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Abstract 16 

As the dimensionality, throughput, and complexity of cytometry data increases, 17 
so does the demand for user-friendly, interactive analysis tools that leverage 18 
high-performance machine learning frameworks. Here we introduce 19 
FlowAtlas.jl: an interactive web application that bridges the user-friendly 20 
environment of FlowJo and computational tools in Julia developed by the 21 

scientific machine learning community. We demonstrate the capabilities of 22 
FlowAtlas using a novel human multi-tissue, multi-donor immune cell dataset, 23 
highlighting key immunological findings.  24 

Introduction 25 

Rapid advancements in flow and mass cytometry have brought about a new era of 26 
high-dimensional cell phenotyping. However, this has not been matched by 27 
developments in free-access, coding-free, user-friendly, interactive data analysis 28 
tools. Computational pipelines built in scripting languages such as R or Python, require 29 

significant coding literacy, hampering their adoption by the wider biomedical 30 
community. Additionally, the limited computing power of most laboratory computers 31 
often demands data down-sampling to run commonly used dimensionality reduction 32 
(DR) methods, risking loss of rare cell populations.  33 

Although DR and cell population clustering algorithms have gradually been integrated 34 
into popular analysis platforms such as FCS Express and FlowJo as core features or 35 
add-on plugins, these implementations of algorithms such as FlowSOM and tSNE can 36 

lack downstream interactivity with the dimensionality-reduced data and still require 37 
substantial data down-sampling, ultimately reducing their utility. In addition, as open 38 
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data access becomes the standard, there is a need for computational tools that allow 39 
datasets, acquired using different cytometry panels, to be integrated to facilitate data 40 
re-use and validation. 41 

Here we introduce FlowAtlas — a free-access, graphical data analysis environment 42 
that aims to address these problems. We chose to write FlowAtlas in Julia [1], a 43 

programming language specifically designed for high-performance scientific 44 
computing and machine learning applications. This gave us access to some of the 45 
fastest algorithms available today [1],[2]. We showcase the capabilities of FlowAtlas 46 
using a novel, human flow cytometry dataset, consisting of immune cells extracted 47 
from tissues of five deceased organ donors and immunophenotyped using three 48 

different antibody panels.  49 

FlowAtlas Design 50 

FlowAtlas integrates with FlowJo 51 

We designed FlowAtlas to be an open source, fully graphical, interactive high-52 
dimensional data exploration tool that does not rely on command-line input or coding 53 
literacy. FlowAtlas links the familiar FlowJo workflow with a high-performance machine 54 

learning framework enabling rapid computation of millions of high-dimensional events 55 
without the need for down-sampling (Figure 1).  56 

FlowAtlas parses user-defined individual channel transformation settings from FlowJo 57 
as well as channel, gate and sample group names, ensuring optimal embedding 58 
geometry and ease of data exploration. The resulting embedding is highly interactive, 59 
offering zooming to explore deeper cluster structures, colouring and filtering of 60 
embedded events by custom conditions, generation of frequency statistics and 61 

drawing of regions of interest (ROIs) to perform comparative analysis of marker 62 
expression using violin plots. Moreover, FlowAtlas allows merging and concurrent 63 
analysis of non-identical panels. Individual samples remain identifiable in the 64 
embedding, since the files are not concatenated. 65 

Data exploration happens in an iterative, user-guided discovery loop with FlowJo, 66 
where traditional FlowJo gating strategies provide the initial annotation of main cell 67 
populations, experimental conditions, and sample groupings to enable the 68 

identification of new subpopulations in the interactive embedding. The user 69 
periodically returns to FlowJo to add new population annotations as they are 70 
discovered in FlowAtlas. 71 

FlowAtlas enables rapid dimensionality reduction without data downsampling 72 

We eliminated the need for data down-sampling and enabled visual exploration of 73 
hundreds of millions of cells by utilising methods within the GigaSOM.jl3 library and 74 
the interactive web libraries OpenLayers [3] and D3.js [4]. 75 

