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Genetic studies often collect data using high-throughput
phenotyping. That has led to the need for fast genomewide
scans for large number of traits using linear mixed models
(LMMs). Computing the scans one by one on each trait is
time consuming. We have developed new algorithms for
performing genome scans on a large number of quantitative
traits using LMMs, BulkLMM, that speeds up the computa-
tion by orders of magnitude compared to one trait at a time
scans. On a mouse BXD Liver Proteome data with more than
35,000 traits and 7,000 markers, BulkLMM completed in a
few seconds. We use vectorized, multi-threaded operations
and regularization to improve optimization, and numerical
approximations to speed up the computations. Our soft-
ware implementation in the Julia programming language
also provides permutation testing for LMMs and is avail-
able at https://github.com/senresearch/BulkLMM.jl.
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Introduction
Genome scans, where genetic variants across the
genome are tested for association with traits of inter-
est, are an important tool to discover insights into the
etiology of a trait or disease. Recent advancements in
high-throughput technologiesmake it possible to collect
largenumber of traits in a single individual froma single
assay. Examples include studies with transcriptomics,
metabolomics, microbiome, etc. A common first step
in analyzing these data is to compute a genome scan of
each trait. This can be a computational challenge since
many thousands of traits may bemeasured. These com-
putational challenges are magnified when linear mixed
models (LMMs), the standard approach for genetically
structured populations (Li and Zhu, 2013), are used
since LMMs aremore computationally demanding than
linear models. In this work, we tackle the problem of
computing genome scans for a large number of quan-
titative traits using LMMs with the goal of providing
runtimes of a few seconds for populations of modest
size.
As an example dataset, consider the liver proteome data
from the BXD Longevity Study which measured ap-
proximately 35K liver proteins on 150 mice from 50

BXD strains (Ashbrook et al., 2021). Here, the goal is
to map the associations between all 35K liver proteins
and approximately 7K genetic markers. The standard
approach is to fit the LMM linear mixed model for each
protein and marker. This amounts to about 245 million
LMM fits. If one is using a LMM genome scan tool
such as GEMMA (Zhou and Stephens, 2012), then that
program has to be run 35K times. In addition to the
repetitive work having to run the program repeatedly,
the runtime can be overwhelming even if the tasks were
distributed and processed in parallel. When using an
interactive web such as GeneNetwork (Sloan et al., 2016)
speed is key as the user is expecting an answer in less
than a minute or even seconds. For interactive analy-
sis, the user may be prepared to sacrifice some accuracy
to get a quick overview of the main traits and markers
associated with each other; a more accurate and com-
putationally intensive can be done as a follow up. Thus,
our goalwas to design an algorithm that could complete
the analysis of the BXD liver proteome data in a few sec-
onds; we were prepared to make some approximations
to accomplish that.
Our implementation, which we call “BulkLMM” (for
performing LMMs on a lot of traits “in bulk”), uses
ideas for speeding up linear model scans for many
traits, combined with techniques for speeding up uni-
variate LMMs, optimization techniques, and efficient
implementation using the Julia programming language
(Bezanson et al., 2017).
The problem of efficiently computing genome scans for
a large number of traits using linear models was tackled
by Shabalin (2012) who showed that the scans can be
greatly speeded up using matrix multiplication instead
of performing scans one by one for each marker and
trait. The main reason for the speedup is that there are
efficient algorithms for matrix multiplication. The ten-
sorQTL (Taylor-Weiner et al., 2019) and LiteQTL (Trotter
et al., 2021) packages used GPUs to speed up the com-
putations further. They use the fact that matrix mul-
tiplication uses similar operations with different data,
which is an ideal candidate for GPU computation. For
computing the scans using LMMs, however, we have to
modify the approach used for linear models.
For speeding up the LMM, we use ideas from the
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FaSTLMM ("Factored Spectrally Transformed Linear
Mixed Models") family of algorithms (Broman et al.,
2019; Kang et al., 2010, 2008; Lippert et al., 2011; Zhou
and Stephens, 2012). Roughly speaking, FaSTLMM
speeds up maximum likelihood estimation by first
transforming the data by the spectral decomposition
kinship matrix used to express the genetic relatedness
of individuals. This effectively transforms the problem
into a weighted linear regression problem, which can
then be efficiently solved using standard algorithms. To
speed the LMMs in bulk further, we use ideas from
GridLMM (Runcie and Crawford, 2019) wherein a fi-
nite grid of parameter values is considered for opti-
mization. The core idea of BulkLMM is to use highly
optimized vectorized and matrix operations whenever
possible (as in LiteQTL) and make judicious choices in
the FaSTLMM algorithmic pipeline to reduce expen-
sive operations without sacrificing too much accuracy..
In addition to its main functionality designed for fast
LMM scans of multiple traits, BulkLMM also provides
a fast computation of permutation testing on a single
trait (Abney, 2015) and offers features for stabilizing
numerical computations.
The remaining article is organized as follows. In Sec-
tion 2, we outline the modeling framework and general
algorithm for fitting the model. In Section 3, we detail
our computational methods for speeding up genome
scans for multiple traits and give an overview of the
methods, including techniques for stabilizing numeri-
cal computations. In section 4, we analyze two datasets
using our implementation highlighting the runtimeper-
formances of our methods in comparison with existing
methods. Through our experimentation running our
package to perform association mapping on more than
32k expression traits, we demonstrate that BulkLMM
has achieved significant runtime improvements over
other popular software tools. We end in section 5 by
summarizing our conclusions, detailing scenarios suit-
able for analysis using BulkLMM, and outlining future
directions.

