reactions, 933 metabolites, and 722 genes. Further refinement and augmentation yielded the final metabolic model, comprising 1,415
reactions, 1,051 metabolites, and 785 genes. (B) To characterize the reactions, Evidence and Conclusion Ontology (ECO) terms were
assigned based on the associated GPRs. The terms were allocated according to varying levels of evidentiary support. Notably, the term
denoting inference from background scientific knowledge was assigned the lowest evidence level, while the term linked to protein assay
evidence received the highest. (C-D) Coverage of Systems Biology Ontology (SBO) terms within the metabolic network before (C) and after
(D) utilizing the SBOannotator19.

the basis for our simulations. We used the compound concen-173

trations in the media definitions for the in silico simulations174

and tested whether our model exhibited positive growth with175

them. Furthermore, we extended our evaluations to include176

the widely used LB. Through a combination of in silico and177

in vitro experiments, we explored growth dynamics in the four178

media formulations both with and without D-glucose as the179

carbon source. This dual approach allowed us to measure180

growth in a simulated environment and in a real laboratory181

setting, providing a comprehensive validation of the model’s182

predictive performance under various nutritional conditions.183

Figure 3 illustrates the growth behavior of S. epidermidis 184

in various environments both in silico and in vitro. In mini- 185

mal media where D-glucose serves as the sole carbon source, 186

S. epidermidis could not exhibit growth. However, in the LB, 187

S. epidermidis demonstrates the ability to utilize alternative 188

carbon sources when glucose is absent. In silico simulations 189

show growth in all tested minimal media, while in vitro ex- 190

periments reveal no growth in AAM-, a medium lacking L- 191

arginine. Comparative analysis of AAM-, AAM, and SMM 192

highlights the absence of L-arginine in AAM-, a compound 193

crucial for S. epidermidis growth. Prior studies have identified 194
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A BGrowth No Growth

Figure 3 | Growth phenotypes of S. epidermidis in different nutritional environments. (A) Evaluation of S. epidermidis’ growth
encompassed various environmental conditions, including testing on complete LB and three minimal media formulations: SMM, AAM,
and AAM-, both with and without D-glucose as a carbon source. The computational model successfully simulated growth across all
media when glucose was the carbon source. However, the model predicted growth exclusively in the lysogeny broth (LB) without glucose.
Experimental verification supported these findings, except growth on AMM- with D-glucose as a carbon source, where no growth was
observed. (B) Analysis of growth in different carbon sources utilized SMM as the primary medium, wherein equimolar amounts of other
sugars systematically replaced glucose. Simulation results closely paralleled laboratory findings, ensuring consistency across computational
predictions and experimental outcomes.