GigaSOM.jl library and its constituent algorithms implement the functionality of self-76 
organising map (SOM)-based clustering [5] and dimensionality reduction in Julia 77 
programming language. This enables considerable improvements in computational 78 

performance [6] over the current gold-standard SOM and metaclustering-based R 79 
package FlowSOM [7], utilised by the majority of open-source analysis workflows and 80 
commercial software platforms including FlowJo and Cytobank [8]. The dimensionality 81 
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reduction algorithm, EmbedSOM, used in the GigaSOM library, has demonstrated a 82 
reduction in the computational time requirements of 10-30-fold against popular 83 
dimensionality reduction algorithms including UMAP and tSNE [9].  84 

We compared the computational performance of FlowAtlas to two alternative tools for 85 
dimensionality reduction that also do not require command-line input on a laboratory 86 
laptop with the following identical configuration: Dell XPS15, 64-bit Windows OS, 87 

32GB RAM, 8th generation core i7-8750H processor, 2.20 GHz. Examples graphical 88 
outputs from DR with each tool are shown in Supplementary Figure 1. 89 

Our tissue-derived immune cell conventional flow cytometry dataset, which is 90 
presented as an example throughout this manuscript, consists of 3.88 million total live 91 
single cell events (32 FCS files, 19 fluorescence parameters). Donor characteristics, 92 
panels and antibodies used are shown in Supplementary Table 1, Supplementary 93 

Table 2 and Supplementary Table 3. 94 

Dimensionality reduction of samples stained with panel C (2.32 million events) in 95 

FlowJo (v10.8.1), using the inbuilt tSNE function, took 49 min. In FCS Express 96 
(v7.18.0025), the same subset of samples was processed in 125 min. The full dataset 97 
could not be subjected to DR on these platforms due to panel differences preventing 98 
file concatenation. 99 

The full dataset (panel A, B, and C 3.88 million events) was processed in FlowAtlas in 100 
18 min, which included DR and clustering steps (Table 1). When analysed as 101 
individual files or group of files concatenated by panel, FlowJo tSNE processed the 102 

full dataset of 3.88 million events in 6 hours. We did not attempt the same procedure 103 
in FCS Express, but it was expected to exceed 125 min required for DR of panel C 104 
samples. 105 

Additionally, we compared the performance of FlowAtlas against two other non-106 
command line clustering tools: the EmbedSOM clustering algorithm (v2.1.7) 107 
implemented as a plugin in FlowJo; and the FlowSOM algorithm implemented in the 108 
popular subscription-based cloud analysis platform Cytobank. For this test, we utilised 109 

a spectral cytometry dataset of whole human blood, which is publicly available as a 110 
demonstration experiment in Cytobank repository [10]. This dataset contains whole 111 
peripheral blood samples in 3 FCS files (23 fluorescence parameters, 512,000 112 
events). The published data were fully unmixed and compensated; we cleaned them 113 
of debris based on scatter parameters prior to analysis, leaving 449,488 events. In 114 

FlowJo (v10.8.1), we recreated the basic gating strategy demonstrated in the 115 
Cytobank analysis to identify large major cell populations including granulocytes, B-116 
cells, T-cells and NK cells (Supplementary Figure 2). We then subjected the total 117 
single cell events to DR and clustering in FlowAtlas, according to the procedure 118 
described in “Recommended FlowAtlas workflow: iterative interactive cell population 119 

discovery integrated with FlowJo”. In parallel, we replicated the demonstrated DR 120 
analysis in Cytobank (FlowSOM-on-viSNE, consensus clustering, 23 clustering 121 
parameters, without normalisation, 20 metaclusters and 100 clusters, seed 122 
770593711). Analysis in Cytobank recommended downsampling to 420,000 events by 123 
equal random sampling (actual number of sampled events= 421,669). Lastly, we 124 

subjected the same cleaned FCS files to EmbedSOM clustering in FlowJo (v10.8.1, 125 
EmbedSOM v2.1.7; k nearest neighbours = 25, SOM grid= 20 x 20).  126 

Clustering in Cytobank was executed in 12 minutes, excluding time required for prior 127 
viSNE dimensionality reduction. Computation in FlowAtlas took 2.5min, including 128 
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embedding time. Computation in FlowJo completed in 5min 30s and, as expected, it 129 
created three embeddings with different topography (one per file, since files were not 130 
concatenated prior to analysis).  131 

 