Statistical framework
In this section we outline our statistical approach be-
ginning with a description of the LMM, following with
the steps required to fit the LMM, and ending with our
approach to permutation testing.

Linear mixed models (LMMs).Consider the situation
where we have < traits and ? markers measured on
= individuals. Let H8 denote the 8-th trait vector (8 =
1,2, ...,<) and 69 (9 = 1, ..., ?) denote the 9-th marker
coded as allele dosage (or taking values between 0 and
1). Assume the following generative model for H8 :

H8 = -0�0+ 69�8 9 + &8 9

&8 9 ∼ #(0,�2
6 + �2

4 �)

Here, the matrix -0 contains the covariates that are in-
dependent of the testedmarker 69 , and the vector �0 con-
tains the corresponding coefficients. We let the marker
effect be specifically noted by the indices of trait and
marker as �8 9 . Then, (-0�0+ 69�8 9) becomes the system-
atic component of the model.
The random component &8 9 contributes to the variances
in the expression trait, which we assume to come from
two subsequent variance components: �2

6 and �2
4 �. We

denote the proportion of total variance explained by
genetic variants as �2

6 and the remaining unexplained
variance as �2

4 . The = × = matrix  , usually referred
as the kinship matrix, measures pairwise relatedness
identical by descent between each pair of two individ-
uals. Here, we further define the heritability parameter
ℎ2, as ℎ2 = �2

6/(�2
6 + �2

4 ), which denotes the ratio of the
genetic variance to the total variance. In this way, we
may re-parameterize both variance component param-
eters (�2

6 ,�
2
4 ) using (ℎ2 ,�2

4 ), and we emphasize that ℎ2

is bounded in the interval [0,1). We will later explain
how such reparameterization facilitates our estimation
algorithms. For each genome scan, we aim to test the
hypothesis of no marker effect (�0 : �8 9 = 0). Essentially,
to run genome scans through all pairs of traits andmark-
ers, we perform a one-degree-of-freedom test for each
pair.

Fitting the LMM.We are taking a similar approach to
the FaST-LMM algorithm. For simplicity of notation,
we omit the subscripts and denote simply H and 6 as
the trait and marker of interest for each test. We define
- = [-0 , 6] to be the design matrix of the tested marker
and additional covariates -0 independent to 6. The
fitting of an LMM consists of the following steps.

Decorrelation. Given the spectral decomposition of the
kinship matrix  = *�*) , where the diagonal ma-
trix � contains the eigenvalues of  on the diagonal
and * is the matrix with columns of the correspond-
ing eigenvectors, we rotate the original H and - by
(H∗ , -∗) =*)(H,-);
After rotation, the transformed data are distributed as

H∗ |-∗ ∼ #(-∗�,�2
6�+ �2

4 �)

We denote the ratio of the two variance components by
�, such that � =

�2
6

�2
4
= ℎ2

1−ℎ2 . Then, the covariance structure
can be written as

�2
6�+ �2

4 � = �2
4 (��+ �)

We note that the covariance of the rotated trait is de-
fined by a diagonal matrix with diagonal elements
{�2

4 (��8 + 1)}8=1,...,= where �8 is the 8-th eigenvalue of
 . Therefore, after rotation, we will have indepen-
dent observations in the rotated trait, each with the het-
eroskedastic (unequal)marginal variance definedby the
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two variance components �2
4 , � (in terms of ℎ2) and a cer-

tain eigenvalue �8 . We may then apply the maximum-
likelihood principle, or more specifically, the weighted
least-square (WLS) approach for estimating the fixed
marker effect and parameters of the two variance com-
ponents.

Weighted Least-Squares (WLS):. We write out the log-
likelihood function after observing the transformed
data (H∗ , -∗), as

ℓ (�,�2
4 , ℎ

2 |H∗ , -∗)

= −1
2 {= log(�2

4 )+
=∑
8=1

log(F8)+
1
�2
4

WRSS(�)}

WRSS(�) = (H∗−-∗�)),−1(H∗−-∗�)

Here,, is the diagonal matrix with diagonal elements
F8 = ��8 +1, where again � = �2

6/�2
4 , for 8 = 1, ..., =.

Assuming that the kinship matrix  is given and, there-
fore, its spectral decomposition is known, we notice that
the matrix, only depends on the unknown parameter
�. Given �, we derive the maximum-likelihood esti-
mates of the parameters � and �2

4 in closed form:

�̂ = (-∗),−1-∗)−1-∗),−1H∗

�̂2
4 =
(H∗−-∗�̂)),−1(H∗−-∗�̂)

=

This step is equivalent to estimation by the weighted
regression taking each weight as F−1

8
= (��8 + 1)−1, 8 =

1, ..., =.

Optimization of ℎ2. Plugging the two closed-form solu-
tions for the parameters � and �2, we notice that the
loglikelihood function for the data can be seen as a func-
tion of only the single parameter �.
In order to better estimate this parameter, we param-
eterize it using ℎ2 = �2

6/(�2
6 + �2

4 ), which has physical
meaning as the proportion of variance due to genetic
variants from the total variance and is bounded in the
interval [0,1).
Solving for the estimate of ℎ2 that maximizes the objec-
tive function will finally give us the estimates ℎ̂2, �̂, and
�̂2
4 that jointly maximize the likelihood. We applied a

one-parameter optimization algorithm Brent’s method
(Brent, 1971) to solve for the estimated value of param-
eter ℎ̂2.

