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Abstract: Regulatory DNA sequences within enhancers and promoters bind transcription factors 
to encode cell type-specific patterns of gene expression. However, the regulatory effects and 
programmability of such DNA sequences remain difficult to map or predict because we have 
lacked scalable methods to precisely edit regulatory DNA and quantify the effects in an 
endogenous genomic context. Here we present an approach to measure the quantitative effects 
of hundreds of designed DNA sequence variants on gene expression, by combining pooled 
CRISPR prime editing with RNA fluorescence in situ hybridization and cell sorting (Variant-
FlowFISH). We apply this method to mutagenize and rewrite regulatory DNA sequences in an 
enhancer and the promoter of PPIF in two immune cell lines. Of 672 variant-cell type pairs, we 
identify 497 that affect PPIF expression. These variants appear to act through a variety of 
mechanisms including disruption or optimization of existing transcription factor binding sites, as 
well as creation of de novo sites. Disrupting a single endogenous transcription factor binding site 
often led to large changes in expression (up to –40% in the enhancer, and –50% in the promoter). 
The same variant often had different effects across cell types and states, demonstrating a highly 
tunable regulatory landscape. We use these data to benchmark performance of sequence-based 
predictive models of gene regulation, and find that certain types of variants are not accurately 
predicted by existing models. Finally, we computationally design 185 small sequence variants 
(<10 bp) and optimize them for specific effects on expression in silico. 84% of these rationally 
designed edits showed the intended direction of effect, and some had dramatic effects on 
expression (–100% to +202%). Variant-FlowFISH thus provides a powerful tool to map the effects 
of variants and transcription factor binding sites on gene expression, test and improve 
computational models of gene regulation, and reprogram regulatory DNA. 
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Introduction 
Reading and writing the regulatory code of gene expression is a fundamental challenge in 

genome biology and medicine. This regulatory code, including collections of binding sites for 
transcription factors in cis-regulatory elements such as enhancers and promoters, specifies where 
and when genes turn on in different cell types in the body. Human genetics studies have now 
discovered hundreds of thousands of DNA variants in cis-regulatory elements that influence risk 
for common and rare diseases, each of which could point to new genes and cell types involved 
in pathogenesis1–3. Reprogramming cis-regulatory elements could enable treating diseases via 
cell type-specific modulation of gene regulation, as highlighted by the recent approval of an 
enhancer-targeting CRISPR therapy for sickle cell disease4,5. 

To unlock these applications, we need an experimental approach to rapidly introduce 
many arbitrary sequence variants into a desired locus in the human genome and measure their 
quantitative effects on the expression of nearby genes. Such a method would accelerate our 
understanding of the rules and programmability of regulatory elements—for example, by enabling 
experiments to directly dissect transcription factor binding sites in an endogenous genomic 
context, to generate gold-standard data to train or evaluate predictive models of regulatory DNA6–

11, and to iteratively test tools to reprogram gene expression for therapeutics. 

For many years, the typical approach for studying such effects in an endogenous genomic 
context has been to study one variant or transcription factor binding site at a time. This approach 
involves introducing edits into a population of cells (e.g., using homologous recombination), 
isolating many individual clones, genotyping to find homozygous edited cells, and then measuring 
the effects on gene expression. This process takes many months to characterize even a single 
variant, is subject to large clone-to-clone variation, and as such only a handful of sequence edits 
have been studied at a time (e.g., 12–14). 

Existing high-throughput technologies have honed our understanding of this regulatory 
code, but have important limitations. Massively parallel reporter assays have revealed how 
transcription factor binding sites combine to drive enhancer and promoter activity in plasmids15–

22, but do not properly model key aspects of genomic context. CRISPR nucleases and base editing 
have been coupled with single-cell or sorting-based readouts to identify and dissect regulatory 
elements5,23–31, but lack the flexibility to precisely reprogram regulatory sequences, depend on 
fortuitous positioning of editing sites to disrupt or introduce transcription factor binding sites, and 
often produce multiple possible edits per gRNA that lead to challenges in data interpretation32. 
The development of CRISPR prime editing, which provides the ability to precisely delete or insert 
designed sequences up to dozens of base pairs33, promises to address some of these challenges. 
However, the efficiency of prime editing remains limited, and pooled screening methods to date34–

36,99 do not enable direct readouts of effects on gene expression (Supplementary Table 1).  

To address these challenges, we developed an experimental method to measure the 
quantitative effects of hundreds of designed edits to endogenous regulatory DNA directly on gene 
expression. This method combines pooled prime editing—in which we introduce many 
programmed insertions or deletions into a population of cells—with RNA fluorescence in situ 
hybridization (RNA FISH) and flow sorting (Variant-FlowFISH), to directly measure effects on 
gene expression. To demonstrate this approach, we systematically dissect and reprogram the 
expression of PPIF (encoding cyclophilin D), a gene that influences genetic risk for autoimmune 
and inflammatory diseases2. Through a combination of tiling mutagenesis, transcription factor 
motif insertions, and computationally optimized sequence edits, we quantify the effects of 672 
variants in the PPIF promoter and a distal enhancer that reveal a highly tunable and 
programmable regulatory landscape. By overcoming key barriers in the study of regulatory DNA, 
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this method will provide insight into the sequence logic of gene regulation and enable developing 
genome editing reagents that achieve desired gene expression outcomes. 

 

Variant-FlowFISH enables pooled measurements of effects of sequence edits on 
gene expression 

We developed a high-throughput technology called Variant-FlowFISH to study the effects 
of designed sequence edits on the expression of a gene of interest (Fig. 1a).  Our approach starts 
with pooled CRISPR prime editing, in which we encode designed edits in a lentiviral pool of prime 
editing guide RNAs (pegRNAs) to mutagenize, replace, or rewrite regulatory DNA sequences at 
a selected locus. We transduce this lentiviral pegRNA pool into a population of cells expressing 
the CRISPR prime editor (PE2 system33, nCas9 fused to Moloney murine leukemia virus reverse 
transcriptase (MMLV) from an inducible promoter, and add doxycycline to activate the prime 
editing machinery. After a period of editing (here, 14+ days), we culture cells without doxycycline 
for at least 7 days to allow nCas9-MMLV to degrade, and thereby ensure that binding or active 
editing does not itself interfere with gene regulation at the targeted site. We then fluorescently 
label cells based on their expression of a gene of interest using RNA FISH, and use fluorescence-
activated cell sorting (FACS) to sort cells into bins based on their expression levels of the target 
gene (FlowFISH)—allowing us to directly assay effects on mRNA expression while avoiding the 
need for antibodies or specialized reporters for a given gene of interest37. Finally, we extract 
genomic DNA from the cells, PCR-amplify the edited site, and use high-throughput sequencing 
to determine the frequency of edits in each of the expression bins (Methods & Supplementary 
Fig. 1). By directly sequencing the edited site, we can detect edits introduced even at low 
frequencies. 

We developed a mathematical approach and computational pipeline (Variant-EFFECTS: 
Variant-Estimation For Flow-sorting Effects in CRISPR Tiling Screens) to estimate the quantitative 
effect of each edit based on these frequency measurements, considering editing efficiency and 
cell ploidy. Because prime editing is not 100% efficient, we expect a mix of cells carrying 
homozygous and heterozygous edits, which will have different expression levels of the gene of 
interest. Accordingly, Variant-EFFECTS infers the effects of edits on gene expression by adjusting 
our previous maximum likelihood estimation procedure37 to account for a distribution of genotypes 
in the population of cells carrying 0, 1, or 2 alleles with the intended edit (see Supplementary 
Fig. 1 and 2). Notably, this estimation procedure assumes that, in diploid cells with two alleles of 
the targeted site, (i) the editing of each allele in a cell is independent of the other, which appears 
to fit well data for several individual variants with varying allele frequencies (e.g., Supplementary 
Fig. 3d), and (ii) a single cell does not receive two different edits, which holds for PE2 prime 
editing due to its precision in installing the intended edit33. Crucially, we found that methods that 
introduce frequent unintended edits, such as CRISPR homology-directed repair, base editing, or 
PE3 prime editing, confound Variant-FlowFISH or similar pooled screens because the presence 
of such edits can create artificial correlations that lead to both false positives and false negatives 
(Supplementary Fig. 2). Such artificial correlations represent a technical pitfall that Variant-
FlowFISH circumvents by using PE2 prime editing, as opposed to the more efficient but less 
precise PE3 system,33 and by reading out the effects of variants directly by sequencing of the 
edited site, as opposed to reading out variants indirectly via sequencing of the pegRNA 
(Supplementary Fig. 2).  

To demonstrate the Variant-FlowFISH protocol, we designed a proof-of-concept study to 
introduce sequence edits that should strongly reduce expression of a target gene of interest, PPIF 
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(Fig. 1b). In macrophages, PPIF is involved in tuning mitochondrial membrane potential and pro-
inflammatory signaling, and we have previously conducted PPIF FlowFISH screens in 
combination with CRISPR interference in several immune cell lines.2 We designed three 
pegRNAs with edits to disrupt the ‘GT’ splice donor at the first 5’ splice site (Fig. 1b, 
Supplementary Table 2), which we expected to lead to strong decreases in mRNA levels due to 
aberrant splicing and subsequent nonsense mediated decay. We transduced populations of THP-
1 monocyte PE2 cells either with each pegRNA individually or with a pool of all three pegRNAs, 
sequenced the edited site, and observed editing rates of 34-77% per individual edit, or 51% total 
editing for the pool (Fig. 1c). We performed Variant-FlowFISH on each population of cells and 
quantified the frequency of variants across 6 expression bins. Compared to the reference 
sequence, all three edits showed higher frequencies in the low expression bins and lower 
frequencies in the high expression bins, indicating that they reduce PPIF expression (Fig. 1d, 
Supplementary Fig. 3a). With Variant-EFFECTS, we converted these measured frequencies to 
quantitative effect size estimates: single edits led to a 36-60% decrease in PPIF expression, with 
similar effects in the 3-pegRNA pool (Fig. 1e, Supplementary Fig. 3c). To compare these 
Variant-FlowFISH measurements to an orthogonal approach, we genotyped and derived 
homozygous clonal cell populations (Supplementary Fig. 3), performed qPCR on 84 clonal cell 
lines, and found that all 3 edits indeed decreased PPIF expression by similar amounts (Fig. 1f).  
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Figure 1. Variant FlowFISH combines prime editing with RNA-FlowFISH to investigate the 
effects of noncoding variants on expression of its target gene.  
(a) Overview of the Variant-FlowFISH pipeline. We introduce 100+ sequence variants targeting a cis-
regulatory element (CRE) of interest into a pool of cells using CRISPR prime editing. Lentivirus is used to 
introduce pegRNAs into cells expressing PE2 prime editor from a doxycycline-inducible promoter. 
Successfully infected cells are selected with puromycin, and prime editing is activated with treatment with 
doxycycline. Cells are stained for an RNA of interest and sorted into bins based on expression (FlowFISH). 
We PCR amplify and sequence the edited site, measure the frequencies of each edit (allele) in each 
expression bin, and estimate the quantitative effect of the edit on gene expression using Variant-EFFECTS 
(see also Supplementary Fig. 1).  
(b) Prime editing strategy used to disrupt the 5’ splice site of the first intron of PPIF. Thick line: Location of 
the pegRNA spacer (black) and protospacer adjacent motif (PAM, red). Nucleotides to be replaced are 
highlighted in red, the critical ‘GT’ dinucleotide essential for splicing is underlined, and the 3 edit sequences 
are below in black. The 5’ splice site consensus motif is also shown38. 
(c) Frequency of each variant in cells after 13 days of prime editing activation with doxycycline treatment, 
prior to cell sorting, as measured by amplicon sequencing of the edited site. Dots: 2 technical FlowFISH 
replicates from each of 2 biological replicates (n=4). Bars: mean +/- 95% confidence interval (c.i.).  
(d) Relative frequency of each allele (reference, and 3 edits) for the 3-pegRNA pool in each of 6 FlowFISH 
expression bins. Frequencies are normalized to the mean frequency of the reference allele across all 6 
bins. Bars and dots as in c.  
(e) Effects of 5’ splice site edits on PPIF expression, as measured by Variant-FlowFISH (% effect versus 
the reference allele). Bars and dots as in c. **: p < 0.01, one-sample, two-tailed t-test.  
(f) Effects of 5’ splice site edits on PPIF expression, as measured by qPCR in clonalized cell lines 
homozygous for each edit. Dots: Clones for wild-type (n=30), AGGT>CACC (n=20), AGGT>TCAG (n=14), 
and AGGT>TCCA (n=20). Bars: mean effect +/- 95% c.i. ****: p < 0.0001, one-sample, two-tailed t-test. 
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Tiling mutagenesis of regulatory elements in the human genome 
We next explored the utility of Variant-FlowFISH in mapping the functions of regulatory 

DNA sequences in their endogenous locations in the genome through high-throughput tiled 
mutagenesis. In particular, the identity, positions, and effect sizes of transcription factor binding 
sites in enhancers and promoters have been difficult to experimentally map. Accordingly, we 
selected the PPIF promoter and a distal enhancer of PPIF and designed experiments to 
systematically identify sequences important for regulating PPIF gene expression in THP-1 
monocytic cells (Fig. 2a). At the PPIF promoter, we tiled edits across a 220-bp region spanning -
198 to +22 bp relative to the transcription start site (TSS). At the selected distal enhancer, located 
~60.5 Kb upstream of PPIF, we previously found that CRISPRi perturbations reduced PPIF 
expression by 37%2, and here tiled edits across a 175-bp region of interest (Fig. 2a).  

To identify endogenous regulatory motifs, we designed pegRNAs to introduce 5-bp 
substitutions tiled end-to-end across each element (Fig. 2b). At each 5-bp tile, we substituted 
three different sequences to account for the possibility that any one substitution could 
unintentionally create new regulatory sequences, such as novel transcription factor binding sites. 
We designed 105 pegRNAs for the PPIF enhancer and 132 pegRNAs for the PPIF promoter 
(Supplementary Fig. 4, Supplementary Table 3, see Methods for more details on pegRNA 
design) and transduced each pool separately into THP-1 cells. We observed a total editing rate 
of 40% and 20% for the 5-bp substitutions at the PPIF enhancer and promoter, respectively (Fig. 
2c). Editing efficiency for individual variants varied, ranging from an estimated 0.001–100% per 
substitution (estimated as the proportion of cells with a variant divided by the proportion of the 
corresponding pegRNA in the plasmid library, Supplementary Fig. 4f). We focused on the 184 
of 237 designed variants, across the PPIF enhancer and promoter, present at >0.01% frequency 
in the final pool of cells (Supplementary Fig. 4e), allowing us to assay >2,000 cells per variant 
per Variant-FlowFISH replicate in which we sort a total of 20 million cells. Aggregating across 
tiles, we obtained sufficient editing for at least one edit for 87% of targeted 5-bp tiles, including all 
35 tiles at the PPIF enhancer and 34 of 44 tiles at the PPIF promoter (Supplementary Fig. 4d). 
This variability in editing efficiency is consistent with previous studies33,39–41, and may be explained 
by differences in transcription factor occupancy and/or features of the pegRNA (Fig. 2a, 
Supplementary Fig. 4d,g).  

We performed Variant-FlowFISH for each pool of edited cells, and obtained data that were 
strongly correlated between biological replicates, both at the level of variant frequencies in each 
sorting bin (average Pearson r = 0.989-0.998 and 0.977-0.985 for the enhancer and promoter, 
respectively, Supplementary Fig. 5a,b) and at the level of effect sizes on gene expression from 
Variant-EFFECTS (average Pearson’s r = 0.88 and 0.84 for enhancer and promoter pools, 
respectively (Fig. 2d)). We tested whether each variant altered gene expression versus the 
reference allele by comparing across 2 biological replicates, each with 4 FlowFISH technical 
replicates (Supplementary Fig. 1b).  

In total, we identified 93 variants with significant effects on PPIF expression (t-test with 
Benjamini-Hochberg corrected p-value (q) < 0.05; 49 variants for the enhancer and 44 at the 
promoter), located at 54 distinct 5-bp tiles, with effect sizes ranging from –52% to +32% (Fig. 2e 
and Supplementary Fig 5c). By aggregating results per tile, we defined 20 of 79 tiles as 
“regulatory tiles” based on >2 substitutions at that tile having significant effects on expression in 
the same direction (either increasing or decreasing PPIF expression; 11 tiles at the enhancer and 
9 at the promoter) (Fig 2e).  