Dimensionality 

reduction 

 FlowAtlas FlowJo tSNE (native) FCS Express 

Samples Events Compute 

time 

% CPU Compute 

time 

% CPU Compute 

time 

% CPU 

423C Spleen 379,994 2 min 8.3 7 min 15 s 90 % 9 min 30 s 100% 

412C, 423C, 428C 

all tissues 

2.32 million 9 min 30 s 8.5 49 min 90 %  125 min* 100% 

Full dataset 3.88 million 18 min 8.5 Up to 6 

hours† 

100% NR*† NR 

Clustering  FlowAtlas EmbedSOM FlowJo EmbedSOM Cytobank FlowSOM 

Samples  Events Compute 

time 

Events Compute 

time 

Events Compute 

time 

23 colour spectral 

human blood (3 

files) 

 449, 488 2 min 30 s 449, 488 5min 30 s 421,669** 12 min 

Downsampling  no no **Yes, required 

Table 1 Best computational times with FlowAtlas and other high-dimensional data processing tools. CPU 132 
usage and time required by FlowAtlas, FlowJo, and FCS Express to perform dimensionality reduction on a Dell 133 
XPS15 9570 laptop with 32Gb RAM, i7-8750H CPU 2.20GHz processor. FlowJo version 10.8.1 using native tSNE 134 
tool; FCS Express version 7.18.0025. opt-tSNE settings in both platforms: all fluorescence channels, perplexity 30, 135 
iterations 1000, learning rate (eta): automatic; KNN algorithm: ANNOY, with Barnes-hut approximation (=0.5). In 136 
FlowJo and FCSExpress, different embedding topographies were produced for each sample unless samples were 137 
concatenated prior to DR. Samples stained with different panels cannot be concatenated. Times represent best 138 
results from 2-3 independent attempts. NR= not run. *Software became unresponsive on 2 of 3 previous trials. 139 
†Different panels cannot be merged, so embedding geometry varies by file. ** Downsampling required. 140 
Computation time for clustering of the indicated number of events from a publicly available spectral dataset in 141 
FlowAtlas, FlowJo, and Cytobank. The dataset is from Cytobank experiment number 191382. Time in Cytobank 142 
excludes the DR step. CPU usage is not reported for clustering analysis since it is not relevant to the cloud-based 143 
Cytobank platform.  144 

 145 
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Recommended FlowAtlas workflow: iterative interactive cell population 146 

discovery integrated with FlowJo 147 

 148 

Figure 1. Overview of FlowAtlas workflow with FlowJo. a, First, anomalous events are removed from 149 
the raw data. b, High-quality files are then pre-processed in FlowJo (Step 1) and exported. Exported 150 
files are then opened in a new FlowJo workspace and prepared for FlowAtlas-assisted analysis. Step 151 
2: annotation of fluorescence channels; Step 3: panel-specific gating of matched populations across all 152 
datasets; Step 4: grouping of samples by desired conditions. Importing the updated workspace file into 153 
FlowAtlas triggers automatic panel merging, embedding calculation, and launches interactive web 154 
interface (c), where embedded events can be re-coloured and filtered by conditions and groups that 155 
were defined in FlowJo. ROIs can be drawn directly in the embedding generating violin plots showing 156 
marker expression. Box plots can be generated to show frequencies of selected populations and 157 
conditions. Novel populations identified in FlowAtlas can be validated and annotated in FlowJo. The 158 
updated workspace file can then be reopened in FlowAtlas to import new annotations; FJ - FlowJo; FA 159 
- FlowAtlas. 160 

 161 

A typical analysis workflow using FlowAtlas concurrently with FlowJo is described in 162 
Figure 1. We recommend to quality control raw FCS files and remove anomalous 163 
events using dedicated tools such as FlowAI [11] or FlowCut [12]. The cleaned files 164 

should then be opened in FlowJo where the compensation accuracy is verified and 165 
live, single cells are gated and exported as new FCS files. If merging of datasets from 166 
different experiments is required for the analysis, it is recommended to consider batch-167 
correcting the data using tools such as cyCombine [13] or CytoNorm [14] before 168 
proceeding to FlowAtlas. Following these pre-processing steps (Figure 1 a, b- Step1), 169 

the dataset is opened in a new FlowJo workspace and antibody labels are assigned 170 
to fluorescence channels (Figure 1 b- Step 2). Resolving naming discrepancies 171 
between channels of non-identical panels, as shown in our example, is critical 172 
because, to perform panel merging, FlowAtlas uses user-specified channel labels. 173 
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FlowAtlas defaults to native fluorescence detector names when labels are not 174 
provided, which will prevent the panel merge. 175 