Permutation testing.Our approach to permutation test-
ing combines the approach of Abney (2015) with Lite-
QTL. The essential idea is that given the heritability
estimate and, therefore, the weight matrix , , we can
reweight the observations so that the residuals have
zero mean and unit variance. Under the normality as-
sumption, they are also independent under the null.
We can permute them several time and reconstruct the
trait under the null hypothesis. We can then apply the

LiteQTL (matrix multiplication) approach to calculate
fit the model under the null.
After being de-correlated and re-weighted,

H† =,−1/2H∗ , -† =,−1/2-∗

H† |-† ∼ #(-†0#0+ 6†�6 ,�2
4 �)

where we used the notation 6 and �6 to denote the
tested marker and the corresponding effect. Under the
null hypothesis of no marker effect,

H† |-† ∼ #(-†0#0 , �
2
4 �)

Note that the transformed trait measurements are inde-
pendent but can have unequal means, as the matrix
of control covariates -†0 are usually not the identity
matrix. Regressing out the covariates gives us inde-
pendent, identically distributed (i.i.d.) residuals A0 that
since

A0 = H
†−-†0 �̂0

A0 ∼ #(0,�2
4 �)

Simply permuting observations in A0 allows to generate
samples that are i.i.d. under the null assumption. Then,
following the procedures of permutation test we per-
form the evaluation scheme previously demonstrated
on each of the permuted trait (vector of the same length
as H) to estimate the fixed marker effect and the result-
ing testing statistic of LOD. Empirical distribution of
the LOD scores from such permutation test framework
then allows us to derive estimates of the thresholding
values for determine the significance of the marker of
each scan.

Computational methods
In this section, we detail the computational strategies
we used to speed up the computation.

Heritability estimation precision. The computational
complexity of the LMM fitting scheme mainly comes
from the estimation of the heritability ℎ2, which requires
solving a one-parameter optimization problem of the
objective function on ℎ2, and the numericalmethodmay
be expensive. Once ℎ2 is estimated, the other two pa-
rameters have closed forms and can be easily obtained.
For the task of scanningmultiplemarkers, using one lin-
ear mixed model at a time for testing each marker, the
"Exact" estimation, referred to by other relevant work,
assumes that ℎ2 is independent from one model to an-
other. By "Exact" estimation, We mean that ℎ2 will be
re-estimated for testing each marker. This is a robust
but expensive approach, especially when the number
of markers is large. As a simple speed-up approach,
the "Null" estimation scheme does not re-estimate ℎ2

at each marker, instead using the approximate value
under the null with the baseline (non-marker) covari-
ates and applies the same estimate to test all markers.
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In BulkLMM, for each assumption, we have developed
scalable algorithms, all of which perform fast even for
scanning a large number of traits and markers. We bor-
row the names "Exact" and "Null" in the names of these
developed algorithms to refer to the two assumptions
on estimating ℎ2 each takes.
In the next subsection, we introduce the key computa-
tional technique underlying most of the speed-ups in of
our proposed algorithms.

Calculating LOD scores using matrix operations. Let’s
assume each trait can be modeled by a simple linear
regression with a single covariate; then, based on the
fact that the Pearson correlation and the '2 of testing
the single independent variable are equal in this case,
we may write the LOD score as

!$�8 9 =
=

2 log10

(
'((08
'((18 9

)
= −=2 log10(1− A2

8 9)

as a function of the correlation coefficient A8 9 between
each pair of trait H8 and marker 69 .
For a set of traits and markers, we can construct the
matrices . and � with each column in . being a trait
and each column in � corresponding to the marker to
be tested. Then, after standardizing the matrices . and
� such that each column has zero mean and unit norm,
their pairwise correlations can be efficiently computed
by a single matrix multiplication (Shabalin, 2012)

' =
1
=
.)B �B

where

.B = (.− �̂.)/| |.− �̂. | |
�B = (�− �̂�)/| |�− �̂� | |

Finally, to convert the pairwise correlation coefficients to
LOD scores, we only need to map each element in ' by
the simple one-parameter formula. By this scheme, we
do not have to perform a linear regression for each pair
of traits and marker, and calculations of LOD scores
of all traits and marker pairs can be done efficiently
by operations on matrices for which highly optimized
implementations are available.

Accelerating genome scans for multiple traits. To adapt
the matrix multiplication technique for bulk LOD score
calculations in linear mixed models, we observe that
by de-correlating and re-weighting the original data H
and - using a given matrix, , we achieve independent
transformed data with uniform error variances. This
allows us to apply the efficient approach used in sim-
ple linear regression. Therefore, the main difficulty lies
in how we can reasonably estimate the weight matrix
and, consequently, the heritability parameter for differ-
ent traits.

For performing scans on a single trait, this matrix multi-
plication scheme can be applied by replacing the matrix
.†with a single trait columnmatrix H† andusing the full
genotypes at all tested markers to construct matrix -†.
Then, by matrix multiplication and mapping the pair-
wise correlations, we can efficiently compute the LOD
score between the single trait and every marker. This
idea has led to our first algorithm by naively scanning
one trait at a time with the exact estimate of heritability
for each trait.
For convenience in our further demonstration of the
various algorithms we developed, we will use ℎ2

8 9
with

the two subscripts (8 , 9) to denote the heritability pa-
rameter for a particular trait H8 and marker 69 , where
8 = 1, ...,< (total number of traits) and 9 = 1, ..., ? (total
number of markers). Specifically, we use ℎ2

80 with 9 = 0
to denote the heritability under the null model when
there is no marker effect for each trait H8 . To also dif-
ferentiate between the use of the term "Exact" by other
relevant work, which indicates that the heritability for
each marker will be estimated independently, and our
use of the term "Exact" in the method’s name to empha-
size that the estimated value of ℎ2 is from optimizing
the actual objective function using numerical methods
rather than grid-search, we will use the different term
"Alt" (versue "Null") to have the same meaning as the
"Exact" as the previous work referred to.