L-arginine auxotrophies in Staphylococcus species, including195

S. epidermidis 44. Despite reported L-arginine auxotrophy,196

the S. epidermidis strain ATCC 12228 harbors biosynthetic197

pathways for L-arginine via L-ornithine and L-glutamate, as198

reported in BioCyc26 and KEGG 24. In AAM-, L-glutamate199

is not provided as an amino acid, but it can be synthesized200

from L-proline, an amino acid present in the medium. The201

biosynthetic pathway is illustrated in Figure 4. All available L-202

proline is taken up and subsequently metabolized to, amongst203

others, L-glutamate, L-ornithine, and L-arginine. Each reac-204

tion in this pathway is supported by genetic evidence through205

a gene-reaction rule, commonly known as GPR.206

Growth in different carbon sources207

In addition to evaluating S. epidermidis’s growth behavior in208

different media, we assessed the utilization of various car-209

bon sources. This involved employing SMM and substituting210

D-glucose with alterative sugars in amounts adjusted for car-211

bon content. A total of 12 different sugars were subjected to212

evaluation, as illustrated in Figure 3. Except for cellobiose213

and D-mannose, S. epidermidis demonstrated the capability to214

utilize all tested sugars as a carbon source, both through com-215

putational simulations (in silico) and laboratory experiments216

(in vitro). This consistency between model predictions and ex-217

perimental observations lends robust support to the accuracy218

of the computational model.219

Discussion 220

Here, we present a manually curated GEM of S. epidermidis 221

ATCC 12228, iSep23. Literature-based corrections and metic- 222

ulous manual curation ensured accurate representation of en- 223

zymatic reaction directions, essential for precise constraints 224

during simulations. Overall, our model aligns with experimen- 225

tal data and offers a comprehensive platform for exploring 226

S. epidermidis’s metabolic capabilities and behavior under 227

diverse conditions. The inconsitency between the in silco and 228

in vitro results reagrding the AAM- in the presence of glucose 229

could be attributed to factors beyond the metabolic scope. For 230

instance, non-metabolic factors could be regulatory mech- 231

anisms and Post-translational modifications. The observed 232

discrepancy suggests a need for a more detailed understanding 233

of the regulatory and metabolic factors influencing S. epider- 234

midis growth in AAM-. Further experimental validation and 235

exploration of regulatory mechanisms are crucial for resolv- 236

ing the observed differences between in silico predictions and 237

experimental outcomes. 238

All in all, the refined network serves as a powerful tool for 239

exploring S. epidermidis’s metabolic capabilities and behavior 240

under diverse conditions. Future perspectives involve lever- 241

aging the model for targeted studies, such as investigating 242

metabolic pathways, assessing the impact of genetic modi- 243

fications, and exploring potential drug targets. The model’s 244

compatibility with the fbc and groups packages in the SBML 245

Level 3 Version 112 format enhances its flexibility, enabling 246

the integration of additional plugins for more intricate anal- 247

yses. Including 99 distinct groups representing pathways 248
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Figure 4 | Biosynthetic pathway of L-arginine via L-glutamate
and L-proline. All available L-proline is actively taken up and sub-
sequently metabolized to various products, including L-glutamate,
L-ornithine, and ultimately L-arginine. Genetic evidence supporting
each reaction is provided in the form of a driving enzyme associated
with a gene-reaction rule. The values assigned to these reactions
correspond to the flux distribution in AMM-. The graphical repre-
sentation of the metabolic map was generated using Escher43.