Next, panel-specific gating hierarchy is created in FlowJo to define known populations 176 
of interest across all datasets (Figure 1 b, Step- 3 and Figure 2). This is a user-177 
supervised population-defining step and initial annotations typically represent large 178 

populations, such as naïve/memory B-cells, or CD4/CD8 memory cells. Biexponential 179 
transformations can be applied to each channel in FlowJo, visually selecting the most 180 
appropriate co-factor for each parameter in the dataset. FlowAtlas parses the 181 
biexponential transformation directly from FlowJo for each channel, enabling the user 182 
to set optimal population separation. This in turn has been shown to dictate the  quality 183 

of dimensionality reduction and metaclustering [15]. 184 

Matching populations, irrespective of panel, are assigned the same annotation to 185 
enable cross-dataset pooling in FlowAtlas and analysis. Cells that fall outside of 186 
FlowJo-defined gates are auto-annotated as "Unlabelled" by FlowAtlas and can still 187 
be explored. Finally, to facilitate data exploration, samples are grouped by conditions 188 
enabling FlowAtlas to filter and colour-code embedded events (Figure 1 b- Step 4). 189 
For our analysis, samples were grouped by donors and tissues. The FlowJo 190 

workspace file is then imported into FlowAtlas, which triggers panel merging, 191 
calculation of the embedding and launches an interactive browser interface (Figure 192 
1c). 193 

The user interface displays the embedding map, which can be zoomed and panned, 194 
and is rendered efficiently using OpenLayers [3].  195 

The left-hand panel menu was designed with D3.js [4] and has four tabs: 196 
"Annotations", "Expression", "Frequency" and "Settings". The "Annotations" tab 197 
enables cell filtering and re-colouring by population, condition, or by heat-map of 198 

marker expression. The filters can also be renamed or re-ordered here by dragging-199 
and-dropping. The "Expression" tab has a polygon tool that enables drawing of 200 
multiple ROIs directly in the embedding to produce overlaid violin plots (Figure 1 c, 201 
Figure 3c, Supplementary Figure 3 and Supplementary Figure 4) that reveal 202 
differences in marker expression thus enabling rapid identification of clusters with 203 

unique signatures. In the "Frequency" tab frequency box plots can be generated with 204 
a few clicks (Figure 3a and Supplementary Figure 5) showing frequencies of 205 
selected populations relative to their sum or any other population. Box plot marker 206 
colours and categories displayed on the x-axis are defined by filter selections in the 207 
"Annotations'' tab. These features enable "on-the-fly", intuitive exploration and 208 

analysis of complex datasets. All figures can be exported as publication-quality 209 
scalable vector graphics (SVG).  210 

Once unique subpopulations have been identified, they can be validated in FlowJo 211 
with targeted two-parameter plots and new gates created to be read by FlowAtlas at 212 
rerun. This "iterative discovery loop" substantially simplifies discovery. 213 

Embedding is performed only once when the workspace file is first imported and is 214 
stored in a cache file with a ".som" extension, allowing users to return to their analysis 215 
quickly. The embedding can also be re-calculated to change cluster geometry. Sharing 216 
the “.som” cache file together with the FlowJo workspace and FCS files enables 217 

collaboration, allowing colleagues to work on the same embedding map.  218 
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Hereafter, we demonstrate the capabilities of FlowAtlas using our novel conventional 219 
cytometry dataset of multi-donor multi-tissue derived immune cells. Utilisation of 220 
FlowAtlas for analysis of spectral and CyTOF data is shown in Figure 4 and 221 

Supplementary Figure 6 respectively.  222 

Demonstrating the utility of FlowAtlas 223 

Example cell population exploration 224 

Our dataset consists of 32 files of tissue-derived immune cells obtained from 5 225 
deceased transplant organ donors (Supplementary Table 1), stained with 3 different 226 
panels (Supplementary Table 2). The data were pre-processed in FlowJo to remove 227 
anomalous events, debris and aggregates; compensation was checked; and live, 228 

single T cells were exported as new FCS files for downstream analysis. These files 229 
were imported into a new FlowJo workspace and each channel was biexponentially 230 
transformed, basic populations were gated (Figure 2), and samples were grouped by 231 
donor ID and source tissue. Next, DR and clustering were performed in FlowAtlas. 232 
After generating relative abundance boxplots of the major lymphocyte populations in 233 

our dataset (Supplementary Figure 5), we elected to zoom into the CD4 regulatory 234 
T-cell (Treg) compartment, defined as CD3+CD4+CD127-/loFOXP3+ cells, as an 235 
exemplar. 236 