Many of the regulatory tiles with the largest effect sizes on gene expression corresponded 
to DNase-seq footprints in CD14+ monocytes (a closely related cell type), to motif instances of 
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transcription factors involved in regulation of mitochondrial genes like PPIF, and to sequences 
predicted to affect chromatin accessibility or gene expression by computational models such as 
Enformer6 and ChromBPNet42 (see below) (Fig. 2e): 

For example, at the PPIF enhancer, Variant-FlowFISH identified a central region 
containing 4 regulatory tiles in a span of 35-bp where edits led to a significant decrease in PPIF 
gene expression  (Fig. 2f(i)). The variants with the largest effect sizes fell within a predicted ETS 
family transcription factors motif: two variants that disrupted the core ‘GGAA’ of this motif led to 
an average -29% decrease in PPIF gene expression, and variants that disrupted the flanking ‘CA’ 
nucleotides immediately upstream led to an average -9% decrease. Adjacent to this ETS motif, 
substitutions disrupting predicted motif instances for E2F1, E2F4, and/or EGR1 led to an average 
-6% decrease in PPIF gene expression. Notably, ETS family factors, E2F factors, and EGR1 are 
transcriptional activators that are expressed in THP-1 cells (Supplementary Fig. 6) and are 
known to regulate genes that, like PPIF, are involved in mitochondrial function43. We trained a 
deep learning model (ChromBPNet42) to predict chromatin accessibility in THP-1 and annotated 
the predicted contribution of each base pair in this region using backpropagation with 
DeepLIFT/DeepSHAP44,45 (Supplementary Fig. 7). Disruptions to the ETS or E2F/EGR1 motifs 
were indeed predicted to decrease chromatin accessibility, consistent with the observed decrease 
in PPIF gene expression (Fig. 2f(i)). At the PPIF promoter, similar analysis identified predicted 
binding sites for CTCF (-35% decrease), SP1 (-36% decrease), and NF-Y (-52%) that were 
clustered in the region approximately –100 to -25 from the TSS (Fig. 2f(iii)-(v)).  

In addition to effects of endogenous regulatory sequences, we identified cases where 
substitutions appeared to create de novo binding sites for transcriptional activators. For example, 
a substitution near the ETS motif instance in the enhancer increased PPIF gene expression by 
+32% and was predicted to create a de novo motif instance for CEBPA (Fig. 2f(i)). As another 
example, a substitution that increases PPIF gene expression by +15% was predicted to create a 
second ETS motif instance de novo (Fig. 2f(ii)).  

Collectively, the distribution of functional sequences and effect sizes across the PPIF 
enhancer and promoter highlighted key properties of human regulatory elements:  

(i) The frequency and spacing of functional nucleotides appeared to match previous 
genetic studies of individual regulatory elements in animal models or plasmid-based reporter 
assays15–22,46–54. 28% of tested 5-bp tiles had consistent regulatory effects (2 or more edits in the 
same direction), and were interspersed with tiles that appeared to have subtle or no effect on 
expression (Fig. 2e).  

(ii) The effect sizes of disrupting or adding individual transcription factor binding sites at 
the enhancer were remarkably strong, and comparable to effects at the promoter (range: -40% to 
+32% at the enhancer and -52% to +23% at the promoter) (Fig. 2e, Supplementary Figure 5c). 
For example, removal of the central ETS motif instance resulted in an average -29% effect, and 
creation of an adjacent CEBPA motif instance resulted in a +32% increase in expression (Fig 
2f(i)). Given that PPIF is already highly expressed (463 TPM), this represents a large increase in 
PPIF mRNA from small sequence changes in a distal enhancer.  

(iii) The magnitude of effects suggests that these transcription factor binding sites are likely 
to act super-additively with respect to linear gene expression, consistent with previous 
observations in other regulatory elements (e.g., 17,55). For example, at the PPIF enhancer, 
disrupting just this one ETS motif instance in the enhancer (-29% decrease) leads to an effect 
similar in magnitude to CRISPRi repression of the entire enhancer element (-37% decrease2), 
and the sum of the effects of all regulatory tiles which decreased expression was 78% (Fig 2e). 
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Similarly, at the PPIF promoter, the sum of the effects from disrupting the 4 individual putative 
transcription factor binding sites, CTCF (-35%), SP1 (-36%) and NF-Y (-52%), exceeds a 100% 
decrease in PPIF gene expression (Fig. 2e), consistent these sites acting super-additively with 
respect to gene expression.  

(iv) Across just 345 bp of tested DNA sequence, we identify 4 distinct sites corresponding 
to different transcriptional activators (ETS, E2F/EGR1, NF-Y and SP1; Fig. 2e) that have been 
reported to regulate genes that, like PPIF, are involved in mitochondrial metabolism43. This 
suggests that in THP-1 cells, PPIF may be programmed to respond to a large number of different 
transcription factor inputs, and indeed its expression pattern has been observed to be highly 
dynamic across time during THP-1 activation and across cell types2.  

Altogether, these tiling mutagenesis experiments reveal a highly tunable regulatory 
landscape around PPIF, and illustrate the power of designed mutagenesis to identify the 
sequence architecture of regulatory elements in their endogenous contexts. 
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Figure 2. Tiling mutagenesis of an  enhancer and promoter for PPIF.  
(a) Dissecting the regulation of PPIF via tiling mutagenesis of the promoter and a distal enhancer in THP-
1 monocytic cells. Chromatin state signal tracks show data from THP-1 (ATAC-seq and H3K27ac) and the 
corresponding primary cell type CD14+ monocytes (DNase-seq and DNase footprints). Gray highlights 
show the regions for tiling mutagenesis. Cap Analysis of Gene Expression (CAGE) reads mark the TSS. 
Coordinates: PPIF locus (hg19 chr10:81,037,448-81,124,761), PPIF enhancer (chr10:81,045,489-
81,047,143), PPIF promoter (chr10:81,106,967-81,107,535).  
(b) We conducted tiling mutagenesis in 5-bp windows across each regulatory element, and selected 
substitutions from a bank of 12 possible sequences selected for prime editing efficiency (Methods).  
(c) Total editing (% of sequencing reads, summed across all designed edits) for Variant-FlowFISH screens 
at the PPIF enhancer and PPIF promoter. Dots: technical FlowFISH replicates (n=4). Bar: mean +/- 95% 
c.i.  
(d) Variant-FlowFISH measurements of variant effects on PPIF expression (%) are highly correlated 
between two biological replicates. Dots: all variants passing the frequency threshold for the enhancer and 
promoter tiling screens. Red: q < 0.001. Yellow: q < 0.05 (Benjamini-Hochberg corrected p-value, one-
sample t-test).  
(e) Tiling mutagenesis data at the PPIF enhancer and promoter in THP-1. Dots: Effect of each 5-bp 
substitution on PPIF expression, as measured by Variant-FlowFISH (mean of 2 biological replicates x 4 
technical replicates). Bars: Mean of 1-3 substitutions at each position. Variants with significant effects are 
highlighted in yellow (q < 0.05) and red (q < 0.001). Tracks at top show CD14+ DNase footprints and 
evolutionary conservation across 100 vertebrates (PhastCons). Bottom: Dark blue indicates “regulatory 
tiles” (positions with 2 or more significant variants with the same direction of effect), gray indicates a tested 
tile, and white indicates a tile with no edits of sufficiently high frequency. Gray highlights show regions of 
interest. Colored boxes at top: Positions of transcription factor binding sites identified by Variant-FlowFISH 
and motif analysis. Genomic coordinates: PPIF enhancer (chr10: 81,046,381-81,046,556) and PPIF 
promoter (chr10: 81,107,026-81,107,246).  
(f) Variant-FlowFISH data and ChromBPNet predictions at selected regulatory tiles (gray highlights in e). 
Barplots show effects on PPIF expression as measured by Variant-FlowFISH (bars: mean +/- 95% c.i; dots: 
replicate experiments, n=6-8; yellow bars: q < 0.05; red bars: q < 0.001). Motifs (identified by FIMO from 
MEME Suite using the HOCOMOCO v11 database and JASPAR56,57) show potential transcription factors 
binding sites disrupted or created by 5-bp edits. Substitutions highlighted in red indicate the creation of a 
de novo binding site. ChromBPNet sequence interpretations (DeepSHAP) of the reference and edited 
sequences show the predicted contribution of each nucleotide for chromatin accessibility signal. Gray boxes 
within the ChromBPNet sequence interpretations highlight the position of selected 5-bp edits. 
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Inserting transcription factor binding sites 
Beyond studying endogenous regulatory sites, Variant-FlowFISH could enable the study 

of designed regulatory sequences—for example, to dissect the context-specific effects of 
transcription factor binding sites or reprogram genes to respond to particular signaling pathways. 
To explore this application, we selected a site in the PPIF promoter where prime editing was 
highly efficient (-58 bp relative to TSS, estimated 76% editing efficiency in the promoter tiling 
screen), and designed a library of 41 pegRNAs to insert 8-bp synthetic sequences that included 
predicted binding sites for transcription factors expressed in THP-1, or differentially expressed 
between THP-1 and another immune cell line (Jurkat T cells) (Fig. 3a, Supplementary Tables 
3,4 & Methods). 

We introduced these 41 insertions in THP-1 monocytes and evaluated their effect on PPIF 
expression using Variant-FlowFISH. Pooled prime editing achieved an average frequency of 1.6% 
per edit (range: 0.2 - 5.2%, all edits above frequency threshold of 0.01%), and >10,000 single 
cells were assayed for 40 out of 41 edits (Fig. 3b). At this coverage, we had >80% power to detect 
an effect size of 10% for all 40 edits at a cell coverage threshold of 10,000 cells, and 28 edits had 
>80% power to detect an effect size of 5% (Supplementary Fig. 8). The observed effect sizes 
for each insertion were highly correlated among technical and biological replicates (average 
Pearson’s r = 0.93 and 0.96, respectively), and 37 edits (90%) significantly altered PPIF 
expression in THP-1 monocytes (Fig. 3c,d; Supplementary Fig. 9).  

These 8-bp insertions induced a wide range of effect sizes on PPIF expression, including 
edits that either significantly increased or decreased gene expression relative to the wild type 
promoter (range: –33% to +21%, Fig. 3d). Notably, the effect sizes of the sequence insertions 
were uncorrelated with common heuristics for the global activities of corresponding transcription 
factors, including with transcription factor mRNA expression, enrichment of these motifs in ATAC-
seq peaks in THP-1 cells, and the average predicted global effect of these motifs on chromatin 
accessibility (as computed by ChromBPNet and TF-MoDISco; (Supplementary Fig. 10, 
Supplementary Table 5 & Methods)42,58.  

The strongest activating edit corresponded to an insertion that is predicted to create a 
binding site for the cell-essential transcription factor NRF1 (Fig. 3a; +21% effect; q = 1.21x10-7), 
followed by binding sites for ETS family transcription factors (e.g., ELK1, ETS1)59. Both NRF1 and 
ETS factors are known to be strong activators55,60–62 (see also Fig. 2). The sequence insertions 
that led to the strongest decreases in gene expression corresponded to motif instances for MAZ, 
YY1, and MYC/MAX (-33%, -19%, and -16%, respectively; q < 1.5x10-6  for all), all three of which 
have been reported to have either activating and repressive functions in different contexts63–68 
(Fig. 3d). MAZ has recently been found to promote the insulating activity of CTCF, suggesting 
the possibility that this inserted MAZ site may affect PPIF expression in coordination with the 
CTCF binding site located 37-bp away69. Both YY1 and MYC have been reported to reduce 
expression by interfering with binding of or activation by SP1 and NF-Y70,71, and indeed our tiling 
mutagenesis screen indicated that the PPIF promoter contains motif instances for SP1 and NF-Y 
that have strong effects on PPIF expression (Fig. 3a, Fig. 2e,f). To verify that effects on PPIF 
expression were associated with increased recruitment of target transcription factors, we 
individually introduced two selected variants (for NRF1 and MYC/MAX motif instances) and 
performed chromatin immunoprecipitation (ChIP) paired with amplicon sequencing and allele-
specific quantification for the corresponding transcription factors. Insertion of an NRF1 or 
MYC/MAX motif instance increased the PPIF promoter ChIP-seq signal of NRF1 or MYC 
respectively, by 1.5-fold relative to the reference allele (t-test,  p = 0.007 and 0.056, respectively; 
Fig. 3e). 
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We next sought to compare the effects of these 8-bp insertions across cell types and 
states. We used the same 41-pegRNA pool to conduct Variant-FlowFISH screens for PPIF in 
Jurkat T-cells with and without stimulation (phorbol 12-myristate 13-acetate (PMA) + anti-CD3 
antibody). We again obtained highly reproducible quantification of variant effect sizes (biological 
replicate average Pearson’s r = 0.98 and 0.96 for with and without stimulation, respectively), and 
found 38 variants to have significant effects on PPIF expression in both of these Jurkat conditions 
(Supplementary Fig. 11). Nearly all of the variants showed significantly different effects between 
at least two of the three conditions (>36 variants between each pair of conditions, Supplementary 
Fig. 12).  

Some of these differences in variant effects appeared to be explained by differences in 
the global activity of the corresponding transcription factor. For example, the sequence variant 
that showed the strongest differential effect was a motif instance for FOS/JUN, which led to a 
+81% increase in PPIF expression in stimulated Jurkat cells versus +15% in unstimulated Jurkat 
cells (Figure 3f). The activity of the FOS/JUN family transcription factors that compose the AP-1 
complex are known to be central to the chromatin remodeling and gene activation that occurs 
upon T-cell activation72. Indeed, we found JUNB to be strongly up-regulated upon stimulation in 
Jurkat T cells (Supplementary Fig. 13, Supplementary Table 4) and the FOS/JUN motif was 
highly correlated with chromatin accessibility signals in stimulated Jurkat cells (by ChromBPNet 
and TF-MoDISco, Supplementary Table 7). Thus, this sequence insertion effectively reprograms 
the expression of PPIF in Jurkat cells to be >60% more responsive to T-cell activation via 
introduction of a FOS/JUN motif instance in the promoter. 

Yet, for most tested insertion sequences, the differences in effects on PPIF expression 
between two conditions was largely uncorrelated with differences in either the expression of 
corresponding transcription factors or their global enrichments in chromatin accessible regions 
(Supplementary Fig. 14, Supplementary Tables 4,5,6). Instead, effect sizes across cell types 
appeared to be driven by a systematic difference in the responsiveness of PPIF that affected all 
tested variants. Specifically, across the 3 conditions, the effects of all variants were highly 
correlated, but with different slopes (Pearson’s r = 0.71, 0.67, 0.88 and regression line of best fit 
slope = 1.46, 1.82, 1.15 for Jurkat vs. THP-1, Jurkat+stim vs. THP-1 and Jurkat+stim vs. Jurkat 
respectively;  Fig. 3g). For example, insertion of an NRF1 motif instance led to a +21%, +68%, 
and +84% effect on gene expression in THP-1, Jurkat, and stimulated Jurkat cells, respectively. 
We validated the effects of the MYC, NRF1, and FOS/JUN insertions via clonal isolation and 
qPCR, and confirmed these cell type-specific differences in effect sizes on PPIF expression 
(Supplementary Fig. 15).  