Based on exact estimation of ℎ2
0. Assuming ℎ2

8 9
= ℎ2

80 for all
9, our naive approach to extend the use of the matrix
multiplication strategy to our linear mixed model case
is to construct the matrix .† in the scheme using one
trait H at a time while constructing the matrix -† using
all genome markers, which is outlined as follows:

Algorithm 1 Bulkscan: Null-Exact
Inputs .=×< , -=×(@+?),  =×=
Step 1: rotate all traits and markers

.∗ =*)., and -∗ =*)-
Step 2: distribute total < traits to C threads
Step 3: inside each thread, do:

for 8 = 1, ...,</C, do:
a. optimize ℓ (ℎ2; H∗

8
) under null to get ℎ̂2

80;
b. construct weights,8 =,(ℎ̂2

80);
c. re-weight to get H†

8
, -†(ℎ2

80);
d. standardize to get .B8 = {HB8 }, -B
e. compute '8 = 1

=.
)
B8
-B

e. map element-wisely to get !8 = 5 ('8)
each result is a ?-vector of LOD scores for H8

Output: the LOD scores for all traits and markers
are stored in the matrix ! = [!1 , !2 , ..., !<]

For further speed-ups over our first naive method, it is
tempting to think of approaches to construct the matrix
.† using not only one but ideally a fair portion of the
total number of traits to be tested, then the runtime is
expected to be reduced as a fraction of the runtime of
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the first algorithm. While such an approach to group up
traits may not be feasible by their exact estimates of her-
itability since parameters from optimizing the objective
function independently are very unlikely to be exactly
the same, some approaches by relaxing the precision
from exact estimation are promising to find common
estimates for multiple traits, enabling grouping of those
traits for applying one matrix multiplication for bulk
calculation of their LOD scores. This approximation
idea has motivated us to further improve the execution
time of our algorithms, and through our experiments,
for most cases, estimating the heritability parameter up
to some levels of precision can be sufficient to generate
results that are reliably accurate.

Based on grid-approximation estimation of ℎ2
0. The sec-

ond algorithm we propose, named Bulkscan-Null-Grid,
makes additional relaxation on the accuracy required
for the results by estimating the heritability of each trait
approximately on a grid of finite candidate values (Run-
cie and Crawford, 2019). In such a manner, we will
havemultiple traitswith the same heritability estimates.
Then, thematrixmultiplication approach for computing
the LOD scores for traits modeled by linear mixedmod-
els can be extended to testing multiple traits instead of
one, as our proposed algorithm "Bulkscan-Null-Exact"
does. The weighted likelihood function values for all
traits are computed under different weights each de-
pending on a candidate ℎ2. The final ℎ2 estimate for
each trait is determined as the candidate ℎ2 value that
yields the optimal value of the objective function. The
next step is to create batches for traits sharing the same
heritability estimate from the grid-search step. Within
each batch, the traits are used to construct the matrix
of responses .† and to perform matrix multiplication
as demonstrated to compute the LOD scores for those
traits.

Algorithm 2 Bulkscan: Null-Grid
Inputs .=×< , -=×(@+?),  =×= , ℎ2-grid of size �
Step 1: rotate all traits and markers

.∗ =*)., and -∗ =*)-
Step 2: for 1 = 1, ..., �, compute

ℓ1 = ℓ (.,-, ℎ2
1
) for all traits in .

and determine
ℎ̂2
80 = 0A6<0G{ℓ (H8 , -, ℎ2

1
)}�
1=1

Step 3: based on ℎ̂2
80 of each trait, group traits

with the same ℎ̂2
80 and create the matrix

.1 = [H{11} , H{12} , ...]
such that the traits in .1 share the same
estimated ℎ2 value ℎ2

1
Step 4: run multi-threaded operations to get

'1 = .
†)
1
-† and then compute !1 from '1

Output: the LOD scores for all traits and markers
are stored in the matrix ! = [!1 , !2 , ..., !�]

For demonstration of the algorithm, we use the nota-

tions ℎ2-grid = {ℎ2
1 , ℎ

2
2 , ..., ℎ

2
=ℎ
} to denote input grid of

=ℎ possible values and let ℓk = {;(H8 , -, ℎ2
:
)}<
8=1 be the

values of the objective function for each trait evaluated
at a given ℎ2

:
. The overview of the algorithm is as fol-

lows.
In Algorithm 2, it is important to note that each ℎ2 value
specifies a weight matrix , . Consequently, the step
of calculating log-likelihood function values for a fixed
ℎ2 can be efficiently executed for all traits through a
multivariate weighted regression, using. as a response
matrix with its columns representing the traits. Then,
the ℓk of the log-likelihood values for all < traits can
be seen as a row vector of length <. After computing
the objective function values for all values of ℎ2

:
, we can

stack the row vector ℓk’s to form a matrix. Therefore,
finding the optimal function value and the correspond-
ing parameter value ℎ2 for each trait is done by finding
the maximum value in each column of the resulting
matrix of log-likelihood values.