As a proportion of all CD4+ T-cells,Tregs were demonstrated to be enriched in lymph 237 
nodes, particularly mesenteric lymph nodes where they accounted for more than 20% 238 
of CD4 T-cells in all studied donors (Figure 3 a).  239 

The embedding of Tregs for Panel C donors, recoloured by the expression of the 240 
transcription factor HELIOS (Figure 3 b), revealed the presence of HELIOS+ and 241 

HELIOS- subpopulations as expected [16,17], with additional subcluster structures. 242 
Next, we filtered the embedding by panel C samples and used it to explore Treg 243 
subcluster characteristics further. We coloured embedded events by tissue of origin 244 
and drew ROIs around four main subclusters seen in the embedding (Figure 3 c). 245 
Auto-generated violin plots quickly allowed us to observe differences in expression of 246 

CD45RA, CCR7, CCR4 and CD69 between these subclusters, with the red ROI having 247 
a naive phenotype (CD45RA+CCR7+) and lacking CCR4 and CD69 expression, while 248 
yellow, grey and violet ROIs showed characteristics of memory subsets (CD45RA-249 
/loCCR7-) with and without CD69 and CCR4 expression. Filtering the embedding by 250 
tissue with the above ROIs superimposed (Figure 3 d), revealed tissue-specific 251 

enrichment patterns; for example, CD69+ subsets were largely absent from blood, 252 
consistent with the role of CD69 in promoting tissue retention [18] [19] [20], whereas 253 
liver, lung, and thoracic lymph nodes contained a high proportion of Tregs expressing 254 
the chemokine receptor CCR4+ (with or without CD69 co-expression). 255 

CCR4 has been implicated in T-cell trafficking to the lung [21], and in the infiltration of 256 
Tregs into tumours [22]. Next, we validated the presence of these four Treg subsets in 257 
FlowJo (Figure 3 e) and created new gates using CCR4 and CD69- now in all samples 258 

stained with these markers, irrespective of panel- for further exploration in FlowAtlas. 259 
Returning to FlowAtlas, we re-coloured the Treg embedding by these newly annotated 260 
subsets and generated frequency box plots (Figure 3 f), which further highlighted 261 
tissue-specific expression patterns.   262 
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 263 

 264 

Figure 2 Panel-specific gating strategies created in FlowJo. For downstream DR analysis in FlowAtlas, we 265 
exported only live single T-cell events from each panel, indicated with a dashed line gate (panel A: Live CD3+ 266 
CD45+; panel B: Live CD3+; panel C: Live CD19- CD3+ events). Compensated parameters were exported, 267 
excluding CD45, CD19, Viability stain, FSC and SSC. Downstream gating for main population identification in 268 
FlowAtlas is shown. All channels have been biexponentially transformed. Note that other FlowJo transformations 269 
(e.g. logarithmic, ArcSinh) are not compatible with FlowAtlas. 270 
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 271 

Figure 3 Treg subpopulation discovery in FlowAtlas. a, Relative abundance of Tregs by donor and 272 
tissue calculated as % of total CD4+ T-cells. b, Self-organised map embedding of Tregs from all tissues, 273 
all donors and all panels, coloured by HELIOS expression. c, Marker expression in four ROIs of the 274 
composite Treg embedding of all tissues stained with panel C; inset shows Tregs from all tissues 275 
stained with panel C, coloured by CCR4 expression. d, ROI population distributions by filtered by 276 
individual tissue. e, Validation and creation of new Treg sub-gates for the four ROIs in FlowJo. Gates 277 
should be created in all samples that contain the markers of interest, regardless of panel, at equivalent 278 
levels in the gating tree hierarchy (in this case, total Tregs as the parent gate). The new gates can then 279 
be opened and explored in FlowAtlas, as shown- Treg embedding re-coloured by the newly annotated 280 
Treg populations. f, Frequencies of the newly identified Treg subpopulations across tissues and donors. 281 
BM - bone marrow; mLN - mesenteric lymph nodes; tLN - thoracic lymph nodes; ROI - region of interest; 282 
FJ - FlowJo; FA - FlowAtlas. 283 