Together, these data indicate that transcription factor binding sites have cell type-specific 
effects, but that these differences might reflect not only cell type-specific differences in 
transcription factor activity (such as for FOS/JUN) but also systematic differences that can 
modulate the amplitude of effects of many different transcription factor binding sites. While there 
are many possible explanations, one simple model that could explain such differences is a dose-
response relationship between, for example, total input transcription factor activity and gene 
expression (Fig. 3h,i). In this model, the regulatory activity at the PPIF promoter would start at a 
different position along a curve in each condition. A cell type with very high baseline PPIF 
expression, like THP-1 (Fig. 3h), would already be closer to a saturation point and so additional 
TF binding sites would lead to smaller effects on expression compared to a cell type that started 
with lower PPIF expression (Fig. 3i).  
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Figure 3. Inserting transcription factor binding sites at the PPIF promoter.  
(a) We inserted a library of 41 8-bp DNA sequences at a site 58 bp upstream of the PPIF TSS in THP-1 
monocytes.  
(b) Histogram of frequencies of each 8-bp insertion in the edited pool of cells as a percentage of alleles 
(bottom x-axis) and the corresponding minimum number of cells assessed by Variant-FlowFISH (top x-
axis). 
(c) Correlation of effect sizes on gene expression between 2 Variant-FlowFISH biological replicates.  
(d) Variant-FlowFISH measurements of variant effects on PPIF expression (%) in THP-1 cells are highly 
correlated between two biological replicates. Dots (n=41): all variants passing the frequency threshold. Red: 
q < 0.001. Yellow: q < 0.05, gray: q > 0.05 (Benjamini-Hochberg corrected p-value, one-sample t-test).   
(e) Change in the binding of MYC or NRF1 relative to the reference allele for 8-bp insertions that create 
binding motifs for these factors, as measured by ChIP followed by amplicon sequencing. Allele-specific fold 
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change is calculated by comparing the frequencies of the edit and reference alleles in the ChIP sample 
versus whole-cell genomic DNA input (Methods). **: p = 0.007, one sided t-test. ns: not significant.  
(f) Effects of the 8-bp sequence insertion library were measured in three cellular conditions (rows) using 
Variant-FlowFISH: in THP-1 monocytes, Jurkat T cells, and Jurkat T cells stimulated with PMA and anti-
CD3 antibody. Heatmap color: Effect of each insertion (columns) on PPIF expression, relative to the 
reference allele within each condition. 
(g) Pairwise comparison of effects of 8-bp insertion edits among the three cellular conditions. Black line: 
Linear regression line of best fit. Dots (n=41): all variants passing the frequency threshold. Dots are colored 
if the edit creates a predicted de novo motif instance of a transcription factor binding site (see legend). 
(h) PPIF expression measured by RNA-seq in wild-type cells in transcripts per million (TPM).  
(i) A simple model that could explain the differences in the magnitude of effects observed between cell 
types. Dose response curve shows a hypothetical relationship between total transcription factor input to the 
PPIF promoter (x-axis) and PPIF expression (y-axis). Points along this curve start with different levels of 
transcription factor activity at the promoter (e.g., due to factors binding at the promoter or distal enhancers). 
Dotted tangent lines represent how gene expression might vary due to changes in total transcription factor 
activity from 8-bp sequence insertions, and their slopes are a theoretical representation of the effects 
observed across conditions (see Fig. 3g). 
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Benchmarking sequence models of variant effects 
Deep learning models have been developed to predict gene regulatory signals directly 

from DNA sequence and thereby interpret the effects of noncoding variants6–11. These models 
have yielded insights into the regulatory logic that influences different aspects of gene regulation, 
but their quantitative predictions have been difficult to evaluate due to lack of gold-standard 
experimental data in an endogenous genomic context.  

To explore using Variant-FlowFISH data to benchmark such models, we examined two 
types of models: Enformer6, which uses a hybrid convolutional-transformer architecture to analyze 
long DNA sequence contexts up to 196 Kb in length, and models based on BPNet8 
(ChromBPNet42 and ProCapNet73), which use a convolutional neural network (CNN) architecture 
to examine short, local DNA sequence contexts up to ~2 Kb (Fig. 4a). We considered variations 
of these models trained to predict different gene regulatory signals—gene expression with capped 
analysis of gene expression (CAGE) (for Enformer), transcription initiation rates with PRO-cap 
(for ProCapNet), and chromatin accessibility with ATAC-seq or DNase-seq (for Enformer and 
ChromBPNet)—that might capture distinct aspects of the regulatory logic of noncoding DNA. We 
note that, based on data availability, certain models were trained on data directly from the THP-1 
monocytic cell line (for Enformer CAGE model and ChromBPNet), and some models were trained 
on the most closely matched available cell types (CD14+ monocytes for Enformer DNase-seq 
model, K562 for ProCapNet) (see Methods). 

We examined to what extent these models can predict the effect sizes of DNA variants 
that significantly affected PPIF gene expression as measured by Variant-FlowFISH (Fig. 4, 
Supplementary Table 8). We evaluated performance using three metrics: the Pearson 
correlation between the measured and predicted effects, the slope of the line of best fit from linear 
regression (to assess whether predictions are calibrated with respect to the magnitude of the 
effects), and the root mean squared error (RMSE, to capture both correlation and calibration). 
Overall, performance differed considerably between models trained on expression versus 
accessibility, and on edits at the promoter versus edits at the enhancer. However, the best models 
obtained a correlation of up to 0.65 with slope close to 1 (Fig. 4): 

For DNA variants introduced at the PPIF promoter (n = 82 significant variants in THP-1 
combined across experiments), we first examined predicted effects on gene expression using 
Enformer (based on CAGE signals at the promoter in THP-1 cells), and ProCapNet (based on 
PRO-cap signals at the promoter in K562 cells; Fig. 4b). These predictions were positively 
correlated with measured effects (Pearson’s r = 0.42 and 0.47, respectively), although with slopes 
that indicated a degree of miscalibration (slope = 0.43 and 1.55, respectively). Interestingly, 
models that predicted effects on chromatin accessibility performed better, despite the fact that 
CAGE and PRO-cap are more direct readouts of gene expression: Enformer (DNase-seq in 
CD14+ monocytes) achieved a correlation of 0.62 with slope of 1.08, and ChromBPNet (ATAC-
seq in THP-1 cells) achieved a correlation of 0.65 with slope of 1.05 (see Discussion). 

We next assessed predictions for DNA variants introduced at the distal PPIF enhancer 
located 61 Kb upstream of the PPIF promoter (n = 50 significant variants, Fig. 4c). Only Enformer, 
by virtue of its large sequence context, is constructed to directly predict the effects of variants at 
this distance. However, Enformer performed poorly on this set of edits, as indicated by a low 
correlation with measured effects (Pearson’s r = -0.58 and 0.06 for CAGE and DNase-seq heads, 
respectively) and slopes close to 0 (Fig. 4c). Notably, performance was improved when we 
correlated measured effects on PPIF expression with Enformer predictions of effects on activity 
at the enhancer itself (Pearson’s r = 0.63 for CAGE and DNase-seq, Supplementary Fig. 16), 
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indicating that Enformer learned the sequence logic for local effects but not the contribution of 
this distal enhancer for PPIF expression. 

We considered an alternative approach to assessing the effects of enhancer variants on 
gene expression, based on the notion that variants in a distal enhancer should locally affect the 
activity of that enhancer, and that altered enhancer activity should be linearly related to gene 
expression based on the overall strength of the enhancer (Fig. 4d, Supplementary Figure 16). 
Accordingly, we used ChromBPNet and Enformer to predict effects of variants on accessibility at 
the PPIF enhancer, and multiplied by the measured effect of the entire enhancer on gene 
expression (37%), which we previously quantified using CRISPRi-FlowFISH2. These results 
yielded a significant improvement in the accuracy at predicting effect sizes of variants on gene 
expression. For example, this improved the slope of ChromBPNet predictions from 3.86 
(predicted effect on chromatin accessibility at enhancer) to 1.43 (scaled effect to predict 
expression) (Fig. 4d; from slope = 2.36 to 0.87 for Enformer, Supplementary Fig. 16). This 
suggests that future modeling approaches could attempt to link distal variants to effects on gene 
expression through a two-step process: by (i) predicting effects of variants on enhancer activity 
and (ii) scaling by a prediction of the effect of the enhancer on gene expression.  

 To better understand the capabilities and limitations of current models for detecting effects 
of variants that influence expression through different mechanisms (e.g., chromatin accessibility, 
transcription initiation), we examined variant predictions that were discordant with measurements 
or discordant across models. While the models recognized the effects of strong activating edits 
such as instances of ETS family motifs (Fig. 4e), other categories of edits appeared to be missed 
(Fig. 4f-h):  

For example, insertion of a MYC/MAX binding site at the PPIF promoter in THP-1 cells 
decreased gene expression by 16% (Fig. 3d,e), but ProCapNet and Enformer underestimated 
this effect on expression and ChromBPNet predicted nearly no effect on accessibility (Fig. 4f). 
The lack of a predicted effect of MYC/MAX on accessibility is consistent with previous studies in 
reprogramming systems that have shown that MYC binding relies entirely on other pioneer 
transcription factors such as OCT4 and SOX2 to open chromatin even when MYC is 
overexpressed74, and we have previously observed that ChromBPNet does not detect an impact 
of MYC on accessibility in these reprogramming systems75. However, these inaccuracies in 
predictions of gene expression may also be due to difficulties in modeling MYC/MAX’s dual role 
as an activator or repressor depending on sequence context67,75. 

The predicted direction of effect for edits to CTCF motif instances were often discordant 
between expression and accessibility models. For example, disruption of a CTCF binding site at 
the PPIF promoter decreased gene expression in THP-1 cells by 28% (Fig. 2e). ChromBPNet 
predicted a comparable effect on accessibility (-15%), but ProCapNet predicted an opposing 
positive effect on local transcription initiation rate (+6%; Fig. 4g). This may be because these 
models can learn the local effect of CTCF binding on accessibility, but not the regulatory logic of 
how CTCF binding would influence long-range 3D contacts to affect gene expression.  

In some cases, sequence edits appeared to affect the logic of transcriptional initiation, 
rather than enhancer/promoter activity, in that they involved transcription factors known to affect 
transcriptional initiation and were more accurately predicted by ProCapNet than by any other 
model we tested. For example, insertion of an NRF1 motif was measured to have an +21% effect, 
which was accurately predicted by the the ProCapNet model of transcription initiation (predicted 
effect = +23%) but not by the CAGE model of steady-state gene expression (predicted effect = 
+3.3%) or models of chromatin accessibility (predicted effect = +4.0% and +7.1% for ChromBPNet 
ATAC and Enfomer DNase models, respectively) (Fig. 4h, Supplementary Table 8). This is 
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consistent with prior work suggesting that NRF1 may influence transcriptional initiation based on 
the positional bias of its motif relative to transcription start sites10.  

Together, these analyses illustrate how quantitative, gold-standard sequence perturbation 
data from Variant-FlowFISH can be applied to evaluate and identify limitations of sequence-based 
predictive models of different molecular readouts of gene regulation. Future model development 
could improve predictions for variants in distal enhancers, and combining the predictions of 
models trained on different epigenomic assays could help to improve interpretation of variants 
that affect gene regulation through distinct mechanisms. 
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Figure 4. Benchmarking sequence-based predictive models of gene regulation. 
(a) Schematic of approach for calculating predicted effects of variants using ChromBPNet. ChromBPNet 
(or ProCapNet) takes as input 2 kb of DNA sequence and predicts base pair-resolution ATAC-seq (or PRO-
Cap) profiles and counts. We calculate predicted effects as the difference in predicted counts between 
reference and edited 1 kb sequences, centered on the variant. Enformer (not shown) takes 196 kb of DNA 
sequence, and predicts CAGE or DNase signal  in 128-bp bins. We calculate predicted effects as the 
difference in predicted signal between reference and edited 768-bp sequences (6 aggregated prediction 
bins), centered on the variant (for edits at the promoter) or the TSS (for predicting effects of edits at the 
enhancer on CAGE). See Methods for details on model predictions. 
(b) For promoter variants, comparison of measured effects on PPIF expression (Variant-FlowFISH) with 
predicted effects on either gene expression (left) or chromatin accessibility (right) at the promoter. Dots: 
n=82 variants at the PPIF promoter with significant effects on expression in THP-1 cells. Error bars: 95% 
c.i. for measured effect size. Black line: Linear regression line of best fit. Legend lists Pearson’s r correlation 
coefficient, slope from the linear regression, and root mean squared error (RMSE) of the predicted effects 
on expression (%). Predictions from Enformer (top row) and CNN models (ProCapNet and ChromBPNet, 
bottom) use data from THP-1 or the closest available cell type (Methods).  
(c) Similar to b, for n=50 edits with significant effects at the PPIF enhancer in THP-1 cells. Here, Enformer 
predicts effects of edits in the enhancer on CAGE or DNase-seq signals around the PPIF promoter (see 
Methods). 
(d) For enhancer variants with significant effects (n=50), we compared the measured effects on gene 
expression (Variant-FlowFISH) to predicted effects on chromatin accessibility at the enhancer 
(ChromBPNet, left). We then scaled these predicted effects on the enhancer by the measured effect of the 
enhancer on gene expression (37%), which we previously quantified using CRISPRi-FlowFISH, as a model 
for how effects on accessibility might affect gene expression (right).  
(e-h) DeepSHAP interpretations of base-resolution sequence contribution for ChromBPNet and ProCapNet 
predictions on (e) insertion of an ETV6 (ETS family) motif instance at the PPIF promoter, (f) insertion of a 
MYC/MAX motif instance at the PPIF promoter, (g) mutagenesis of an endogenous CTCF motif instance 
at the PPIF promoter, and (h) insertion of a NRF1 motif instance at the PPIF promoter. Transcription factor 
motif position weight matrices (PWMs) in e-h are from JASPAR56. Barplots show effects measured by 
Variant-FlowFISH (gray), effects predicted by ChromBPNet (light blue), and effects predicted by ProCapNet 
(green). Error bar: 95% c.i. of measured effect. For effects predicted by Enformer models, see 
Supplementary Table 8. 
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Reprogramming gene expression using designed sequence edits 
The results of our synthetic DNA sequence insertion experiments led us to consider how  

reprogramming of noncoding regulatory DNA could be optimized to yield precise and tunable 
changes to cell type-specific gene expression, with potential applications in synthetic biology and 
gene therapy. In particular, while the experiments above yielded effects ranging from -53% to 
+86%, we tested whether we could achieve even larger changes in expression with CRISPR 
prime editing by rationally designing edits with predictive models.  

 We developed a computational approach to optimize sequence edits that are both 
tractable with prime editing and predicted to create desired gene expression outcomes. We first 
select a target site with efficient prime editing, randomly initialize a sequence insertion at that site, 
and then optimize the sequence of the edit over 1,000 steps using simulated annealing with a 
standard Metropolis acceptance criterion76,77. Each step involves insertion, deletion, or 
substitution of 1 nucleotide in the edit, or a 1 bp shift of the edit insertion site. We predict the effect 
of the edit after each step using a deep learning model (here, the Enformer CAGE heads, which 
were available for both THP-1 and Jurkat cells). Using the predicted increase in expression fold-
change in each cell type (edited sequence/WT sequence), we made incremental 1 bp changes to 
the current edit to optimize for either maximal or minimal target gene expression. To design for 
efficient prime editing, we limit the insertion site offset to +/- 2 bp from the original position, limit 
deletion of endogenous sequences flanking the insertion site to 4 bp, and limit the size of the edit 
(inserted + deleted base pairs) to 10 bp. Note that this restricted action space (randomly 
perturbing a small sequence within a larger sequence context) differs from most previous uses of 
simulated annealing for rational sequence design, which typically involved optimizing larger 
sequences (100-200 bp) of fixed length76–80. 

We used this approach to design a total of 185 sequence edits (inserted sequence size 
range = 4-10 bp) at 5 high-efficiency pegRNA editing sites at the PPIF promoter (21-166 bp 
upstream of the TSS) (Fig. 5a, Supplementary Table 3 & Methods). For both THP-1 and Jurkat 
cells, we designed edits that were optimized to (i) maximally increase gene expression, (ii) 
maximally decrease gene expression, (iii) have no effect on gene expression, or (iv) maximize 
the fold-change in expression versus the other cell type (Fig. 5a, Supplementary Table 9 & 
Methods).  

We introduced a library of pegRNAs encoding these 185 edits into each cell type, and 
performed Variant-FlowFISH. Of the 185 edits in the pool, 164 (88%) were observed at a 
frequency of greater than 0.01% in both cell types (range: 0.01-1.4% in THP-1 and 0.01-0.94% 
in Jurkat) (Supplementary Figure 17). The effect sizes of these 164 edits were highly correlated 
across replicates in both cell types (Pearson’s r = 0.99; Fig. 5b,c, Supplementary Figure 18). 
The effects of 144 and 150 edits in this screen had statistically significant effects in THP-1 and 
Jurkat cells, respectively (Fig. 5b,c, Supplementary Figure 19, Supplementary Table 9).  