and subsystems from the KEGG database provides a founda- 249

tion for comprehensive pathway-related analyses. Altogether, 250

iSep23 aligns with experimental data and lays the groundwork 251

for future investigations into the bacterium’s metabolism. Its 252

accuracy, comprehensibility, and flexibility make it a valu- 253

able resource for advancing our understanding of microbial 254

physiology and metabolic engineering applications. 255

Materials and Methods 256

Reconstructing the draft model of S. epidermidis 257

The reconstruction of the GEM is based on protocols de- 258

scribed in previous studies45, 46. The fast and automated re- 259

construction tool CarveMe47 curates genome-scale metabo- 260

lic models of microbial species and communities47. During 261

the initial curation phase, a universal model was systemat- 262

ically compared to the annotated genome sequence of the 263

species of interest, facilitating the construction of individual 264

single-species metabolic models. In this study, we utilized 265

CarveMe version 1.2.2 and the annotated genome sequence of 266

S. epidermidis ATCC 12228 with the RefSeq48 accession ID 267

NC_004461.1 that covers the bacterial chromosome. Through- 268

out the drafting process and subsequent model iterations, rig- 269

orous monitoring and benchmarking were conducted using 270

MEMOTE 15. MEMOTE performs standardized metabolic 271

tests across four key domains: annotation, basic tests, bio- 272

mass reaction, and stoichiometry. The results are stored in a 273

comprehensive report that includes the model’s overall perfor- 274

mance assessed by a metric called MEMOTE score (denoted 275

as a percentage with 100 %). A higher MEMOTE score cor- 276

relates with enhanced annotation quality, greater consistency, 277

and formal correctness of the model in SBML49 format. To 278

refine the initial model automatically, the ModelPolisher50
279

was employed in a preliminary step. Leveraging the Biochem- 280

ical, Genetical, and Genomical (BiGG) Models database20
281

identifiers of the model instances, the ModelPolisher system- 282

atically accessed the BiGG Models database, assimilating all 283

available information for these instances into the network as 284

annotations. 285

Manual refinement of the draft metabolic network 286

In the initial draft model, a total of 63 reactions were iden- 287

tified as exhibiting mass and charge imbalances. To rectify 288

these imbalances, an investigation into the connectivity of 289

metabolites was conducted, focusing on identifying those fre- 290

quently participating in reactions characterized by imbalances. 291

To ensure the accuracy of the corrected model, the databases 292

MetaNetX22 and BioCyc26 were browsed. These databases 293

provided essential information about the correct charges and 294

chemical formulas of the metabolites involved in the identi- 295

fied reactions, facilitating the precise adjustment of mass and 296

charge imbalances within the model. 297

Additionally, the network constraints were carefully re- 298

viewed. Enzymes frequently act as catalysts in metabolic 299

reactions. However, some enzymes effectively catalyze the 300

reaction only in one direction. Consequently, it becomes 301
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imperative to impose constraints on the directionality of a302