FlowAtlas allowed us to obtain deep insights into the Treg population rapidly and 284 

intuitively. Therefore, we applied a similar analysis strategy to CD4+ Th1 and CD8+ 285 
memory cells, producing further data in a matter of minutes (Supplementary Figure 286 
3 and Supplementary Figure 4). This contrasts with analysis solely performed within 287 
FlowJo, where the computation of our full dataset embedding of 3.88 million events 288 
using tSNE would have been prohibitively slow (6h, see Table 1 for comparison of 289 

performance) and assessing all possible combinations of markers using two-290 
dimensional plots would have been a laborious process.  291 

Although EmbedSOM is now implemented as a FlowJo plugin, downstream 292 
exploration of the resulting embedding still relies on classic 2-way scatter plots and 293 
cannot be zoomed or easily filtered by custom conditions. Furthermore, preserving a 294 
consistent topography across samples requires either file concatenation, or clustering 295 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2023. ; https://doi.org/10.1101/2023.12.21.572741doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.21.572741
http://creativecommons.org/licenses/by-nc/4.0/


by FlowSOM first- both of which impose that all samples are stained with the same 296 
panel. FlowAtlas overcomes these barriers, making the embedded data interactive, 297 
and patterns within it- quickly visible. 298 

Detection of rare cell subsets using FlowAtlas 299 

Current DR computational pipelines reduce computation time by downsampling large 300 
datasets using random uniform sampling, which may not optimally reflect the 301 

distribution of the original data [23]. Rare cell subsets may be missed by data 302 
downsampling and underfitting in existing unsupervised clustering approaches. Since 303 
FlowAtlas does not downsample, it potentially circumvents this problem.  304 

Accordingly, we tested the ability of FlowAtlas to discover novel rare cell populations 305 
in the above-mentioned 23-parameter spectral cytometry dataset of whole human 306 
blood [10]. As described, we performed the analysis in FlowAtlas and then replicated 307 
the example analysis demonstrated in Cytobank from curated experiment number 308 

191382. The gating strategy for this dataset is shown in Supplementary Figure 2. 309 
Using FlowAtlas, we identified a subset of HLA-DR+ NK cells, comprising only 0.69% 310 
of total NK cells in under 30 min (Figure 4, steps 1a-4a). The same population was 311 
not resolved as a separate metacluster in Cytobank FlowSOM-on-viSNE analysis at 312 
the implemented settings (Figure 4, steps 1b and 2b). Furthermore, CD56bright NK 313 

cells, which are well known to be phenotypically and functionally distinct [24], also did 314 
not segregate from the main NK cell population at these analysis settings. In order to 315 
find the missing HLA-DR+ CD56+ subpopulation in Cytobank, it was necessary to 316 
review the 10 individual clusters comprising CD56+ events in the minimum spanning 317 
tree (MST), coloured by each channel median fluorescence intensity (MFI), which was 318 

a time-consuming process. We noted that cluster 15 within metacluster 4 was located 319 
away from the main metacluster 4 nodes and that it contained a small subset of HLA-320 
DR+ CD56+ NK cells (Figure 4, step 3b and 4b). These may be the equivalent 321 
population to the cells discovered in FlowAtlas. We verified that the other 9 322 
neighbouring NK-cell clusters did not contain this population, by examining scatter 323 

plots of their key identifying markers (HLA-DR, CD11c) versus cluster number (not 324 
shown). Finally, we isolated the subpopulation manually based on its cluster number. 325 
This process took several hours and was informed by our prior identification of this 326 
population in FlowAtlas.  327 

Resolution of other rare populations would potentially require each of the 100 clusters 328 
in the MST to be individually examined, as above. Once discovered, a rare 329 
subpopulation would either need to be manually isolated by combining the clusters 330 

that contain it with Boolean commands, or a new clustering would need to be 331 
undertaken with optimised settings or starting with a purer cell population. By contrast, 332 
FlowAtlas allows the user to simply zoom in on the existing embedding to study the 333 
substructure of clusters without needing to re-embed the data. 334 