Overall, the measured effects of variants were correlated with the predicted effects by 
Enformer (Pearson’s r = 0.60 and 0.66 for THP-1 and Jurkat, respectively, Fig. 5j,k), and in total 
84% of variants designed to increase or decrease gene expression significantly affected PPIF 
expression in the intended direction, although to varying degrees (Fig. 5l,m). In THP-1 cells, the 
groups of edits designed to increase, decrease, or have no effect on expression had average 
measured effects of +20%, -40%, and -18%, respectively (Fig. 5l). Similarly, in Jurkat cells, the 
groups of edits designed to increase, decrease, or have no effect on expression had average 
measured effects of +32%, -47%, and -16%, respectively (Fig. 5m). On average, edits designed 
to increase PPIF expression in THP-1 relative to Jurkat had a 1.6-fold greater effect in THP-1, 
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and edits designed to increase expression in Jurkat relative to THP-1 had a 1.1 fold-change 
greater effect in Jurkat (Fig. 5n).  

The range of effect sizes was striking: We identified edits that silenced PPIF expression 
(estimated -100% effect), as well as edits that increased PPIF expression by as much as +202% 
(Fig. 5d). For example, we inserted 10 bp at a position -60 bp relative to the TSS, and observed 
a +202% and +71% effect on gene expression in THP-1 and Jurkat cells, respectively (Fig. 5e). 
This edit was predicted to create a motif instance for the activating transcription factor ATF4, 
which is highly expressed in both of these cell types (TPM > 200). Another 10-bp insertion, located 
-62 bp from the TSS, was predicted to create tandem motif instances for ELK1 and MYB, which 
increased PPIF expression by approximately +65% in both cell types (Fig. 5f). Edits with strongest 
negative effects on expression appeared to create motif instances for known repressors. For 
example, an 8-bp insertion paired with a 1-bp deletion of endogenous sequence at -22 bp from 
the TSS created a motif instance for ZEB1, which decreased expression by more than -80% in 
both cell types (Fig. 5g). Similarly, an insertion of 8-bp paired with a 1-bp deletion of endogenous 
sequence at -23 bp from the TSS created a motif instance for FOXK1, which effectively silenced 
PPIF in both cell types (-99% and -98% effect in THP-1 and Jurkat cells, respectively; Fig. 5h). 
We also identified edits in our screen that had strong effects in only one cell type (Fig. 5d,k). For 
example, one 10-bp insertion increased expression 2-fold specifically in THP-1 cells (effects of 
+128% and +7% in THP-1 and Jurkat, respectively) (Fig. 5d,i). This edit was predicted to create 
a motif instance for CEBPA, which indeed was differentially expressed (TPM = 68 and 1 in THP-
1 and Jurkat, respectively) and which was predicted to strongly affect chromatin accessibility in 
THP-1 but not Jurkat (TF-MoDISCo seqlets = 35,932 and 0 for THP-1 and Jurkat, respectively).   

Altogether, these results demonstrate that PPIF expression is highly tunable with even 
small <10-bp changes its promoter sequence, and illustrate how Variant-FlowFISH can be 
combined with computational design strategies to rationally program gene expression with prime 
editing. The diverse ranges of effect sizes highlight how an iterative combination of both 
computational modeling and Variant-FlowFISH experiments will be required to identify edits with 
the desired effect. 
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Figure 5. Designed sequence edits reprogram PPIF gene expression 
(a) Overview of the design framework and Variant-FlowFISH screening of edits designed with Enformer. 
We selected 5 sites in the PPIF promoter that had high editing efficiency in the promoter tiling mutagenesis 
experiment and initialized random sequence edits <10 bp. We then used Simulated Annealing with a 
standard Metropolis acceptance criterion to optimize these sequences for specific effects on expression via 
1,000 iterations of 1-bp sequence changes. We used the predicted difference between the wild-type and 
edited PPIF promoter CAGE signal from Enformer as the fitness predictor. We designed edits with different 
predicted outcomes on expression for both THP-1 and Jurkat cells, and combined these edits into a single 
pool of 185 pegRNAs to test in both cell types. 
(b) Variant-FlowFISH measurements of variant effects on PPIF expression (%) in THP-1 cells are highly 
correlated between two biological replicates. Dots (n=164): all variants passing the frequency threshold. 
Red: q < 0.001. Yellow: q < 0.05, gray: q > 0.05 (Benjamini-Hochberg corrected p-value, one-sample t-
test).  
(c) Similar to b, but for Variant-FlowFISH measurements of variant effects on PPIF expression (%) in  Jurkat 
cells. 
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(d) Comparison of effects between THP-1 cells and Jurkat cells for all edits. Edits designed to increase 
expression specifically in THP-1 or Jurkat (cell type-specific designs) are colored orange and green, 
respectively. Selected edits that introduce predicted motif instances are annotated with the name of the 
corresponding transcription factor. 
(e-i) In silico mutagenesis from Enformer for select edits annotated in (d) was performed using THP-1 and 
Jurkat CAGE heads, revealing motif instances for the transcription factors (e) ATF4, (f) ELK/MYB, (g) ZEB1, 
(h) FOXK1, and (i) CEBPG/CEBPA predicted to be created by sequence edits. Edited sequences are 
highlighted in gray, including inserted base pairs (Edit) and deleted base pairs (WT). Transcription factor 
motif PWMs in e-i are from JASPAR56. Barplots (bottom) are the effects of each select edit in THP-1 and 
Jurkat cells. Each dot is a Variant-FlowFISH replicate and the error bar represents the 95% confidence 
interval of the mean. In i, Enformer interpretation appears to better match the motif for CEBPG, but CEBPG 
is similarly expressed between both cell types (THP-1 and Jurkat) and therefore is less likely than CEBPA 
(differentially expressed between cell types) to explain the differential effect of this edit on expression. 
(j) Comparison of measured effects on PPIF expression (Variant-FlowFISH) with Enformer predicted effects 
on gene expression (CAGE) in THP-1 cells. Dots: n=164 variants at the PPIF promoter with significant 
effects on expression in THP-1 cells. Error bars: 95% c.i. for measured effect size. Black line: Linear 
regression line of best fit. Legend lists Pearson’s r correlation coefficient, slope from the linear regression 
and room mean squared error (RMSE) of the predicted effects on expression (%). 
(k) Similar to j, for Jurkat cells. 
(l) Measured effects of edits designed for THP-1 cells to decrease expression (red), have no effect on 
expression (gray), increase expression (blue), or increase expression relative to Jurkat cells (orange). 
Boxplots show median, interquartile range, and whiskers show the rest of the distribution, except for points 
that are “outliers” from the  interquartile range.  
(m) Measured effects of edits designed for Jurkat cells to decrease expression (red), have no effect on 
expression (gray), increase expression (blue), or increase expression relative to THP-1 cells (green).  
(n) Log2 fold-change of measured effects on PPIF expression between cell types (THP-1/Jurkat) for edits 
designed to increase expression in one cell type versus the other.  
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Discussion 
Here we introduced Variant-FlowFISH to measure the quantitative effects of hundreds of 

designed DNA edits on gene expression, and applied it to map and reprogram gene regulatory 
sequences for a key gene involved in mitochondrial metabolism and immune disease: PPIF. 
Variant-FlowFISH achieves high power to detect subtle effects on gene expression, is highly 
reproducible, enables quantitative measurements of hundreds of variants in parallel, and is 
generally applicable to study effects across multiple cell types and states. We demonstrate how 
this technology will enable systematic mapping of endogenous regulatory sequences, learning 
the context-specific regulatory logic of transcription factor binding sites, advancing predictive 
models, and developing tools to reprogram gene expression. 

  Variant-FlowFISH will enable large-scale mutagenesis of human regulatory elements in 
situ. At the PPIF locus, our tiling mutagenesis experiments provide the most comprehensive view 
to date of the effects of regulatory sequences on gene expression in an endogenous context, and 
highlight 4 aspects of the architecture of regulatory elements in the human genome. First, 
functional nucleotides are sparse: combining results from both the enhancer and promoter, only 
28% of tested 5-bp tiles appeared to correspond to endogenous regulatory sequences (Fig. 2e). 
Second, endogenous transcription factor binding sites had large effect sizes and appeared to act 
super-additively with respect to gene expression. Third, from tiling just two of the many regulatory 
elements of PPIF, we found 4 likely binding sites corresponding to transcription factors with 
reported effect on mitochondrial function, showing how the regulatory landscape of PPIF 
integrates diverse signaling inputs. Finally, our analysis comparing effects of variants with 
predictive models suggests that the motifs identified in the PPIF enhancer and promoter may 
involve factors that contribute to gene activation through different mechanisms, including via 
effects on transcriptional initiation (NRF1) or long-range 3D contacts (CTCF). Qualitatively, these 
observations are consistent with a long body of work to individually dissect regulatory elements 
in Drosophila, mouse, and other model organisms46–54; with mutagenesis experiments performed 
in plasmid-based reporters in human cells15–22; and with predictive maps derived via in silico 
interpretation or mutagenesis (6,79,81, e.g., Supplementary Fig. 7). Variant-FlowFISH will enable 
accelerating such studies to dissect regulatory elements directly in the human genome. 

  Variant-FlowFISH will enable new types of studies to understand how transcription factor 
binding sites encode cell type-specific patterns of gene expression. Here, we compared the 
effects of inserting transcription factor binding sites into the PPIF promoter between three cell 
types and states, and expected that differences in effects would be determined by the cell type-
specific activities of the corresponding transcription factors. Instead, the effects of variants were 
highly correlated and differed between cell types by a constant scaling factor (Fig. 3g), an effect 
that we validated for several individual edits (Supplementary Fig. 14). This suggests that cellular 
context can affect the contributions of genomic variation and transcription factor binding sites to 
gene expression in multiple ways—not only via the cell type-specific activity of the cognate 
transcription factor, but also possibly via the cell type-specific responsiveness of the promoter. 
Further studies will be required to identify the mechanisms underlying such differences. 

  Because noncoding DNA sequences have highly context-specific effects and CRISPR 
variant editing will not be possible in many cell types in vivo in the human body, development of 
accurate computational models for predicting effects of variants on gene expression will be 
essential for complete dissection of human gene regulatory sequences. Previous work in other 
domains such as 3D protein structure prediction and enhancer-gene regulatory interactions has 
highlighted how an important step in the development of such models will be the collection of 
sufficiently large gold-standard datasets82,83. The dataset we collected here represents, to our 
knowledge, the largest describing the effects of isogenic sequence variants on quantitative gene 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.12.20.572268doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.20.572268
http://creativecommons.org/licenses/by-nc/4.0/


 

24 

expression in an endogenous genomic context, and so we explored benchmarking the 
performance of recent and new predictive models of variant effects. We considered Enformer6, 
ChromBPNet42, and ProCapNet73, which have vastly different input sequence contexts and model 
capacity, and are trained on different readouts of gene regulation. We find that model predictions 
were reasonably well correlated with Variant-FlowFISH data (up to a Pearson’s r = 0.65 for 
promoter variants), with notable differences between models and datasets (Fig. 4). First, although 
the long-range and local models used very different amounts of sequence context (165-Kb for 
Enformer, 2-Kb for ChromBPNet and ProCapNet), the local models performed as well if not 
slightly better at predicting effects on both expression and accessibility (Fig. 4b, Supplementary 
Fig. 16). Second, chromatin accessibility models (Enformer DNase-seq head, ChromBPNet) 
outperformed the corresponding expression models for both model architectures, similar to 
previous observations predicting effects in plasmid reporter assays6 (Fig. 4b). Third, none of the 
models appear to correctly interpret the effects of edits to the distal enhancers without explicit 
external calibration, either due to the limited sequence context of the local models (for 
ChromBPNet) or because the long-range models do not properly learn the importance of this 
distal sequence (for Enformer, Fig. 4c; for other benchmarks versus CRISPRi enhancer 
perturbation data, see also 83,84). Our results suggest an alternative route to capture long-range 
effects of variants, by first predicting the local effects of variants on enhancer accessibility or 
activity and then propagating those effects to gene expression via an enhancer-gene linking 
model. Finally, our CRISPR data also suggest that combining insights from models trained on 
different aspects of gene regulation, such as chromatin accessibility, transcriptional initiation, and 
long-range 3D contacts, may be required to capture the effects of noncoding variants that act 
through different mechanisms. 

  The ability to screen more complex, designed edits to regulatory DNA could enable new 
approaches to reprogram gene expression for treating disease. The recent approval of the first 
CRISPR therapeutic, targeting a cell type-specific gene regulatory sequence within BCL11A for 
sickle cell disease, suggests broad potential for genome editing approaches that tune gene 
expression4. Here we demonstrate the ability to use Variant-FlowFISH, together with predictive 
modeling, to reprogram gene expression through designed edits to a promoter. Small edits (4-10 
bp) can turn PPIF expression either 3-fold up or nearly completely off, and engineer an inducible 
response to a stimulus. Because PPIF is known to regulate cell type-specific processes in 
disease, including inflammatory signaling in macrophages2,85 and reperfusion injury in the liver 
and heart86,87, future work will characterize how tuning the expression of PPIF could reprogram 
cell-type specific responses. Many other diseases may benefit from therapeutic approaches to 
quantitatively tune gene expression in a cell type-specific fashion, including genetic diseases of 
haploinsufficiency88,89 and complex diseases in which noncoding variants implicate specific 
regulatory elements in disease risk5. The series of experiments we present here—involving first 
mapping the endogenous regulatory motifs within regulatory elements, identifying efficient prime 
editing sites, and then iteratively applying computational modeling and Variant-FlowFISH—
provides a generalizable strategy to develop genome editing reagents that create the desired 
change in gene expression.  

We note several methodological considerations, limitations, and potential improvements 
to guide future applications and development: 

(i) Scale: We anticipate that Variant-FlowFISH will enable studying up to thousands of 
genomic variants at a time. Here, we successfully test up to 185 variants in a single pooled 
experiment, with scale limited by the editing efficiency of CRISPR prime editing (here, total 20-
40% editing per pool), desired power for small effect sizes (e.g., >80% power for >10% effects), 
and the throughput of RNA FlowFISH (~20 million cells per experimental replicate). Scale could 
be adjusted with changes to any of these three variables. 
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(ii) Completeness: We aimed to comprehensively mutagenize two regulatory elements, 
but in practice 13% of targeted 5-bp tiles did not show sufficient editing to assess their effects. 
This could be due to limitations in PAM positioning, pegRNA sequence composition, or steric 
hindrance from transcription factors bound to these positions (Supplementary Fig. 5)33,39–41. Our 
strategy would particularly benefit from advances in the efficiency and/or predictability of CRISPR 
prime editing39,40,90. Future adaptations should consider that, due the possibility of artificial 
correlations between variants in diploid cells, new CRISPR editors will need to be both efficient 
at introducing the intended edit as well as precise in avoiding unintended edits (Supplementary 
Fig. 2). 

(iii) Applicability to other genes and phenotypes: RNA FlowFISH is generally applicable to 
study many genes (e.g., as in 37,91) without requiring special reagents such as antibodies or GFP-
engineered cell lines. However, the same experimental design and Variant-EFFECTS analysis 
should be applicable to enable studying variant effects on other molecular or cellular phenotypes 
where suitable fluorescence sorting strategies are available. 

  In summary, our study provides a technology and systematic strategy for dissecting and 
reprogramming the sequences within regulatory elements that tune cell type-specific gene 
expression. We anticipate that this tool will be generally applicable to characterizing the effects of 
genomic variants associated with disease, learning principles of gene regulation, and developing 
genome editing therapies that rationally reprogram gene regulation. 
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Methods 
Generating doxycycline-inducible prime editing (PE2) cell lines. 