Based on grid-approximation estimation of ℎ2
0;C

. The third
method we propose, named Bulkscan-Alt-Grid, com-
bines the ideas of the grid-search approach for esti-
mating the heritability and the matrix multiplication
approach for efficiently computing LOD scores. It com-
putes the LOD score based on heritability estimated
independently from each marker tested for each trait.
A key observation is that for each test of a trait H8 and
the design matrix -9 containing the tested marker 69 ,
from the formula of the LOD score that

!$�(8 , 9) = log10{
!(� 9 ≠ 0|H8 , -9)
!(� 9 = 0|H8 , -9)

}

=
ℓ1(8 , 9)−ℓ0(8 , 9)

log(10)

we can recover

ℓ1(8 , 9) = ℓ0(8 , 9)+ log(10)!$�(8 , 9)

Therefore, under the linear mixed model scheme, for
a given ℎ2 value, we can first apply the matrix multi-
plication to compute the pseudo-!$�(8 , 9) for all 8 and
9. Then since ℓ0(8 , 9) can be calculated easily for all 8
and 9 (essentially because the null log-likelihood does
not depend on the specific marker 69) also by matrix
operations, we can recover the alternative model log-
likelihood under a ℎ2 for all 8 and 9 from the above
derivation. Specifically, these alternative model log-
likelihood valueswill be stored in amatrix of dimension
? ×< for each ℎ2

1
in the grid. By optimizing element-

wisely the ℓ1(8 , 9 , ℎ2
1
), we can get the estimated alterna-

tivemodel log-likelihood for each trait H8 andmarker 69 ,
under the optimal value of heritability for each alterna-
tive model containing each specific marker 69 . Finally,
the true LOD score evaluated under the optimal ℎ2

8 9
and
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Algorithm 3 Bulkscan: Alt-Grid
Inputs .=×< , -=×(@+?),  =×= , ℎ2-grid of size �
Step 1: rotate all traits and markers

.∗ =*)., and -∗ =*)-
Step 2: for each ℎ2

1
in the grid, use matrix multipli-

cation technique to compute !(ℎ2
1
) and

!0(ℎ2
1
) = [ℓ0(8 , 9 , ℎ2

1
)]8=1,...,<

Step 3: for the current ℎ2
1
, recover ℓ1(8 , 9 , ℎ2

1
) by

ℓ1(8 , 9 , ℎ2
1
) = ℓ0(8 , 9 , ℎ2

1
)+ log(10)!(8 , 9 , ℎ2

1
)

Step 4: maximize coordinate-wisely ℓ0 by setting
ℓ0(8 , 9 , ℎ̂2

80) = <0G8<D<ℎ2
1
∈ℎ2-grid{ℓ0(8 , 9 , ℎ2

1
)}

Step 5: maximize coordinate-wisely ℓ1 by setting
ℓ1(8 , 9 , ℎ̂2

8 9
) = <0G8<D<ℎ2

1
∈ℎ2-grid{ℓ1(8 , 9 , ℎ2

1
)}

Step 6: compute the matrix of LOD scores by

!$�8 9 =
ℓ1(8 , 9 , ℎ̂2

8 9
)−ℓ0(8 , 9 , ℎ̂2

80)
log(10)

Output: the matrix of LOD scores
! = [!$�8 9]8=1,...,<;9=1,...,?

ℎ2
80 for each 8 and 9 can be calculated based on

!$�(8 , 9) =
ℓ1(8 , 9 , ℎ2

8 9
)−ℓ0(8 , 9 , ℎ2

80)
log(10)

where ℎ2
8 9
and ℎ2

80 are each the optimal heritability esti-
mated from the alternativemodel containing themarker
69 and the null model, respectively.

Numerical stabilizing techniques.When performing a
large number of genome scans in parallel, the chance
of encountering unlikely situations is increased. There-
fore, in addition to speed, we have to also pay attention
to numerical stability because otherwise, a whole batch
of computations can fail because of one unusual trait
or marker. We first discuss boundary avoidance, which
is focused on techniques to avoid situations when the
heritability is exactly 1. We follow with an improve-
ment to heritability estimation using Brent’s method by
sudividing the unit interval into subintervals to avoid
multiple local maxima.

Boundary Avoidance. Notice that if the estimated �2
4 ≠ 0,

the objective function maximized at the closed-form,
maximum-likelihood estimators �̂ and �̂2

4 for optimiza-
tion on ℎ2 can be written as

ℓ (�̂, �̂2
4 , ℎ

2 |H∗ , -∗) = −1
2 {= log(�̂2

4 )+
=∑
8=1

log(F8)+=}

= ℓ ∗(�̂, �̂2
4 , ℎ

2 |H∗ , -∗)+�

where � = −=/2 is a constant term.

Let us look carefully log-likelihood function as the her-
itability estimate ℎ2 approaches 1. We write the above

function as

ℓ ∗(�̂, �̂2
4 , ℎ

2 |H∗ , -∗) = −1
2 {= log(�̂2

4 )+
=∑
8=1

log(F8)} + 2

= −1
2

(
=∑
8=1

log(�̂2
6�8 + �̂2

4 )
)

As ℎ2 = �2
6/(�2

6 + �2
4 ) approaches 1, �2

4 approaches 0.
The log likelihood will blow up to infinity if there
is at least one �8 ' 0. That is possible when the
kinshipmatrix is not full rank, for example when two or
more individuals have the samegenotype at allmarkers.

To correct the numerical issue of heritability being es-
timated at 1, we take a Bayesian maximum a posteriori
(MAP) approach for estimating the residual variances
�2
4 , by imposing a prior on �2

4 during its estimation
(Galindo Garre and Vermunt, 2006). The prior distri-
bution represents our prior belief that the residual vari-
ances are very unlikely to be 0. Specifically, we imple-
ment the prior distribution of a Scaled-Inverse-"2 on the
�2
4 , with scale parameter �2

0 and "2 degrees of freedom
E0, and a support of (0,∞). Therefore, rather than es-
timating �2

4 by maximizing the log-likelihood function,
we estimate by maximizing the log posterior distribu-
tion, where the posterior is proportional to the product
of the prior and the likelihood function of the data:

?(�2
4 |H∗ , -∗) ∝ ?(H∗ |�2

4 , -
∗) ?(�2

4 ).