given reaction. Instances where irreversible reactions are er-303

roneously modeled as reversible, can result in an artificial304

expansion of the solution space within simulations. Con-305

versely, misrepresenting reversible reactions as irreversible306

can unduly constrict the solution space, thereby precluding307

potential solutions. During our analysis, we systematically308

assessed various reaction directionalities and rectified any309

inaccuracies as necessary.310

Detecting energy-generating cycles311

GEMs with EGCs may harbor thermodynamically inaccurate312

cycles capable of generating energy without concurrent nu-313

trient consumption51. These undesirable loops necessitate314

detection and subsequent elimination from the model. Fritze-315

meier et al. developed a systematic workflow for different316

energy metabolites. For each energy metabolite, a dissipation317

reaction was introduced into the model. After the imposition318

of constraints whereby all uptake rates were set to zero, an op-319

timization process was conducted on the dissipation reaction.320

The presence of a non-zero flux following optimization serves321

as an indicator of the existence of EGCs within the model.322

Including gene annotations323

The software ModelPolisher50 was used to annotate the model324

instances. It is noteworthy, however, that this tool does not325

facilitate the annotation of model genes due to their strain-326

specific nature. We annotated the network genes using the327

associated National Centre for Biotechnology Information328

(NCBI) protein identifiers21. Notably, these gene identifiers329

underwent modifications during the reconstruction process330

due to the prokaryotic RefSeq genome re-annotation project48.331

To address this, we retrieved the updated NCBI protein iden-332

tifiers from the NCBI database21. Subsequently, leveraging333

these novel protein identifiers in conjunction with the organ-334

ism’s GenBank file52, we extracted the corresponding KEGG335

gene identifiers, which align with the organism’s locus tag336

and UniProt identifiers23. The integration of cross-references337

was executed as annotations using libSBML53. This com-338

prehensive process ensures the accuracy and coherence of339

gene annotations within the model, thereby contributing to340

the reliability and accuracy of subsequent analyses.341

Adding subsystems and groups342

The reaction-associated pathways were retrieved using the an-343

notated KEGG identifiers and the KEGG Representational344

State Transfer (REST) Application Programming transfer345

Interface (API). Subsequently, these pathways were in-346

corporated as annotations utilizing the biological qualifier347

BQB_OCCURS_IN. Furthermore, the groups package was ac-348

tivated for enhanced functionality. Each identified pathway349

was integrated as a group, and the corresponding reactions as350

members.351

Adding ECO and SBO terms352

To enhance the model’s reusability, we incorporated ECO353

terms that annotate all metabolic reactions36. This ontology354

comprises terms and classes of the various evidence and asser- 355

tion methods. These terms elucidate, for instance, the nature 356

of evidence associated with a gene product or reaction, thereby 357

facilitating robust model quality control. The assignment of 358

a suitable ECO term to each reaction involved the extraction 359

of GPRs. In instances where a reaction lacked a GPR, the 360

term ECO:0000001 was ascribed, denoting its inference from 361

background scientific knowledge. Conversely, for all reac- 362

tions with a GPR, the protein’s existence was reviewed in the 363

UniProt database23. We distinguished the presence of proteins 364

based on distinct categories, namely: (i) inferred from homol- 365

ogy (ECO:0000044), (ii) predicted (ECO:0000363), (iii) evi- 366

dence at the transcript level (ECO:0000009), or, or (iv) protein 367

assay evidence. Genes not found in UniProt were assigned the 368

term ECO:0000251, indicating the similarity evidence used 369

in an automatic assertion. The relevant ECO term was incor- 370

porated as an annotation in instances where a biochemical 371

reaction was associated with a GPR described by a single gene. 372

In cases where the GPR involved multiple genes, the gene 373

associated with the lowest evidence score was appended. All 374

ECO terms were supplemented with the biological qualifier 375

BQB_IS_DESCRIBED_BY. 376

The SBOannotator19 was employed to assign SBO terms 377

to all reactions, metabolites, and genes within the metabolic 378

network. These terms offer clear and unambiguous semantic 379

information, delineating the type or role of each individual 380

model component. 381

Elimination of redundant information 382

CarveMe stores the annotation information on model instances 383

and cross-references to external databases within the notes 384

field. However, the annotation field in the form of the con- 385

trolled vocabulary (CV) terms is more appropriate for this 386

information. Hence, we transferred all cross-references to 387

the annotation field using the ModelPolisher50. Subsequently, 388

to optimize file size and eliminate redundancy in informa- 389

tion storage, the annotation information was systematically 390

removed from the notes field. 391

Model extension 392

Model extension involved the integration of supplementary 393

reactions sourced from established literature. The knowledge 394

bases utilized for this purpose included BioCyc26, KEGG 24, 395

and ModelSEED25. To identify relevant genetic information, 396

locus tags from gene annotations were extracted and com- 397

pared against the KEGG database. Reactions catalyzed by 398

hypothetical enzymes were excluded from analysis. Candi- 399

date reactions were systematically cross-referenced with the 400

BiGG 20 and ModelSEED databases, and were subsequently 401

integrated into the network with BiGG identifiers and cor- 402

responding GPRs. If no entry in the BiGG database was 403

specified, reaction identifiers from the source database were 404

used. 405

Evaluation and validation of growth capabilities 406
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Table 2 | Testing growth of S. epidermidis in different synthetic minimal media. The values were set as lower bounds for the respective
reactions and carry the unit mmol/(gDW · h).

Compound Reaction ID AAM AAM- SMM

Sodium EX_na1_e −9.500 −9.500 −9.500
Chloride EX_cl_e −12.522 −12.522 −12.522
Potassium EX_k_e −3.140 −3.140 −3.140
Magnesium EX_mg2_e −1.300 −1.300 −1.300
Sulfate EX_so4_e −5.316 −5.316 −5.316
Water EX_h2o_e −10.000 −10.000 −10.000
Ammonium EX_nh4_e −4.000 −4.000 −4.000
Calcium EX_ca2_e −0.022 −0.022 −0.022
Phosphate EX_pi_e −0.140 −0.140 −0.140
Iron EX_fe2_e −0.006 −0.006 −0.006
Manganese EX_mn2_e −0.010 −0.010 −0.010
Citrate EX_cit_e −0.006 −0.006 0
D-glucose EX_glc__D_e −5.000 −5.000 −5.000
L-arginine EX_arg__L_e −0.125 0 −0.125
L-cysteine EX_cys__L_e −0.080 −0.080 −0.080
L-leucine EX_leu__L_e −0.150 −0.150 0
L-glutamate EX_glu__L_e −0.250 0 0
L-proline EX_pro__L_e −0.200 −0.200 −0.200
L-threonine EX_thr__L_e −0.150 0 0
L-valine EX_val__L_e −0.150 0 0
L-phenylalanine EX_phe__L_e −0.150 0 0
Nicotinamide EX_ncam_e −0.002 −0.002 −0.002
Thiamin EX_thm_e −0.002 −0.002 −0.002
Pantothenate EX_pnto__R_e −0.002 −0.002 −0.002
Biotin EX_btn_e −0.0001 0 0
Proton EX_h_e −0.140 −0.140 −0.140