We generated inducible PE2 prime editing cell line by transducing THP-1 and Jurkat cells 
with a construct expressing rTA linked to IRES to a neomycin resistance cassette expressed from 
an EF1ɑ promoter and selecting with G418. We generated an inducible PE2 lentiviral plasmid 
(TRE3G-PE2-P2A-BFP) by performing gibson assembly with the TRE3G promoter and P2A-BFP-
WPRE amplified from TRE-KRAB-dCas9-IRES-BFP (addgene #85449) combined with 
nCas9(H840A)-MMLV(RT) amplified from pLenti-Synapsin-hChR2(H134R)-EYFP-WPRE 
(Addgene# 20945) and 7.3Kb (lentiviral backbone) and 5.6Kb (nCas9-partial RT without 
promoter) fragments digested (with XbaI, ClaI, AgeI) and purified from pLenti-Synapsin-
hChR2(H134R)-EYFP-WPRE. We then transduced these rTA-expressing cells with TRE-KRAB-
dCas9-IRES-BFP and selected for cells expressing BFP by FACS, yielding polyclonal PE2-BFP 
inducible cell lines. 
 
Tissue culture and stimulations. 

We maintained THP-1 and Jurkat cell (ATCC) density between 100K and 1M per mL in 
RMPI-1640 (Thermo Fisher Scientific) with 10% heat-inactivated FBS (Thermo Fisher Scientific), 
4 mM L-glutamine, and 100 units/mL streptomycin and 100 mg/mL penicillin. We maintained 
HEK293T cells (ATCC) between 20-90% confluence in DMEM with 1 mM sodium pyruvate, 25 
mM glucose (Thermo Fisher Scientific) and 10% heat-inactivated FBS. For stimulation of Jurkat 
cells, we added 5 ug/mL anti-human anti-CD3 (Biolegend-317315) and 100 ng/mL phorbol 12-
myristate 13-acetate (PMA, Sigma Aldrich #P1585) for 4 hours at a cell density of 800K to 1M 
cells/mL then immediately proceeded with fixation (Variant-FlowFISH) or lysis (qPCR).  
 
pegRNA design:  

1) For PPIF 5’ splice site edits and prime-editing optimization at the HEK3 target site 
We designed small pools of prime-editing guide RNAs (pegRNAs) to target the first PPIF 

5’ splice site, or the previously described HEK3 locus33, to optimize prime editing efficiency and 
demonstrate the application of the Variant-FlowFISH technology. Briefly, the gRNA spacer for the 
PPIF 5’ splice site was designed using the online tool PrimeDesign92 and we chose to use a 
previously validated gRNA spacer at the HEK3 locus33. We used the original scaffold RNA 
sequence33 (sequence shown in Supplementary Fig. 20), the reverse transcription template 
(RTT) length was between 14-17 bp long and the primer-binding site (PBS) length was between 
11-13 bp long. The desired edits, ranging from single-nucleotide variants to substitutions 4 bp in 
length were introduced into the RT template. Immediately following the pegRNA was a 
transcription termination signal (string of 7 T nucleotides). Oligos were designed as two fragments 
which could be PCR amplified off each other. See Supplementary Table 2 for more details on 
the design of these pegRNAs and further details are below as to how these individual pegRNAs 
were cloned.  
  

2) For Variant-FlowFISH screens. 
To design edits for mutagenesis of a target region, we randomly selected three 5-bp 

mutagenesis substitutions from a list of 12 pre-designed substitutions (AACCC, AGCCA, CAGTC 
,CCCTT, CGCCG, CTCAG, GAGGC, GCAGC, GGGAA, GTGCA, TCGGT, TTGGG) to be 
introduce at each 5-bp window tiling across the target region: the PPIF enhancer target region is 
located at chr10: 81,046,381-81,046,556 and the PPIF promoter target region is chr10: 
81,107,026-81,107,246, relative to the TSS (as determined by RefSeq93). PPIF enhancer (chr10: 
81,046,381-81,046,556) and PPIF promoter (chr10: 81,107,026-81,107,246)  To design edits for 
insertion of transcription factor motif instances in the PPIF promoter, we identified factors that are 
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(i) expressed in one or more tested conditions (THP-1, cells, Jurkat cells, or Jurkat cells stimulated 
with PMA+anti-CD3), (ii) have DNA binding motifs (from JASPAR and HOCOMOCO databases94 
characterized by short, non-degenerate consensus sequences, (iii) and have been observed to 
affect gene expression in plasmid-based reporter assays55,60,61. To comply with the design of this 
initial 8 bp sequence insertion pilot screen, we designed insertions for specific transcription factors 
using the center 8 bp consensus sequence from the binding profiles.  Design of edits using deep-
learning is addressed later in the methods (see “Design and optimization of sequence edits with 
Enformer”). The pegRNA sequences for all of the Variant-FlowFISH screens are described in 
Supplementary Table 3.  

To select the gRNA spacer component of each pegRNA, we generated a list of all possible 
NGG gRNA spacer sequences in the region and performed exhaustive evaluation of all potential 
off-target sites in the human genome (up to five mismatches) as previously described95. We 
selected the closest gRNA to the edit (maximum nick to edit distance of 50 bp) with a specificity 
score >50 that lacked homopolymer stretches of more than seven identical nucleotides in a row, 
and we included a leading “G” at the beginning of the selected gRNA if it was not already included. 
We designed pegRNAs to have a set PBS length of 11 bp and extended the RTT length 10 bp 
beyond the edit, with a maximum total reverse transcriptase template length of 50 bp 
(Supplementary Fig. 4). We filtered out pegRNAs with a RTT or PBS GC content of less than 
30%, as well as pegRNAs containing homopolymer stretches of more than four “T” nucleotides in 
a row (encoded as “U” in the RNA) that could prematurely terminate Polymerase II transcription 
of the pegRNA. We used the optimized 86-bp flip + extension scaffold for all of our pegRNAs, 
which we and others have found to yield high editing efficiency (by 1.46-fold) relative to the 
standard scaffold (see Supplementary Fig. 20, which includes the optimized scaffold 
sequence).39,90,96 

 
Cloning pegRNA libraries or pegRNAs individually. 

For tiling mutagenesis experiments, we cloned pegRNA libraries with PCR tags (ordered 
from Agilent Technologies) into the lentiviral vector SgOpti (Addgene #85681). We first amplified 
the subpool of pegRNA oligonucleotides for each experiment using primers against the subpool-
specific PCR tags. Next we performed a secondary PCR to add homology arms for Gibson 
assembly into SgOpti (Supplementary Table 10). If cloning pegRNAs individually, we start the 
cloning protocol by PCR amplifying the two oligo fragments (Fragment 1 and 2) and then 
performing this secondary PCR step. Each of these PCR steps was followed by a 1.5X Ampure 
XP SPRI purification. We prepared the SgOpti backbone by digesting with BsmBI, ClaI and EcoRI 
(New England Biolabs), followed by purification with 1X Ampure XP SPRI. Gibson assembly was 
performed for 1 hour at 50°C using Gibson Assembly Master Mix (New England Biolabs), 500 ng 
backbone, and 70 ng of purified PCR-amplified pegRNA pool in a final volume of 40 uL. We 
purified the gibson assembly with 0.7X Ampure XP SPRI and eluted in 15 uL, then electroporated 
10 uL into Endura competent cells (Lucigen #602422) and then expanded the cells in liquid culture 
for 18 hours at 30°C and purified library plasmid with the Nucleobond Xtra Midi EF kit (Machery-
Nagel #740420.50). To sequence-validate pegRNAs and ascertain their relative abundance for 
use in Variant-FlowFISH analysis, we PCR amplified and sequenced the pegRNAs from each 
purified plasmid library. The same protocol was used for cloning the pegRNA libraries for 
designed sequence edits, with the exception of first modifying the SgOpti vector to include the 
trimmed evopreQ1 (tevopreQ1) RNA pseudoknot motif39 3’ to the BsmBI restriction enzyme site. 
This yielded assembled pegRNAs with the tevopreQ1 sequence encoded immediately 3’ to the 
PBS. 
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Lentivirus production. 
We plated 550,000 HEK293T cells on 6-well plates and 24 hours later we transfected the 

cells with 900 ng psPAX2 packaging vector (Addgene #12260), 360 ng pMD2.g VSV-G envelope 
vector (Addgene #12259), and 1.2 ug of purified plasmid library using  5.8 uL of X-tremeGENE 
HPTM DNA Transfection Reagent (Millipore Sigma #06366236001). We harvested viral 
supernatant 24 hours later with 0.45 uM filtration. 
 
Lentiviral infection, selection, and doxycycline-induced prime editing. 

We transduced THP-1 or Jurkat cells harboring doxycycline-inducible PE2 at a multiplicity 
of infection (MOI) of 2 at a coverage of >270,000 transduced cells per pegRNA. We transduce at 
such high coverage to account for the observed prime editing efficiency in our experiments, 
wherein <40% of cells are edited in each experiment. This equates to an equivalent “edited cell” 
coverage of approximately 70,000 cells or more per edit.  Because not every pegRNA is efficient 
at introducing the desired edit, preliminary experiments showed that the percentage of total editing 
increased by increasing the MOI (0.2 vs. 2) and by also increasing the amount of time the PE2 
machinery is induced by a doxycycline treatment (Supplementary Figure 21). Transduction was 
performed by adding lentivirus and polybrene (Millipore Sigma #TR-1003-G) to a final 
concentration 8 ug/mL in the cell suspension, which we then centrifuged at 1,200xg for 40 minutes 
at 37°C. We performed 72h of puromycin selection (1.5 ug/mL and 1.0 ug/mL for THP-1 and 
Jurkat respectively), after which we resuspended cells in fresh media containing 1.0 ug/mL 
doxycycline to induce prime editing and 0.3 ug/mL puromycin for maintenance selection. We 
maintained cells in this PE2-induction media for 13-21 days at their initial infection coverage, then 
removed doxycycline and continued to maintain cells for 7-10 days before proceeding to 
downstream assays to ensure that doxycycline-induced PE2 was degraded and absent from the 
cells.  
 
PrimeFlow RNA assay. 

We used the PrimeFlow RNA Assay Kit (#88-18005-210) according to the manufacturer's 
instructions, with some modifications. Specifically, we used 12-15 million cells per reaction (12 
reactions and 1 control reaction per biological replicate) and performed the fixation and 
permeabilization steps in one tube for all reactions from a single biological replicate (>156M cells 
for 13 reactions). We split reactions into individual 1.5 mL tubes prior to the target probe 
hybridization step, during which the control reaction was incubated with 100 uL of Target Probe 
Diluent without target probes. The control reaction is used to assess background fluorescence 
signal from non-specific binding of the label probes (see Supplementary Fig. 22). Target probes 
are as follows: gene of interest (PPIF; Thermo Fisher Scientific Type ‘Type 1’ probe set #VA1-
30000735) and positive control housekeeping gene (RPL13A; Thermo Fisher Scientific ‘Type 4’ 
probe set #VA4-13187). Each sample (including the control/background staining reaction) was 
stained with the fluorescent Label Probes (Alexa Fluor 647 and 488 for PPIF and RPL13A, 
respectively) and we added a total of five washes with 40°C wash buffer following the final wash 
described in the manufacturer’s protocol to remove as much unbound label probes as possible 
before proceeding to cell sorting.  
 
Cell sorting. 

We diluted the samples to a concentration of approximately 3 x 107 cells per mL in PBS 
with 0.5% BSA and filtered through a 35-um filter (Corning, no 352235) by centrifugation at 800g 
for 5 minutes at 4°C. We aliquoted approximately 2.5 x 105 cells from the unstained samples for 
use as total FACS input controls. For tiling mutagenesis and designed sequence edit experiments, 
we sorted approximately 20 million cells for each FlowFISH replicate into 4 bins based on the 
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fluorescence intensity of the target gene using the MA900 Multi-Application Cell Sorter (Sony). 
For splice site disruption and motif insertion experiments, we sorted up to 6 million cells for each 
FlowFISH replicate into 6 bins based on the fluorescence intensity of the target gene using the 
Influx Cell Sorter (BD Biosciences). To control for differences in staining efficiency of each cell, 
we normalized the fluorescence associated with the gene of interest (PPIF) to that of a 
housekeeping control gene (RPL13A). Specifically, we used color compensation to subtract a 
portion of each cell’s AF647 signal (PPIF) based on the intensity of its AF488 (RPL13A) signal. 
This portion is selected such that the mean of the AF488 signal in the top and bottom 25% of cells 
based on AF647 was approximately 10%. For the 4-bin sorting experiments, we set the gates for 
each bin on the compensation signal to capture 25% of the cells (full distribution sort). For the 6-
bin sorting experiments, we set the gates for each bin on the compensation signal to capture 10% 
of the cells (60% distribution sort) according to the percentiles (1) 0-10%, (2) 10-20%, (3) 35-45%, 
(4) 55-65%, (5) 80-90% and (6) 90-100% (see Supplementary Figure 22 for an example of the 
gating and sorting strategy). We recommend using the four-bins sorting strategy to capture the 
entire distribution of cells and to maximize cell recovery from sorting. 
 
Genomic DNA extraction and amplicon sequencing. 

We collected the sorted cells by centrifugation at 800g for 5 minutes and 4°C, 
resuspended the pellet in 70 uL of lysis buffer per million cells (50 mM Tris-HCl, p 8.1, 10mM 
EDTA, 1% SDS) and incubated at 65° for 10 min for reverse cross-linking before cooling to 37°C. 
Once cooled, we added 2 uL of RNase Cocktail (Invitrogen, no AM2286), mixed well and 
incubated at 37°C for 30 min. Finally, we added 10 uL Proteinase K Solution (Invitrogen, no 
4333793), mixed well and incubated at 37°C for 2 h followed by incubation at 95°C for 20 min. 
We purified genomic DNA using a 0.7X clean-up with Agencourt XP (SPRI) beads (Beckman 
Coulter). 

Following extraction, we split clean genomic DNA into PCR replicates (each containing 
gDNA from approximately 250,000-500,000 cells) and amplified the genomic region of interest 
with Q5 High-Fidelity 2X Master Mix (New England Biolabs, no M0492L) and 0.5 uM of each 
amplification primer (Supplementary Table 11). We carried out genomic amplicon PCR with the 
following thermocycling parameters: 98°C for 1 min and then 28 cycles of 98°C for 10 s, annealing 
for 20 s (variable), 72°C for 20 s, followed by a final 72°C extension for 2 min. We purified PCR 
products using a 1.0X SPRI bead clean-up and used 3 uL of the clean product as input for a 
secondary sample indexing PCR. Specifically, each 10 uL reaction contained 3 uL of sample, 5 
uL of Q5 High-Fidelity 2X Master Mix, and 0.5 uM of each indexing primer containing Illumina 
adapters:  
CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTC
CGATCT; 
AATGATACGGCGACCACCGAGATCTACACNNNNTTTCCCTACACGACGCTCTTCCGATCT.  
We carried out indexing PCR with the following thermocycling parameters: 98°C for 1 min and 
then 10 cycles of 98°C for 10 s, 60°C for 20 s, 72°C for 20 s, followed by a final 72°C extension 
for 2 min. We pooled equal volumes of indexing PCR product together and performed two 
consecutive 1.0X SPRI bead clean-ups, then measured DNA concentration using the Qubit 1X 
dsDNA HS Assay Kit (Invitrogen, no Q33231). We sequenced DNA amplicon libraries on an 
Illumina Nextseq 550 System using a custom Illumina Index 2 sequencing primer: 
TCGGAAGAGCGTCGTGTAGGGAAA. 
 
Analysis of Variant-FlowFISH screens (Variant-EFFECTS). 

To determine the effects of each edit on fluorescence, we developed an analysis 
framework that takes as input sequencing reads for each edit across gene expression bins as 
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well as other experimental metadata and infers quantitative effects of each edit versus the 
reference allele (Supplementary Fig. 1).  

First, we demultiplexed raw sequencing reads using the bcl2fastq program (Illumina) and 
used CRISPResso297 to align reads with a minimum average quality score of 20 (phred 33) to a 
reference amplicon sequence (CRISPResso -r1 {input.read1} -r2 {input.read2} -o 
results/crispresso/ --amplicon_seq {params.amplicon_seq} --amplicon_name 
{params.amplicon_id} --name {wildcards.SampleID} --quantification_window_coordinates 27-201 
--exclude_bp_from_left 0 --exclude_bp_from_right 0 --plot_window_size 0 --
min_frequency_alleles_around_cut_to_plot 0.05 -q 20 -s 0). For the filtered and now aligned 
reads in each sample, we now need to count the number of unedited allele reads as well as the 
number of reads containing each edit.  
 This operation is performed by searching for each variant using a file that contains a 
“Mapping Sequence” column: a sequence containing the expected variant as well as 3-5-bp buffer 
on each side of the variant. If a read exactly contains a variant’s mapping sequence, we add it to 
the variant’s read count. The length of buffer sequence was determined to be an adequate number 
of bases to resolve any combination of variant and position within the amplicon (10 bp plus the 
length of the introduced edit for all experiments except for rationally designed edits, which use a 
fixed mapping sequence length of 16 bp).  