We take this prior choice mainly for taking the compu-
tational advantage of the Inverse-"2-Normal conjugacy,
for easily evaluating the a posteriori without the need
to evaluate the integral for marginal distribution of the
data (Gelman et al., 2013). Finally, for estimating the her-
itability ℎ2, we plug in the MAP estimates of �̂2

4 (ℎ2) and
�̂(ℎ2) to the log-posterior as the final objective function
and apply numerical optimization methods, similarly
as the approach of no added prior.

Sub-regional numerical optimization using the Brent’s
method. When we estimate the variance components
of the LMM by optimizing the heritability we apply
Brent’s method over [0,1). The Optim.jl package
in Julia provides an implementation of this method.
However, Brent’s method is sensitive to the initial guess
as well as the shape of the objective function and can
produce incorrect results if the objective function has
more than one local minimum over the optimization
interval.

To mitigate these issues, we provide an option to sub-
divide the whole optimization region and applying
Brent’s method to each sub-interval. The final result is
determined by comparing the objective function at the
sub-interval roots. The number of sub-divisions is given
by the user; more subintervals give greater accuracy at
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Fig. 1. Estimation of heritability bymaximum likelihood. Demonstration of this issue is
reproducible using the sample BXDSpleen data. We show the curves of the objective
function (log-likelihood) under the null model and under the alternative model testing
the 229th marker, with each curve consisting of 1000 values under a ℎ2 value 0.0,
0.001, ..., 0.999. Without correction, both objective function values blow up near
heritability of 1.

Fig. 2. Estimation of heritability by maximize-a-posteriori after imposing the prior
Scaled-Inv-"2(E0 = 0.1,�2

0 = ˆE0A(H)). We show the curves of the objective function
(log-posterior) under the null model and under the alternative model testing the 229th
marker, with each curve consisting of 1000 values under a ℎ2 value 0.0, 0.001, ...,
0.999. With boundary avoidance correction, both objective functions become con-
cave and estimation produces more reliable heritability estimates.

the price of lower speed. In some cases, narrowing
down the search space might lead to a better conver-
gence rate for Brent’s method. As the optimization in
each sub-interval is independent, even faster compu-
tational speed can be achieved if these operations are
parallelized.

Results
In order to provide the future users of BulkLMMa com-
prehensive view of its performances under various sce-
narios, depending on the sizes of the input data, as well
as the options for model evaluation requested by the
user, we used BulkLMM to perform two analyses - one
on the BXD mice liver proteome traits and the other on
the heterogenous stock (HS) rats prelimbic cortex tran-
scriptome. We describe the runtime performance of our
algorithms and follow it by an assessment of the accu-
racy of the algorithms. The goal is to assess the tradeoff
between speed and accuracy, so that the user can make

Data Method Runtime
BXD Liver Proteome BulkLMM-null-exact 100s

BulkLMM-null-grid 4.8s
BulkLMM-alt-grid 52s
GEMMA (alt-exact) 450s

HS Prelimbic Cortex BulkLMM-null-exact 440s
BulkLMM-null-grid 14s
BulkLMM-alt-grid 570s
GEMMA (alt-exact) 220,000 s

Table 1. Runtime performances by BulkLMMmethods and GEMMA on two datasets.
For our two grid-search based methods, namely "Null-Grid" and "Alt-Grid", the exe-
cution times were from running these methods on a coarse grid (0.1) of ℎ2 (i.e. a
grid of 10 values from 0.0 to 0.9 with the stepsize of 0.1). We observed the fastest
computational speed on the BulkLMM-null-grid approach ; the BulkLMM-null-exact
and BulkLMM-alt-grid come next (depending on the dataset); and GEMMA is much
slower.

informed choices.

Datasets. The BXDmice liver proteome data consists of
individual-level measurements on a total of 32445 liver
proteins. The 248 individual samples came from 50
BXD strains genotyped at 7321 markers. This data has
a modest sample size with population structure so that
the genetic analysis should be done using LMMs.
The second dataset is from 80 heterogeneous stock (HS)
rats whose prelimbic cortex transcriptome was mea-
sured using 18,416 features. These rats were genotyped
at 117,618 markers making it a larger dataset in terms of
number of markers.

Runtime performance. To assess runtime performance
of BulkLMM under we executed each BulkLMM
method as well as the univariate LMM genome scan
in GEMMA on overall< (32K for the BXD data and 18K
for the HS data) traits and recorded their runtimes. For
BulkLMM, we used a 24-threaded Julia session on the
most recent stable release of Julia, version 1.9.2, where
the optimization of ℎ2 was based on REML and on a
grid of 0.1 ℎ2-stepsize. Since the method in GEMMA
for univariate linearmixedmodeling takes only one trait
at a time, we iteratively ran GEMMA on 1000 randomly
selected traits and approximated the runtimes for pro-
cessing all < traits by the execution times for 1000 traits
times </1000. Such extrapolation is reasonable since
running GEMMA iteratively for GWASs on multiple
traits has runtimes that are approximately linear in the
number of traits. A summary of the approximated run-
time of each method is shown in Table 1.