Different growth media407

The growth behavior of S. epidermidis was assessed in three408

distinct synthetic minimal media initially formulated for in-409

vestigating the metabolic requirements of S. aureus. These410

are the: (i) SMM40, (ii) AAM41, and (iii) AAM-42; a mod-411

ified version of the AAM medium. The concentrations of412

the various components served as lower bounds for the cor-413

responding exchange reactions of metabolites, as detailed414

in Table 2. In addition to the already provided salts and415

ions, we added minimal traces of zinc (EX_zn2_e), cobalt416

(EX_cobalt2_e), and copper (EX_cu2_e) to the simulated417

medium to enable growth. The lower bound of these reac-418

tions was set to −0.0001 mmol/(gDW · h). Oxygen availability419

was defined by setting the lower bound of the exchange re-420

action to −20 mmol/(gDW · h). The initial formulation of the421

three media involved the use of nicotinic acid. However, as422

nicotinic acid was substituted with nicotinamide in laboratory423

experiments, our simulated media also incorporated nicoti-424

namide. In addition to the three minimal media, we tested425

S. epidermidis’s growth on the LB47. The lower bounds of the426

compounds’ exchange reactions listed in the LB were set to427

−10 mmol/(gDW · h). All in silico simulations were evaluated428

with and without D-glucose as a carbon source.429

Different carbon sources 430

Twelve different sugars were tested for their potential role as 431

a carbon source: D-glucose, D-arabinose, maltose, lactose, 432

raffinose, D-sucrose, trehalose, D-xylose, D-cellobiose, fruc- 433

tose, mannose, and D-ribose. For the growth simulations in 434

different carbon sources, we used the SMM with nicotinamide 435

instead of nicotinic acid as a basis (see Table 3). The con- 436

centrations reported in the medium were established as lower 437

bounds for the simulation. The concentrations of the listed 438

carbon sources were calculated to be equivalent in carbon con- 439

tent to the initial 5 g/L of glucose used in the defined SMM. 440

441

Laboratory validation 442

Media preparation 443

The minimal media AAM, AAM-, and SMM were prepared 444

as carbon-source free base media following the methods pro- 445

vided by Machado et al. after omitting glucose as the de- 446

fault carbon source40. The carbohydrates to replace glu- 447

cose as alternative carbon sources were dissolved in their 448

respective base medium, and the resulting media were sterile 449

filtered. Carbohydrates were obtained from Carl Roth (D- 450

arabinose, D-glucose, trehalose, lactose, sucrose, raffinose), 451
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Table 3 | Testing of different carbon sources. Twelve different
sugars were tested for their potential to serve as a carbon source in
S. epidermidis. All values are given in mmol/(gDW · h).

Sugar Reaction ID Lower bound

D-glucose EX_glc__D_e −5.00
D-arabinose EX_arab__L_e −4.15
Maltose EX_malt_e −9.48
Lactose EX_lcts_e −9.48
Raffinose EX_raffin_e −13.97
D-sucrose EX_sucr_e −9.48
Trehalose EX_tre_e −9.48
D-xylose EX_xyl__D_e −4.15
D-cellobiose EX_cellb_e −9.48
Fructose EX_fru_e −5.00
Mannose EX_man_e −5.00
D-ribose EX_rib__D_e −4.15

EMD-Millipore (fructose), Fluka (maltose, D-cellobiose), and452

Sigma Aldrich (mannose, D-ribose, D-xylose) in purity grades453

of ≥ 98 %. LB was prepared following the standard formu-454

lation of 10 g/L tryptone (MP Biomedicals), 10 g/L sodium455

chloride (Carl Roth), 5 g/L yeast extract (Carl Roth), and 5 g/L456

glucose when required.457

Growth experiments458

Cultures of S. epidermidis ATCC 12228 were initiated by in-459

oculating overnight precultures in LB at 37 °C. Subsequently,460

primary cultures in LB were established from them and al-461

lowed to grow to an optical density (OD) at 600 nm (OD600 nm)462

of 0.5. Cell harvesting was achieved through centrifugation463

and two washes with the carbon-source-free medium. The464

cells were then resuspended to an OD600 nm of 0.05 in media465

containing the respective carbon source. Growth was assessed466

by determination of the OD after a 24 h-incubation at 37 °C.467

Growth experiments were performed in at least three biolog-468

ical replicates in a 96-well plate format. OD measurements469

were performed with a Tecan Spark microplate reader.470

Data availability471

Supplementary data are available along with this article. Ad-472

ditionally, iSep23 is available at the BioModels Database9 as473

an SBML Level 3 Version 112 file.474
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