Quantifying the unedited allele reads necessitates an alternative approach due to the fact 
that the entire amplicon now must be assessed for edits. An important consideration here is the 
increased likelihood of observing PCR or sequencing error when considering the entire amplicon. 
To account for this, we use the corresponding unedited cell line and estimate the background 
average number of sequencing or PCR errors for a given amplicon. We use this number as a 
threshold for the maximum number of errors a read can contain when compared to the reference 
sequence and still be counted as an unedited read. We discard the reads that fall below this 
threshold and don’t contain a designed variant. 

We then aggregate the read counts across PCR replicates to obtain a total count for 
unedited reference and designed edit sequences in each FACS bin. We normalized these 
aggregated counts so that the sum of reference and variant alleles in each sample equates to the 
total number of cells sorted into that FACS bin (i.e., to account for differences between the number 
of sequencing reads and the number of cells in a given bin).  

 We then used the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm 
maximum-likelihood method in the R stats4 package to fit the read counts in each fluorescence 
bin to the log-normal distribution that has the highest likelihood for having produced the observed 
counts in the bins. To calculate effect sizes, we determined the percent difference between the 
mean of the log-normal fit for each edit and the mean of the log-normal fit for the wild type 
reference sequence.  
 We applied two scaling factors to these effect sizes: one to account for background signal 
in the RNA FISH assay and one to account for heterozygous editing events (genotype 
frequencies) during prime editing.  

The first adjustment is needed to account for background signal in the RNA FlowFISH 
assay, which we assume combines additively with real signal due from the target gene of interest. 
To correct for this background, we used the difference between CRISPRi-FlowFISH TSS guide 
knockdown and qPCR effect size to generate a linear scaling factor applied to our effect sizes 
(1.48 and 1.33 for THP-1 and Jurkat, respectively), which accounts for FlowFISH signal from non-
specific RNA FISH probe binding (this is based on our observation that promoter CRISPRi 
typically shows 80-90% knockdown by qPCR).  

The second adjustment accounts for the frequencies of genotypes in the cell population. 
This is needed because, for a given desired edit, there will be some distribution of allelic editing 
events. Some fraction of our cells will be edited in a heterozygous fashion where only 1 allele 
contains the edit, leading to an underestimation of the effect of a given variant in those specific 
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cells. With this in mind, we estimate the frequencies of each genotype for each edit and use this 
to correct the estimated effect sizes.  

 
 To estimate genotype frequencies, we first calculate the editing efficiency (p) of each 
designed edit by dividing the observed frequency in the population (FACS input population) by 
the frequency of the corresponding pegRNA in the plasmid library (from sequence-verification of 
plasmid constructs). For plasmid libraries that were generated by arrayed pegRNA cloning and 
equimolar plasmid pooling (PPIF 5’ splice site and 8-mer insertion experiments), we assumed 
that pegRNAs were present at equal frequencies in the pool. Then, using this estimated editing 
efficiency (p), we compute the frequency of each genotype assuming that the two chromosomes 
in a diploid cell are edited independently: homozygous edited (frequency = p2), heterozygous 
edited (frequency = 2p(1-p), and homozygous wild-type (frequency = (1-p)2). Expression of the 
target gene in cells of each genotype are related to the sum of effects on each of their two 
chromosomes, such that the expression level of a cell is 1+x for homozygous edited cells, 1+(x/2) 
for heterozygous edited cells, and 1 for homozygous wild-type cells, where x is the true effect size 
of the edit (x). We assume that expression levels for all three genotypes are normally distributed 
and have the same variance in log space during the FACS sort. 

With these assumptions, consider a simplified case in which a screen contains only 1 
pegRNA.  In this case, the (uncorrected) effect inferred from the MLE procedure for the edited 
allele (y) will be related to the true effect size (x; positive x indicates that edit increases gene 
expression) and editing efficiency (p) by the following equation:   
 

Equation 1:  
 

 
The equation states that the uncorrected estimate of the effect of a variant from Variant-FlowFISH 
(left) is equal to the expression in homozygous edited cells (1+x) multiplied by the the proportion 
of the cells that are homozygous edited plus the expression in heterozygous cells (1+x/2) 
multiplied by half of the proportion of cells that are heterozygous edited, divided by the expression 
of homozygous wild-type cells (1) multiplied by the proportion of cells that are wild type (unedited) 
plus the expression of heterozygous cells multiplied by the other half of the heterozygously edited 
cells (right). This is essentially a weighted sum of expression levels of cells carrying a given allele 
(edit or wild-type). 

We then solve for x (the change in effect size from reference), and obtain: 
  

Equation 2:    
 

 This equation specifies the correction needed in Variant-FlowFISH experiments involving 
a single edit (e.g., individual edits in Fig. 1e).  
 Now, consider the case of a pool with multiple pegRNAs introducing different edits. In this 
case, the naive estimate of the expression level of the reference allele (denominator of Equation 
1) depends not only on the effect size (x) of a single edit, but of all edits in the pool of cells (e.g., 
this is graphically depicted in Supplementary Fig. 2 part 8). In a pooled experiment where many 
cells are unedited (due to low editing efficiency), and/or where the average effects of edits in the 
pool is close to zero (e.g., similar numbers of edits that increase or decrease expression), then 
the denominator of Equation 1 is approximately 1. Solving this simplified equation for x, we obtain: 
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Equation 3:     
 
As such, in pooled experiments, we adjust each uncorrected effect y for its editing 

efficiency p using Equation 3. Equation 3 also provides some intuition that if there is almost no 
editing (p~=0), the actual homozygous effect should be two times the measured effect. If almost 
all the alleles are edited (p~=1), the homozygous effect should be very close to the measured 
effect. 
 
 
Setting variant frequency filters by assessing reproducibility as a function of frequency. 

To determine the relationship between edit frequency and effect size, we assessed the 
reproducibility of variant frequencies across PCR replicates from all FACS bins in an experiment. 
We found that the variant frequencies were highly reproducible across PCR replicates for variants 
above a frequency threshold of 0.0001, but that their correlations decreased substantially below 
this threshold (Supplementary Figure 6). PCR and sequencing error result in false positives in 
variant read counts, introducing noise into the estimations of effects. The variants we introduce 
contain at least 3 nucleotides distinguishable from the reference sequence which enables 
enhanced resolvability of variants from technical error and tracks with our capacity to assess 
variants at frequencies as low as 0.0001. Thus, we filter out variants that have an average bin 
frequency below 0.0001 (0.01% of sequencing reads) prior to effect size calculation for variants 
in a given FlowFISH sample (Supplementary Figure 5), and we only report effect sizes for 
variants in our mutagenesis screens that have at least 6 FlowFISH replicate measurements (at 
least two per biological replicate) that passed this additional filter.  
 
Single edit induction and clonal cell line selection. 

To generate cell lines for qPCR and ChIP experiments, we performed single-pegRNA 
lentiviral transduction and doxycycline-induced PE2 expression to produce polyclonal populations 
of cells with possible genotypes: homozygous WT, heterozygous WT/edit, edit/edit. To generate 
monoclonal cell lines that were homozygous for either the reference allele or the target edit, we 
sorted single cells from these populations into 96-well plates using FACS and expanded them. 
Genomic DNA was extracted from 250,000 cells for each clonal cell line in 25 uL QuickExtractTM 
DNA Extraction Solution (BioSearch Technologies #QE09050) by thermocycling at 65°C for 6 
minutes followed by 98°C for 2 minutes. The target locus was amplified and sequence as 
described above (Genomic DNA extraction and amplicon sequencing) to screen for monoclonal 
cell lines that were wild type or homozygous for the target edit. 
 
RNA extraction and quantitative RT-PCR. 

Total RNA was extracted from homozygous clonal cell lines with RNeasy Mini Kit (Qiagen 
# 74106) with DNase treatment according to the manufacturer’s protocol. Approximately 100 ng 
total RNA and 250 nM primer for PPIF (Fwd: AGAACTTCAGAGCCCTGTGC, Rev: 
CATTGTGGTTGGTGAAGTCG) or RPL13A (Fwd: CTCAAGGTGTTTGACGGCATCC, Rev: 
TACTTCCAGCCAACCTCGTGAG) were used to perform Quantitative RT-PCR using the Brilliant II 
SYBR Green QRT-PCR Master Mix (Agilent # 600825) with the following program: 45°C for 45 
minutes for cDNA generation, 95°C for 10 minutes, followed by 45 cycles of 95°C for 30 seconds, 
58°C for 45 seconds, and 72°C for 45 seconds for fluorescence detection. Effect on PPIF 
expression for each clonal edited cell line was calculated as the percent change of housekeeping-
normalized CT from the geometric mean of the housekeeping-normalized CT for wild type clones 
(2-(edited clone PPIF-RPL13A) - (geometric mean of PPIF-RPL13A from WT clones)). 
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Chromatin immunoprecipitation and sequencing  

ChIP was performed on polyclonal single-edit THP-1 cell cultures as previously 
described14. Briefly, 1x108 cells were cross-linked with 1% formaldehyde for 10 minutes at 25°C 
and quenched with glycine at a final concentration of 125 mM. Cross-linked cells were lysed and 
sonicated for 20 minutes (cycles of 30 seconds on/off) at 4°C to generate 300-600 bp chromatin 
fragments. An aliquot of total fragmented chromatin was saved as an input control and the 
remaining chromatin was split into two tubes (representing 5x107 cells each) for antibody pulldown 
and incubated overnight at 4°C with 15 ug of NRF1 (Abcam #ab55744), or MYC (Abcam #ab56) 
antibody. Chromatin cross-linking was then reversed and DNA was eluted at 65°C overnight, 
purified and eluted in 40 uL of molecular biology grade water.  

To generate PPIF promoter amplicon sequencing libraries from fragmented chromatin, we 
optimized PCR primers to amplify 114-bp of the PPIF promoter (Fwd primer target: 
AGGGGTAGTCCACGGACAG, Rev primer target: GCCTTTATTGGCTTGCCCAG) containing the edit 
site and performed PCR with the following thermocycling parameters: 98°C for 1 min and then 30 
cycles of 98°C for 10 seconds, 68°C for 20 seconds,  and 72°C for 20 s, followed by a final 72°C 
extension for 2 min. We purified PCR products using a 1.8X SPRI bead clean-up, and followed 
the protocol above for the remaining steps of the library preparation and sequencing (see 
Genomic DNA extraction and amplicon sequencing).  

For quantification of edited and wild type alleles in antibody-immunoprecipitated chromatin 
and total chromatin control (whole cell extract), we demultiplexed raw sequencing reads using the 
bcl2fastq program (Illumina) and filtered for sequencing reads that mapped unambiguously to 
either the wild-type or edited PPIF promoter sequences by running CRISPResso2 in HDR mode97. 
We used these reads to calculate allele-specific fold-change for transcription factor binding 
between edited and unedited alleles. Allele-specific fold-change = [(% of reads with edit in 
immunoprecipitation % of reads with insertion in whole cell genomic DNA extract) (% of unedited 
wild type reads in immunoprecipitation % unedited wild type reads in whole cell genomic DNA 
extract)]. 
 
Enformer predictions and sequence attributions 

The Enformer model6 was downloaded from ‘https://tfhub.dev/deepmind/enformer/1’. 
Effects of Variant-FlowFISH edits  were predicted using two different methods: In the first ‘variant-
centered’ approach, the 196 kb input window was centered on the site of the insertion or 
substitution. For 8-bp insertion edits specifically, the variant sequence was constructed by 
keeping the left-to-centermost portion of the input (98 kb) fixed and inserting the variant at the 
center, which pushed the center-to-rightmost endogenous sequence  8-bp to the right (left-
justified, rightmost 8-bp trimmed off variant sequence to maintain prediction window size). 
Substitution variants were constructed by replacing the reference sequence with the 
corresponding substitution sequence at the same centered position.  

In the second, ‘TSS-centered’ approach, the reference and variant sequences were 
constructed identical to the method described above, but the final sequences were re-centered 
such that the input window was centered on the annotated TSS of the PPIF gene instead of on 
the variant. This prediction configuration was used for predicting effects of PPIF enhancer edits 
on the distal PPIF promoter. For both of these approaches, each variant was scored by predicting 
the output coverage within a subset of cell type-matched assay tracks for both the reference and 
variant sequences (FANTOM IDs: CNhs10724 and CNhs11253 for THP-1 and Jurkat CAGE 
tracks, respectively. ENCODE IDs ENCFF659BVQ and ENCFF622JVD for monocyte 
(representing THP-1) and T cell (representing Jurkat) DNase tracks, respectively, aggregating the 
total signal within a local window centered on the variant or TSS and computing the change 
between the aggregated variant and reference sequence values. The local window size was 
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chosen to be 768 bp, or 6 aggregated 128-bp Enformer output bins. The predicted effects were 
averaged across six additional shifts (the input sequence is shifted by a small offset and re-scored 
by the model), and both the forward and reverse-complement were scored per shift (14x total 
redundancy).  

Sequence attributions were generated using in-silico saturation mutagenesis (ISM). 
Briefly, the reference nucleotide at every sequence position within a small window around the 
target edit site were systematically exchanged for every other possible nucleotide, and the log 
fold-change in predicted signal within the 768 bp output window was recorded for each 
substitution. The final ISM score is visualized per position as the average effect size across the 3 
variant alleles. Only reverse-complement ensembling with no additional shifts was used in order 
to speed up computation. 
 
Design and optimization of sequence edits with Enformer 

Using the CAGE prediction tracks for THP-1 and Jurkat cell types from the Enformer 
sequence-based deep learning model (see above), we applied simulated annealing with a 
standard Metropolis acceptance criterion76,77 to optimize short sequence edits at five high 
efficiency prime editing loci (chr10:81107053, 81107088,, 81107158, 81107168, 81107198) in 
the PPIF promoter. In brief, starting from a randomly initialized sequence insertion (< 10bp) at the 
targetable loci, we performed 1,000 randomly sampled alterations to the sequence edit (either of: 
(a) inserting one new nucleotide, (b) deleting one nucleotide, (c) shifting the insertion site by one 
position, or (d) substituting one existing nucleotide for another letter). The total edited sequence 
was restricted from growing beyond 10 bp. We always accepted edit alterations that increased 
the objective function we sought to optimize. Importantly, with a probability that decreases 
smoothly and monotonically as a function of the number of alterations lapsed (until the fixed 
budget of 1,000 alterations has been made), we accept ‘bad’ alterations that decrease the 
objective function value. By accepting bad changes with a small probability, we allow the 
optimization to escape local minima. After ~700 iterations, this probability is near-zero, and the 
design method effectively becomes a standard hill-climbing algorithm that greedily accepts only 
good changes. By annealing slowly, we find short sequence edits that reach near-global optimal 
impact on promoter function as predicted by Enformer. In the application described here, we 
optimized the sequence edits for maximal CAGE fold change between the edited and the original 
PPIF promoter sequence (estimated from the three Enformer output bins overlapping the TSS), 
for THP-1 and Jurkat cell types, respectively. We also optimized edits to maximize the absolute 
fold change between the THP-1 and Jurkat effects (e.g., THP-1- or Jurkat-specific designs).  
 
ChromBPNet predictions, DeepSHAP sequence attributions and TF-MoDISco analysis 

We downloaded ATAC-seq datasets for THP-1 cells (GSM4706091, GSM4706092) , 
Jurkat cells (GSM4706084,GSM4706085) and stimulated Jurkat cells 
(GSM4706088,GSM4706089) from GEO. We processed the ATAC-seq datasets using the 
ENCODE ATAC-seq pipeline (https://github.com/ENCODE-DCC/atac-seq-pipeline), which aligns 
reads to the GRCh38/hg38 Reference Genome using the Bowtie2 aligner and identifies peaks 
using the MACS2 peak caller. We used the tagalign file pooled across replicates and the optimal 
overlap peak sets output from the ENCODE ATAC-seq pipeline to train individual, single-task 
ChromBPNet models for THP-1, Jurkat, and Jurkat under stimulation. The training was conducted 
using the ChromBPNet42 repository (https://github.com/kundajelab/chrombpnet/tree/master, 
v0.1.3). We sampled non-peak regions with GC content matching that of the peak regions as 
negative samples for training. All models were trained using reverse complement augmentation 
and five-fold cross-validation (CV).  