Numerical accuracy compared to GEMMA.We com-
pared the numerical accuracy of our methods to that
from GEMMA, which optimizes the heritability at each
marker.
We verified that BulkLMM would generate reliable re-
sults by comparing the results from 1000 randomly se-
lected traits in the BXD individual liver proteome data.
We compared the results from both methods on the
− log10(?) scale. As a summary, we report the sample
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BulkLMMmethod MAD Runtime
null-exact 0.0095 5.1s

null-grid (0.1) 0.018 0.38s
null-grid (0.05) 0.012 0.64s
null-grid (0.01) 0.010 2.5s
alt-grid (0.01) 0.011 1.4s
alt-grid (0.05) 0.0038 2.8s
alt-grid (0.01) 0.00097 14s

Table 2. BulkLMM runtimes and accuracy (MAD, mean absolute difference) for spe-
cific choices of methods and sizes of ℎ2-grid. We use the number in the parenthesis
after the name of the method to denote the stepsize of ℎ2-grid. The runtimes use
1000 randomly chosen BXD dataset traits, and GEMMA is used for accuracy base-
line. We can see that the null-grid approach with a coarse grid (0.1) is the fastest,
while still maintaining reasonable accuracy. The alt-grid method with a coarse grid
(0.1) is faster than the null-grid method with a fine grid (0.01), while being about as
accurate. The alt-grid method with a fine grid (0.01) is almost indistinguishable from
GEMMA and is 10 times slower than the alt-grid method with a coarse grid.

mean of the element-wise absolute difference over the
total of number of traits (1000) and markers (7321) in
Table 2. We see that for “alt-grid” approach with a
fine (0.01) grid is almost the same as GEMMA, and that
“null-grid” method on a coarse (0.1) grid is the fastest,
but the greatest approximation error. This is reinforced
in Figure 3 which plots the GEMMA output with the
output from the “null-grid” coarse grid, and “alt-grid”
fine grid approaches.

Fig. 3. P-values from running "null-exact" and "alt-grid" with a ℎ2-grid of 100 val-
ues in comparison with GEMMA on the BXD data. 1000 randomly picked p-values
were plotted. The closer the points to the solid line suggests better accuracy as to
reproduce GEMMA results. In Fig.2, we notice that by using a grid of 100 values
representing a resolution of 0.01, our "alt-grid" results are much closer to GEMMA
results.

Runtime and accuracy as a function of ℎ2-grid size.One
of our approaches to speed the LMMs in bulk is to per-
form a grid search across a discrete set of points in the
interval of [0,1). The performance of our two methods
based on grid-search depend on the ℎ2-grid resolution.
For our fastest algorithm, the "null-grid", which is ben-
efited from and therefore has runtimes affected by such
shortcut the most, we ran the method and recorded
the execution times under ℎ2-grid of different step-sizes
from 0.01 to 0.1 (corresponding to sizes of ℎ2-grid from
100 to 10), for performing a scan over all 32k traits of the
BXD liver proteomedata. Weplotted the runtime curve,

Fig. 4. Line plots showing run times and errors from running "null-grid" by different
sizes of ℎ2-grid, from 1 to 100 values. We observe that runtime is almost linear and
error decrease more rapidly for low ℎ2-grid sizes. This suggests that while runtime
of the null-grid method increases linearly with the sizes of the ℎ2-grid, the errors de-
creases sharply when increasing the sizes from low ℎ2-grid sizes, and the marginal
gain in accuracy by increasing ℎ2-grid size will continue to decrease until no signifi-
cant marginal impact.

aswell as the curve of themean deviation of LOD scores
compared to LOD scores from the null-exact method, as
functions of the ℎ2-grid size, shown in Figure 4.
We also compared the accuracy of the “alt-grid”method
as a function of grid size, and find that while both are
quite accurate, a fine (0.01) grid gives results almost
identical to GEMMA (Figure 5).

Fig. 5. P-values from running "alt-grid" with two grids of 100 and 10 values in com-
parison with GEMMA on the BXD data. 1000 randomly picked p-values were plot-
ted. The closer the points to the solid line suggests better accuracy as to reproduce
GEMMA results. In Fig.3 we further notice that by using a grid of 10 values repre-
senting resolution of 0.1, our "alt-grid" results are still not so different as compare to
GEMMA.

Adjustment of sample relatedness by using LMMs. The
most fundamental reason for favoring the linear mixed
models over linear models for GWAS is to control for
the genetic relatedness among the sample individuals.
We compared the 1000 randomly selected results in the
format of−log10(?), from runningBulkLMM"null-grid"
and "alt-grid", each with a ℎ2-grid of stepsize 0.01 with
the results computed from simply linearmodels. Figure
6 plots the comparison of these results.
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Fig. 6. Comparison of results on the individual-level on BXD liver proteome by linear
mixed models and by linear models. For linear mixed modeling, results from running
"Null-Grid" and "Alt-Grid" with 10 and 100 ℎ2 values respectively are shown. These
results indicate that the − log10(?) from LMMs are almost always lower than those
from the corresponding linear models, suggesting a lower effective sample size due
to genetic relatedness.

Discussion
Our BulkLMMpackage is able to performgenome scans
for thousands of traits in moderately-sized populations
in a few seconds (5 seconds for the BXD data, 14 sec-
onds for the HS data). These represent speedups of 94
times and 16,000 times respectively compared to run-
ning GEMMA one trait at a time. Running GEMMA
one trait at a time scales linearly with the number of
traits, and may be infeasible for some datasets. We be-
lieve our approach makes these datasets tractable and
opens up the possibility of interactive analyses in real
time for genome scans for high throughput traits.