ChromBPNet only uses the “variant-centered” approach for predicting the effects of 
Variant-FlowFISH edits. The 2114-bp input window was centered on the site of the insertion or 
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substitution as described for Enformer above. Sequence contribution scores for ChromBPNet 
were generated using the DeepSHAP/DeepLIFT algorithm44,45. DeepLIFT generates base pair 
resolution sequence contributions by back propagating a score, which is derived from comparing 
the activations of all neurons for the input sequence with those from reference sequences. We 
created 20 dinucleotide-shuffled versions of the input sequences as reference sequences and 
then utilized the DeepSHAP implementation of DeepLIFT (https://github.com/kundajelab/shap) to 
generate sequence contribution scores. The predicted effects for Variant-FlowFISH edits and 
sequence contributions were averaged across five folds to obtain consolidated scores.   

We then used TF-MoDISco58 to distill sequence motifs from the DeepSHAP contribution 
score profiles (averaged over 5 folds) over all peak region sequences in each cell type. TF-
MoDISco is a motif-discovery method that identifies high importance regions from sequence 
contribution scores as seqlets and then aligns and clusters those seqlets into distinct, 
consolidated motif patterns. We computed sequence contribution scores centered around the 
ATAC-seq peaks for each cell type using its corresponding ChromBPNet model. We then applied 
TF-MoDISco, setting the parameters to 1 million seqlets and a window size of 500 bp to extract 
motifs from the sequence contribution scores for each cell type. For each motif identified by TF-
MoDISco, we reported the top three matches to existing motifs using TOMTOM from the MEME 
Suite57. To compare the motifs learned between Jurkat and THP-1, we extracted seqlets from 
their respective MoDISco objects and reclustered them using SimilarPatternsCollapser function 
from TF-MoDISco. We averaged the contribution scores from the seqlets to construct the 
contribution weight matrix (CWM) for each motif pattern. The contribution score for each motif 
pattern was calculated by taking the maximum absolute value per position of each CWM. 
 
 
ProCapNet predictions and DeepSHAP sequence attributions 

ProCapNet is a deep learning model that maps DNA sequence to base-resolution nascent 
transcription initiation profiles from PRO-cap experiments. The ProCapNet architecture matches 
that of BPNet, previously described in Avsec et al. 2021, with the following modifications. First, 
no control track was used; second, ProCapNet's sequence input is 2114 bp and the output is 1kb 
wide; third, ProCapNet is adapted to account for the strand asymmetry of transcription: the counts 
tasks predicts the log of the number of PRO-cap reads summed over both strands, and the profile 
task applies the final softmax function across the predictions for both strands as one array; fourth, 
ProCapNet implements a mappability-aware training scheme, masking bases are not uniquely 
mappable by PRO-cap-length sequencing reads (according to 36-mer hg38 UMAP tracks from 
Karimzadeh et al. 2018)98 from being incorporated into the profile task loss function; and finally, 
all post-training ProCapNet predictions are the average of the model output for the forward and 
reverse strand sequences. 

ProCapNet was trained on ENCODE processed K562 PRO-cap data (ENCSR261KBX 
filtered BAM files and peaks). TSS events were identified as R2 5' ends. During training, K562 
DNase hypersensitive sites (DHSs; ENCSR000EKS) not overlapping PRO-cap peaks were 
randomly sampled as negative examples, using a 1:7 ratio of DHSs to peaks within batches. 
Training was done using random 5'-3' jittering up to 200 bp, reverse complement augmentation, 
and seven-fold cross-validation (CV) split by chromosome. The code repository is available at 
https://github.com/kundajelab/nascent_RNA_models, and further details will be available in the 
manuscript73. 
 Variant effect prediction and DeepSHAP sequence interpretation were performed with 
ProCapNet using the same strategy as ChromBPNet, with the PyTorch Captum implementation 
of DeepSHAP. 
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Data Availability 
DNA sequencing data for Variant-FlowFISH experiments can be found in the Impact of Genomic 
Variation on Function (IGVF) Data Portal (https://data.igvf.org) under accession numbers: 
IGVFDS5031MNRR and IGVFDS3423PSID for PPIF enhancer and promoter tiling experiments, 
respectively;  IGVFDS5056OAGR, IGVFDS9162RHFP, and IGVFDS1863TJOE for PPIF 
promoter 8-bp insertion experiments in THP-1, Jurkat, and Jurkat cells stimulated with PMA + 
anti-CD3 antibody, respectively; IGVFDS4359OODY and IGVFDS6299IJHG for PPIF promoter 
rationally (Enformer) designed edits in THP-1 and Jurkat cells, respectively.  
 
Code and Model Availability 
Variant-FlowFISH data processing and analysis: https://github.com/EngreitzLab/variant-flowfish  
ChromBPNet code repository: https://github.com/kundajelab/chrombpnet 
ProCapNet code respository: https://github.com/kundajelab/nascent_RNA_models 
Enformer code repository: https://github.com/google-deepmind/deepmind-
research/tree/master/enformer 
ChromBPNet and ProCapNet models trained for this work: 10.5281/zenodo.10403551 
Code for computational approach to rational design with simulated annealing and Enformer: 
10.5281/zenodo.10403551 
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Supplementary Tables 
 
 
Supplementary Table 1. Comparison of Variant-FlowFISH to previous screening methods 
for measuring the effects of sequence edits on gene expression or other phenotypes 
 
Technology Editor Does the 

editor create 
unintended 
edits? 

Introduces 
designed 
complex 
edits 

Assay Genome Returns 
quantitative effect 
size 
measurements 
(assay measures 
gene expression 
and adjusts for 
editing frequency) 

Avoids Type 
2 Pitfall – edit 
is sequenced 

Avoids Type 1 
Pitfall – edit is 
sequenced, 
and no 
confounding 
from 
unintended 
edits 

Ref. 

Variant 
FlowFISH 

Prime 
editing 

Very few 
(PE2) 

Yes RNA-
FlowFISH to 
measure 
gene 
expression 

Diploid Yes Yes Yes Described 
here 

Prime Saturation 
Genome Editing 
(SGE) 

Prime 
editing 

Very few 
(PE2/PEmax) 

No Drug 
resistance 
screen 

Diploid No No N/A 99 
 

Saturation Prime 
editing 

Prime 
editing 

Yes 
(PE3) 

No FACS based 
assay or 
growth 
proliferation 
assay 

Haploid No Yes Yes (haploid 
cells only) 

36 

PRIME Prime 
editing 

Yes 
(PE3) 

No Growth 
proliferation 
assay 

Diploid No No N/A 34 

beeSTING-seq  Base 
editing 

Yes No Single cell 
RNA 
sequencing 

Diploid No (no editing 
frequency 
adjustment) 

No N/A 26 

Perturb(BE)-seq Base 
editing 

Yes No Single cell 
RNA 
sequencing 

 Diploid No (no editing 
frequency 
adjustment) 

Yes, but not in 
same cells as 
RNA is 
measured 
(pooled 
genotyping) 

No 24 

Base editing 
screens 

Base 
editing 

Yes No FACS based 
assay, 
cellular 
fitness 

Diploid No (no editing 
frequency 
adjustment) 

No No 25,27 

BEAN (Base 
Editor screen 
analysis with 
Activity 
Normalization) 
 

Base 
editing 

Yes No LDL 
cholesterol 
uptake - flow 
cytometry 
based assay 

Diploid No (Does not 
measure gene 
expression, but 
does adjust for 
editing frequency on 
the phenotype) 

Yes 
(sequences a 
reporter 
construct to 
infer 
endogenous 
editing 
efficiencies) 

Yes 32 
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Supplementary Table 2: Target edits and pegRNA sequences for the PPIF 5’ splice site and 
HEK3 locus.  
pegRNA designs for the PPIF 5’ splice site edits and the HEK3 locus experiment, for prime-editing 
optimization. Each row represents one designed edit and includes position and sequence 
information for the edit and the corresponding pegRNA. The pegRNA designs here used the 
Scaffold 1 RNA sequence (shown in Supplementary Fig. 20).  
 
Supplementary Table 3: Target edits and pegRNA sequences for the Variant-FlowFISH 
screens. 
pegRNA designs for all screening experiments. Each row represents one designed edit and 
includes position and sequence information for the edit and the corresponding pegRNA. The Flip 
+ Extension Scaffold RNA is used here for all of the pegRNA designs (sequence shown in 
Supplementary Fig. 20). 
 
Supplementary Table 4: Expression of transcription factors selected for 8mer insertion 
screen.  
Transcription factors that 8-bp insertion edits were designed to create motif instances for and 
expression in THP-1, Jurkat, and Jurkat cells stimulated with Phorbol 12-myristate 13-acetate 
(PMA) and anti-CD3 antibody. Transcription factor gene expression is reported as the mean 
transcripts per million (TPM) from two RNA-sequencing technical replicates.  
 
Supplementary Table 5: Motifs of high predicted contribution to chromatin accessibility in 
THP-1 cells.  
TF-MoDISco was used to cluster and consolidate sequence motifs with high ChromBPNet 
contribution scores that were enriched in ATAC-seq peaks in THP-1 cells. Motifs discovered by 
TF-MoDISco (pattern column) are listed with their abundance in accessible peaks (seqlets), their 
motif pattern (modisco_cwm_fwd; modisco correlation weight matrix), and the top three matches 
(match, match logo, q value) to transcription factor motifs using TOMTOM from the MEME Suite. 
 
Supplementary Table 6: Motifs of high predicted contribution to chromatin accessibility in 
Jurkat cells.  
TF-MoDISco was used to cluster and consolidate sequence motifs with high ChromBPNet 
contribution scores that were enriched in ATAC-seq peaks in Jurkat cells. Columns are the same 
as in Supplementary Table 4. 
 
Supplementary Table 7: Motifs of high predicted contribution to chromatin accessibility in 
stimulated Jurkat cells.  
TF-MoDISco was used to cluster and consolidate sequence motifs with high ChromBPNet 
contribution scores that were enriched in ATAC-seq peaks from Jurkat cells stimulated with PMA 
+ anti-CD3 antibody. Columns are the same as in Supplementary Table 4 and 5. 
 
Supplementary Table 8: Prediction effects from sequence-based deep learning models. 
Listing of effects predicted by Borzoi, Enformer, ProCapNet and ChromBPNet and the 
corresponding effects on expression measured by Variant-FlowFISH in THP-1 cells for PPIF tiling 
and 8mer insertion edits that passed quality control filters. 
 
Supplementary Table 9: Summary of designs and measured effects for rationally designed 
sequence edits. 
Listing of edits, design metadata, effects on expression predicted by Enformer, transcription factor 
motif instances predicted to be introduced by edits, and effects on expression measured by 
Variant-FlowFISH. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.12.20.572268doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.20.572268
http://creativecommons.org/licenses/by-nc/4.0/


 

40 

 
Supplementary Table 10: Primer sequences used for cloning pegRNA libraries. 
This table lists the primers used to amplify the subpools of oligos and add the homology arms for 
Gibson Assembly into the lentiviral vector SgOpti. 
 
Supplementary Table 11: Amplicon sequencing primers.  
Summary of the amplicon sequencing primers used in this study. Each primer has an adaptor for 
the barcoding of PCR samples for the Illumina sequencing platform. The adaptors are highlighted 
in blue for the forward primer and orange for the reverse primer. 
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Supplementary Figures: 
 

 
Supplementary Figure 1. Overview of experimental design of Variant-FlowFISH 
experiments and computational analysis with Variant-EFFECTS 
(a) Schematic representing how the data collected from the FACS sort and subsequent sequencing of 
alleles from cells collected in each of the FACS bins is used to determine the effect of each of the variants 
on the expression of a target gene. (1) Cells are transduced with a lentiviral pool of pegRNAs designed to 
introduce edits into a target site of interest. (2) Each pegRNA can create cells carrying 3 genotypes: 
homozygous wild-type (WT), heterozygous edited, and homozygous edited. In this example, the edit 
decreases gene expression (light green color), and each of the three genotypes will result in levels of gene 
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expression corresponding to the sum of effects of each allele. (3,4) We conducted RNA FlowFISH and sort 
cells into expression bins (here: A = low expression, D = high expression). (5) We extract gDNA from cells 
in each bin, PCR amplify the edited site, and deeply sequence the amplicon using Illumina sequencing. (6) 
We match sequencing reads to an index of designed edits to quantify the frequency of each allele, including 
all edits and the wild-type allele, and sum counts across PCR replicates (see panel b). (7) We use these 
allele frequencies to infer the mean and variance of the distribution of each allele in gene expression space 
using maximum likelihood estimation (MLE, see Methods). The MLE step uses as input the allele 
frequencies from Step 6 as well as FACS metadata collected from Step 3. (8) The distributions of alleles 
are affected by the editing frequency, because heterozygous vs homozygous edited cells will have different 
expression levels (see Methods). We apply a correction step to account for this (box inset, right). We also 
adjust for background FlowFISH signal (see Methods). (9) We average the effect sizes across technical 
and biological replicates for the final estimate of effects on gene expression. 
(b) Experimental setup for a representative FlowFISH experiment. Biological replicates are populations of 
cells independently infected with a lentiviral pegRNA pool. Cells are split into “FlowFISH technical 
replicates” just before FlowFISH, and sorted into 4-6 expression bins; an “input” unsorted sample (referred 
to as input ‘All’)  is taken to measure allele frequencies in the entire population of cells. Cells from sorted 
bins are split into “PCR replicates” for library preparation and sequencing, such that each PCR replicate 
includes ~250,000 cells per PCR reaction. Unedited cells are also sequenced (“PCR Ctrl”) to estimate the 
error rate due to Illumina sequencing (referred to as Bin negative or ‘Neg’) . 
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Supplementary Figure 2. Unintended edits can confound interpretation of CRISPR screens 
aiming to measure effects of genetic variants.  
CRISPR editors that introduce multiple edits at high frequencies—such as CRISPR homology-directed 
repair, base editing, and PE3 prime editing—can confound the results of CRISPR screens aiming to 
measure the effects of specific variants. (1) This figure presents a hypothetical example of a pooled screen 
that uses two gRNAs: one to introduce a G>A variant at a particular position, and one non-targeting gRNA 
that does not lead to editing at this site. (2) In this hypothetical example, the G>A variant has no effect on 
gene expression, but the gRNA introducing this variant also creates an unintended indel that leads to a 
+20% effect on gene expression. (3,4) In diploid cells that receive the targeting gRNA, 6 possible genotypes 
are produced, with the levels of gene expression indicated (average of the effects of the two alleles in the 
cell). In cells that receive the non-targeting gRNA, all cells remain wild-type (G/G) at the targeted site. (5) 
These cells with different genotypes are created in a pool in the screen. (6,7) The cells are sorted into bins 
based on their expression of interest. The blue and orange distributions represent the RNA levels measured 
for cells with different genotypes. (8) At this point, two alternative experimental designs are to sequence 
the alleles in each bin (as done in Variant-FlowFISH; left) or to sequence the gRNAs present in each bin 
(right). In the first case, we obtain the marginal frequency distributions of each of the 3 alleles across 
expression bins (dotted line: mean of distribution, i.e. a naive estimate of the effect size of each allele when 
compared to the wild-type G allele). Note that the A allele will appear shifted toward higher expression 
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because its presence in cells is correlated with the presence of an indel; that is, some cells carrying the ‘A’ 
allele, which has no effect, will also carry an indel on the other homolog, which does have an effect on 
expression. The G allele is shifted as well, but to a lesser extent because some ‘G’ alleles come from wild-
type cells (G/G) carrying the non-targeting gRNA. Thus, a naive analysis that does not account for this 
correlation will mistakenly conclude that the ‘A’ allele affects gene expression, when in fact it has no effect. 
In the second case (sequencing guides in each bin), the non-targeting gRNA will appear to have zero mean 
effect and the targeting gRNA will have a positive effect. However, the effect of this gRNA is not due to the 
intended edit (‘A’ allele), but rather due to the fact that this gRNA also unintentionally introduces a functional 
indel. As such, a naive analysis that does not account for this correlation will mistakenly conclude that the 
‘A’ allele affects gene expression. Variant-FlowFISH avoids both of these pitfalls by using the PE2 system 
(which has a very low rate of unintended edits). 
 
Notes:  
• While the example here is drawn to illustrate a sorting-based screen, the same challenge applies to 
screening formats such as Perturb-seq screens that read out expression and the identity of the gRNA 
(similar to Experimental Design 2).  
• The degree of confounding depends on multiple factors including the frequencies of each allele, the 
strength of their effect sizes, the covariance of the alleles in diploid cells, and the distribution of other effect 
sizes in the pool.  
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Supplementary Figure 3. PPIF 5’ splice site RNA FlowFISH fold changes and genotyping 
PPIF 5’ splice site clonal populations.  
(a) Fold changes (stained / unstained) as determined via FACS for the control gene RPL13A (Alexa 
Fluorophore 488) and PPIF gene (Alexa Fluorophore 647). A fold change greater than 2 is acceptable for 
the RNA FlowFISH assay. 
(b) Clonal populations were derived for each of the PPIF 5’ splice site edits: AGGT>CAAC, TCAG and 
TCCA. Homozygous edited clones were defined as containing 90-100% of the reads mapping to the 
intended ‘edited’ sequence; homozygous reference clones were defined as 0-10%. Plots represent the 
following number of clones analyzed: AGGT>CAAC (n=149), TCAG (n=105) and TCCA (n=358). Note that 
the frequency of “clones” with an intermediate level of editing (not 0%, 50%, or 100%) indicates that some 
of these “clones” may represent expansions of several single cells. 
(c) An example calculation showing how the ‘expected’ editing rate can be calculated for a given variant. 
(d) Plots comparing the observed vs.‘expected editing rate for each of the 5’ splice site variants. Genotypes 
are as indicated: WT/WT (Homozygous WT), WT/Edited (Heterozygous Edited), Edited/Edited 
(Homozygous Edited).  
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Supplementary Figure 4. The design of the prime editing guide RNA (pegRNAs) and the 
frequency of variants for the prime editing tiling mutagenesis experiments at the PPIF 
enhancer and promoter 
(a) A schematic of the pegRNA design with the various lengths of the spacer, reverse-transcription (RT) 
template and primer binding site (PBS) indicated. 
(b) A frequency histogram of the distance between the ‘nick and edit’ (bp) for each of the pegRNAs designed 
at the PPIF locus: enhancer and the promoter. 
(c) A frequency histogram for the reverse transcriptase (RT) template length (bp) for each of the pegRNAs 
designed to target the PPIF locus.  
(d) The frequency of variants (%) mapped to the PPIF enhancer and promoter. Dots represent the average 
variant frequency for each of the 5-bp substitutions across FlowFISH replicates (n=8). A dotted red line is 
shown at a frequency of 0.01%. Binding sites for transcription factors at the PPIF enhancer and promoter 
are indicated by gray shading. 
(e) Frequency histograms for the PPIF enhancer and promoter highlight the number of variants which are 
at a frequency >0.01%. 
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(f) The editing efficiency of each of the 5-bp tiling variants mapped back to the genomic coordinates for the 
PPIF enhancer and promoter. Dots represent each of the three 5-bp substitutions per targeted tile, across 
FlowFISH replicates (n=8). A red line indicates an efficiency of 0.01%. Binding sites for transcription factors 
at the PPIF enhancer and promoter are indicated by gray shading. 
(g) Editing efficiency (%) vs. the distance of the edit position relative to ‘nick’ (bp) for the pegRNA. Dots 
represent each 5-bp substitution. 
 
 
 
 
 

 
 
 
Supplementary Figure 5. Fold-change and correlation plots highlighting the technical 
details of the Variant-FlowFISH assays at the PPIF loci and volcano plots representing the 
effect sizes of each of the variants. 
(a) A bar plot representing the fold change (FC; stained/unstained) for each of the 5-bp tiling mutagenesis 
Variant FlowFISH experiments at the PPIF locus. Bars: mean +/- 95% c.i. Dots: 4 FlowFISH technical 
replicates from each of 2 biological replicates (n=8). 
(b) Correlation of averaged variant frequencies across biological replicates for the PPIF enhancer and 
promoter Variant-FlowFISH experiments in THP-1 cells. Text at bottom right reports correlations for the 
variant frequencies from each of the FACS Bins (A-D).  
(c) Volcano plots for the PPIF enhancer and promoter highlight the effect size for each of the 5-bp edits on 
PPIF gene expression and the level of significance (q = Benjamin-Hochberg p-value, two-sided single-
sample t-test). Dots represent each individual 5 bp variant. Red line: q = 0.05. Red dots: q < 0.001. Yellow 
dots: q < 0.05. Gray dots: Not significant. 
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Supplementary Figure 6. Expression levels of candidate transcription factors binding to 
the PPIF enhancer and promoter in THP-1 cells.  
RNA expression from bulk RNA-seq in transcripts per million (TPM). Candidate transcription factors 
binding to the PPIF enhancer or promoter were selected via a FIMO analysis (using a HOCOMOCO v11 
database) of the sequences in these regulatory regions, with candidate factors having a TPM >8. Bars: 
mean. Dots: 2 technical replicates. 
 
 
 

 
 
Supplementary Figure 7. ChromBPNet42 predicts chromatin accessibility in THP-1 cells at 
the PPIF enhancer and promoter. ChromBPNet sequence interpretations (DeepSHAP) of the 
reference sequence at each of these loci show the predicted contribution of each nucleotide for 
chromatin accessibility signal.     
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Supplementary Figure 8. Power analysis of 8mer insertion screen in THP-1 cells. 
Relationship between power to detect a (a) 10% effect or (b) 5% effect on expression (q < 0.05)  and total 
cells assayed by Variant-FlowFISH for each 8-mer insertion screened in THP-1 monocytes. Power at a 
given effect size was calculated by using the number of FlowFISH replicates and observed standard 
deviation in THP-1 cells for every 8mer insertion in the screen. Solid line represents nonparametric lowess 
regression of the power on number of cells assayed. Dotted line represents 80% power.  
 
 
 
 

 
 
 
Supplementary Figure 9. Reproducibility of measurements across technical Variant-
FlowFISH replicates for 8mer insertion screen in THP-1 cells.  
Correlation of observed Variant-FlowFISH effect sizes across two technical replicates derived from the 
same biological replicate.  
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Supplementary Figure 10. Correlation of 8mer insertion effets to common heuristics for 
the global activities of corresponding transcription factors in THP-1 cells. 
(a) Correlation between the effect size of transcription factor binding site insertion edits and expression of 
the transcription factors predicted to bind them for the subset of edits with strong de novo binding site 
predictions and non-zero TF expression in THP-1 cells. Edits were included if they created a transcription 
factor motif instance identified by comparing ChromBPNet DeepSHAP prediction to TF-MoDISco motifs 
with TOMTOM from MEME Suite. 
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(b) Correlation between the effect size of transcription factor binding site insertion edits and frequency of 
motif matches for TF-MoDISco hits in THP-1 cells (a measure of the genome-wide importance of this 
transcription factor in influencing chromatin accessibility as estimated by ChromBPNet). 
(c) Correlation between effect size of transcription factor binding site insertion edits and average predicted 
importance (predicted effect on chromatin accessibility in a 1 kb window by ChromBPNet) of corresponding 
motif matches for TF-MoDISco hits in THP-1 cells. 
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Supplementary Figure 11.  Edit frequencies, cell coverage and reproducibility of effects 
measured by Variant-FlowFISH for 8mer insertion screen edits in Jurkat cells with or 
without stimulation. 
(a, b) Histograms of frequencies of each 8-bp insertion in the edited pool of cells as a percentage of alleles 
(bottom x-axis) and the corresponding minimum number of cells assessed by Variant-FlowFISH (top x-axis) 
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in (a) Jurkat cells and (b) Jurkat cells stimulated with PMA + anti-CD3 antibody. Bottom x-axis: frequency 
of edit in all sequencing reads. Top x-axis: Minimum number of cells assessed by Variant-FlowFISH.  
(c, d) Correlation of observed Variant-FlowFISH effect sizes across biological replicates in (c) Jurkat cells 
and (d) Jurkat cells stimulated with PMA + anti-CD3 antibody. Dots (n=41): all variants passing the 
frequency threshold. Red: q < 0.001. Yellow: q < 0.05, gray: q > 0.05 (Benjamini-Hochberg corrected p-
value, one-sample t-test). 
(e, f) Correlation of observed Variant-FlowFISH effect sizes across two representative technical replicates 
in (e) Jurkat cells and (f) Jurkat cells stimulated with PMA + anti-CD3 antibody. 
 
 

 
 
Supplementary Figure 12.  Differential effects of 8mer insertions on PPIF expression 
across conditions. 
Differential effects of 8-bp insertions on PPIF expression between (a) Jurkat cells and THP-1 cells, (b) 
Stimulated Jurkat cells and THP-1 cells, and (c) Stimulated and unstimulated Jurkat cells. Differential 
effects are the log2 fold changes of the effect sizes (second/first condition listed in a-c) and significantly 
different effects between conditions were determined using two-sided, two sample Welch’s t-test with a 
Benjamini-Hochberg multiple test correction. Horizontal dotted lines represent a corrected p-value of 0.05. 
Dots (n=41): all variants passing the frequency threshold. Dots are colored if the edit creates a predicted 
de novo motif instance of a transcription factor binding site (see legend). 
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Supplementary Figure 13. Gene expression of FOS and JUN family transcription factors.  
Expression of genes in the FOS and JUN transcription factor (TF) families across the three conditions as 
measured by RNA-seq in wild-type cells and represented as transcripts per million (TPM).  
 
 

 
Supplementary Figure 14. Correlation of change in 8mer insertion effects to change in 
common heuristics for global activities of corresponding transcription factors between 
cell types.  
(a) Correlation between the change in effect size of transcription factor binding site insertion edits across 
cell types and the change in expression of the transcription factors predicted to bind them for the subset of 
edits with strong de novo binding site predictions and non-zero transcription factor expression in both cell 
types. 
(b) Correlation between the effect size of transcription factor binding site insertion edits across cell types 
and change in frequency of motif matches for TF-MoDISco hits across cell types (for transcription factor 
motifs found by TF-MoDISco in both cell types). 
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Supplementary Figure 15. Validation of 8mer insertion effects with qPCR in clonally-
derived cell lines.  
We derived homozygous edited clonal THP-1 and Jurkat cell lines for each of three 8-mer insertions, which 
created predicted binding sites for (a) NRF1, (b) MYC, or (c) FOS/JUN. Expression of PPIF was measured 
in each clonally derived cell line (gray dots) using qPCR. Number of edited clones are shown in blue below 
each condition. Effects are normalized to homozygous wild-type clones in the corresponding cell type (n = 
162, 48, and 48 clones (edited + wild-type) for THP-1, Jurkat, and Jurkat+stim, respectively).  
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Supplementary Figure 16. Rescaling predicted effects of variants on accessibility at the 
PPIF enhancer to predict  effects on PPIF gene expression.  
We considered an alternative approach to assessing the effects of enhancer variants on gene expression, 
based on the notion that variants in a distal enhancer should locally affect the activity of that enhancer, and 
that altered enhancer activity should lead to a corresponding linear effect on gene expression. We 
computed the predicted effects of variants on accessibility at the PPIF enhancer and multiplied these effects 
by the measured effect of the enhancer on gene expression, which we previously quantified using CRISPRi-
FlowFISH (37%). Each scatterplot shows the correlation of effects on PPIF expression measured by 
Variant-FlowFISH with predicted effects on PPIF enhancer accessibility signal (left) and correlation using 
enhancer edit effects on the enhancer multiplied by the experimental effect of enhancer CRISPRi 
perturbation (0.37) on PPIF expression (right). The bottom row is the same as Fig. 4d. Top row shows 
similar analyses for Enformer. Approaches in the right column perform better than directly predicting the 
effects of edits at the enhancer on gene expression using Enformer (shown in Fig. 4b). Black line: Linear 
regression line of best fit. Legend lists Pearson’s r correlation coefficient, slope from the linear regression, 
and root mean squared error (RMSE) of the predicted effects on expression (%).  
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Supplementary Figure 17. Edit frequencies and cell coverage for Variant-FlowFISH screens 
in THP-1 and Jurkat for rationally designed sequence edits. 
Histograms of frequencies of rationally designed sequence edits in the edited pool of cells as a percentage 
of alleles (bottom x-axis) and the corresponding minimum number of cells assessed by Variant-FlowFISH 
(top x-axis) in (a) THP-1 cells and (b) Jurkat cells.  
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Supplementary Figure 18. Technical replicate reproducibility of effects measured on PPIF 
expression for rationally designed sequence edits.  
Correlation of observed Variant-FlowFISH effect sizes across two representative technical replicates in 
(a) THP-1 cells and (b) Jurkat cells n = 164 edits). 
 
 

 
Supplementary Figure 19. Effect sizes and p-values for rationally designed sequence edits 
in THP-1 and Jurkat.  
Volcano plots showing effects of designed sequence edit on PPIF expression measured by Variant-
FlowFISH in (a) THP-1 cells and (b) Jurkat cells. X-axis: Measured effect in Variant-FlowFISH. Y-axis: 
Benjamini-Hochberg corrected p-values from two-sided, one-sample t-test. Each dot represents a different 
edit (N = 164).  Horizontal dotted line: adjusted p-value = 0.05.  
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Supplementary Figure 20. Comparing the editing rates between two different RNA 
scaffolds in THP-1 PE2 cells 
(a) An alignment of the two scaffolds used in this experiment: Scaffold 1 RNA and the Flip and Extension 
Scaffold RNA 96. 
(b) A comparison between the two scaffold RNAs used during the pegRNA design, in terms of the 
percentage (%) of total editing seen at the PPIF enhancer and promoter in THP-1 PE2 cells, after 22-50 
days in doxycycline treatment (as indicated). Shown is the mean +/- 95% c.i for each of the bio-replicates. 
Dots represent PCR replicates (n=4). 
 
 

 
 
Supplementary Figure 21. Optimizing prime editing in THP-1 PE2 and Jurkat PE2 cells.  
(a) The percentage of total editing at the HEK3 locus in THP-1 PE2 cells when testing two different 
multiplicity of infection (MOI) amounts (0.2 MOI vs. 2 MOI). Shown are two PCR replicates from two bio-
replicates.  
(b) The percentage of total editing at the HEK3 locus in Jurkat cells, across time, as shown by the number 
of days of doxycycline treatment (which induces the PE2 editing machinery). 9 SNV edits and one MNV 
edit were introduced at the HEK3 locus, as shown in the legend. Coordinates for the HEK3 site are also 
shown.  
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Supplementary Figure 22. Representative FACS plots for Variant-FlowFISH screens 
(a) Representative flow plots displaying the gating strategy implemented for each cell type studied with 
Variant-FlowFISH, using PPIF as the gene of interest and RPL13A as the control gene. First, cells are 
sorted from debris using forward scatter versus side scatter (first column). Then, we select for single cells 
(second column). We then use a control sample that has not been treated with gene-specific target probes 
(but has undergone the rest of the FlowFISH protocol), and set a gate to exclude all but the top ~5% of 
control cells with the highest signal in both fluorescence channels (third column). Fourth column is a 
representative example of a successfully probed sample from each respective cell type. The gated region 
is the population of cells we sort. FSC: Forward scatter. SSC: Side scatter. Numbers on each plot represent 
the percentage (%) of cells included in the gate. (b) Representative plots of each cell type showing the 
distribution of fluorescence intensities from each cell. Gray: Control sample. Color: Sample treated with the 
indicated gene probeset. We reliably observe efficiently probed samples with both the RPL13a - Alexa488 
and PPIF - Alexa647 probesets. (c) Sample plots of our sorting gates in either the 6 bin or 4 bin setting. 
When using 4 bins we placed the sorting gates next to each other and so that they cover the entire 
distribution (~25% of the population captured in each gate). When using the 6-bin strategy we placed the 
sort gates equidistant from each leaving small gaps in between gates, and each gate captured 10-15% of 
the population. 
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