Trade-off between runtime and precision.Wewere able
to achieve our fastest speeds with the “null-grid”
methodwhich uses two approximations: (a) it estimates
the heritability under the null only and (b) it considers a
grid of heritabilities. The method then groups the traits
by the best heritability on the grid, and then usesmatrix
multiplication to efficiently calculate the LOD scores.
This method was the least accurate of the three algo-
rithms, "null-exact", "null-grid" and "alt-grid", for fit-
ting the LMMs. Our results show precision of the
results given by these algorithms as well as the their
runtime performances reflecting the slightly different
approaches each taken for estimating the heritability.
Methods that allow for greater slack in heritability es-
timation therefore have faster speeds. We let the user
choose the approach that fits their needs. For a quick
overview, the “null-grid” method is the best, but if
greater accuracy is needed, the “alt-grid” method on
a finer grid is recommended. Since the speed scales lin-
early by the number of grid points, we suggest using a
coarser grid first before using finer grids.

Performance characteristics.As for the accuracy of
BulkLMM, all of our methods generate reliable results,
reflected by the diminutive differences to the results
from GEMMA. Based on the results of eQTL analyses

of randomly selected 1000 BXD liver proteome traits us-
ing BulkLMM and GEMMA, we show that the mean
absolute difference in LOD scores is less than 0.02 for
our least-accurate but fastest method, and for our most-
accurate method which does the exact-LMM similar to
GEMMA but taking a grid-search approximating ap-
proach, the difference is less than 0.001.

Impact of data size.Our key computational technique
for speeding up genome scans for a large number of
traits is to convert the iterativeprocesses to a set of equiv-
alent operations on large matrices, with the sizes of the
matrices depending on the number of individuals, phe-
notypes and genotyped markers. The HS data had a
smaller number of individuals and traits, but a much
larger number of markers than the BXD dataset. The
runtimes for the HS data were much longer, but there is
not a simple relationship in the runtimes. In general, we
expect the runtimes to also depends on the architecture
of the machine (number of threads/cores, CPU speed,
bus speeds, and available RAM). For datasets with a
very large number of markers, it would be preferable
to split up the computation by chromosome or smaller
subsets to make the data fit in memory.

Additional features of the implementation.Although
we are focussed on performing LMM genome scans in
bulk, we provide some additional features that many
users might find useful. First, we provide a permuta-
tion testing for a single trait which utilizes the key ma-
trix multiplication approach for efficiently calculating
the LOD scores for permuted copies and can perform in
real-time. Second, if the residual variances that may not
be equal for all individuals, we allow the user to specify
a weighting scheme for a weighted LMM. This feature
is useful if we have unequal replicates per recombinant
inbred line, and we wish to use the strain mean as the
trait value. Finally, we provide the option to provide a
prior for the residual variance. While our motivation
was boundary avoidance, this feature can also be used
when summary data is used for the genome scans. We
will expand on this topic in a future publication.

Potential limitations.While we have succeeded in
speeding up the process of computing LMM genomne
scans in bulk, we made a number of design choices that
have consequences.
No missing data. Themost important practical limitation
is that we assume that our phenotype and genotype
inputs have no misssing data. The user has to either
impute or remove individuals/markers with missing
data. Genotypes are routinely imputed and should not
present a major obstacle. Imputation of the traits may
be more challenging, but with high-quality data this
should not be a major limitation.
One degree of freedom tests. Our speedups rely on ma-
trix multiplication, and that approach assumes that
we are interested in one-degree of freedom tests for
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genomewide scans. For most GWAS panels and re-
combinant inbred panels such as the BXD family that is
not a problem. Additional work is needed for situations
where two or more degree of freedom tests are needed.
Single kinship matrix for measuring relatedness. Our LMM
framework assumes that genetic relatedness can be ade-
quately adjusted using a single kinship matrix. In some
situations (such as when a dominance kinship matrix is
desired), thatmay not be adequate, and additionalwork
would be needed to handle multiple kinship matrices.
Grid search. The precision of our grid-search methods
depend on the shape of objective function as a function
of the heritability. If the curvature of the actual function
is largenear themaximum, thenour grid approximation
may not fare well. Empirically, this can be tested by
using a finer grid and comparing the results. If there is
a big change, the finer grid should be used.
Variance independent of mean assumption. Our implemen-
tation is designed for traits whose variance in idepen-
dent of the mean. For count data or binary data, al-
ternative approaches need to be devised. Finally our
framework is designed for multiple independent quan-
titative traits. In some situations, a multivariate linear
mixed model may be more suitable (Kim et al., 2020).

Implementation in Julia language.We implemented our
software in the Julia programming language (Bezanson
et al., 2017) which has computational speed compara-
ble to some lower-level languages such as C, C++, but
has clean syntax similar to high-level languages such as
Python and R. Our implementation used Julia’s support
for multithreading. Further speedups may be possible
with the use of GPUs and may be a topic of future in-
vestigation.

Data availability
For the two datasets used during our experimentation,
the BXD individual liver proteome and the HS rats
mRNA data, both are open to public access and are
accessible from the GeneNetwork database at https:
//genenetwork.org/. The BXD liver proteome data of
BXD Longevity Study can be obtained by using the file-
name EPFL/ETHZ BXD Liver Proteome CD-HFD (Nov19)
or the accession code: GN886. The Prelimbic Cortex
mRNA data of HS-Palmer Rats are accessible using the
following query in GN:

• Species: Rat

• Group: NIH Heterogeneous Stock (Palmer)

• Type: Prelimbic Cortex mRNA

• Dataset: HSNIH-Palmer Prelimbic Cortex RNA-
Seq (Aug18)

• Get Any: *
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