 335 
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 336 

Figure 4 Comparison of workflow for the detection of rare cell subsets in FlowAtlas (a) and Cytobank (b) 337 
using a published spectral cytometry 23-colour dataset of whole human blood. In FlowAtlas, embedding the data 338 
is quick, and basic populations are created using the familiar workflow of FlowJo (Step 1a). The eye is immediately 339 
drawn to heterogeneity in the embedding, for example in the NK cell population (Step 2a). A small cluster of NK 340 
cells (magenta ROI and violins) is close to the myeloid populations, and expresses HLA-DR, CD11c and CD1c 341 
(Step 3a). Checking that it exists in FlowJo (Step 4a) is easy- and it is quickly added to the updated FlowAtlas 342 
embedding. The user can now also zoom in on three other larger NK subsets (CD56bright, CD57+ CD56dim and 343 
CD57- CD56dim). The equivalent workflow in Cytobank is as follows: after a relatively fast embedding of the data 344 
(step 1b), the user needs to identify each of the 20 metacluster identities first (step 2b), using heatmaps and violin 345 
plots of marker expression (not shown). Rare populations may not have segregated. They can be discovered  by 346 
examining the MST, coloured by channel (Step 3b and 4b)- looking for heterogeneity in a metacluster. For example, 347 
metacluster 4 contains cluster 15, which appears to express HLA-DR and CD56.The user can either re-run the 348 
analysis, or create new metaclusters by manually combining cluster numbers (Step 5b). Equivalent major cell 349 
populations are coloured identically in the two embeddings and in the minimum-spanning trees (in Step 4b); ROI 350 
colour in FlowAtlas matches the corresponding violin plots.  351 

 352 

FlowAtlas can integrate multiple flow cytometry panels, but protocol-driven 353 

experiment harmonisation remains critical 354 

Due to an evolution of panel design, our tissue-derived immune cell dataset consisted 355 
of 3 different panels. Most existing computational tools require the concatenation of 356 

files prior to analysis, which is impossible when different markers have been assigned 357 
to the same channel. This would typically cause researchers to exclude precious data 358 
that they cannot integrate. 359 

FlowAtlas enables data re-use and concomitant analysis of datasets acquired with 360 
non-identical antibody panels by imputing missing values using random sampling with 361 
replacement before DR. Algorithmic bias is prevented by excluding imputed values 362 
from the embedding visualisation or any downstream analyses.  363 
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To demonstrate the capability to merge panels, we acquired 2 healthy control blood 364 
samples and stained them with the 3 panels previously used in our main tissue-derived 365 
dataset. We integrated the 6 new FCS files (1.28 million live single T-cell events) into 366 

the existing embedding of tissue-derived immune cells. The use of the same two 367 
donors eliminated any biological variation, enabling us to isolate the effect of panel 368 
differences within the healthy control group.  369 

We filtered the embedded data by “healthy control”, then coloured the embedding by 370 
panel and inspected differences in cluster position, geometry and marker mean 371 
fluorescence intensity (MFI). Violin plots revealed variation in marker expression due 372 
to panel design differences, e.g. lower CD4 MFI for panels B and C compared to panel 373 

A, due to use of different fluorochromes (see Supplementary Table 2). The overall 374 
embedding geometry was highly conserved across the three panels (Figure 5a).  375 

Next, we filtered samples stained with panel C, displayed only blood-derived cells, and 376 
coloured the samples by batch (healthy controls vs deceased organ donors, Figure 377 
5b). We noted significant qualitative differences in the embedding geometry for these 378 
two sets of samples. The resulting violin plots showed differences in several 379 
chemokine receptors, CD127, CD4 and CD8. Although biological differences between 380 

healthy and deceased donor blood could account for this observation, the magnitude 381 
of the differences strongly suggested an additional batch effect, potentially due to the 382 
fact that, unlike the tissue-derived dataset, healthy PBMCs had been cryopreserved 383 
and acquired on a cytometer with a different optical configuration (See Methods and 384 
Supplementary Table 4). This was unsurprising, but important to highlight, given that 385 

FlowAtlas does not perform MFI normalisation.  386 

We have noted that panels with very few shared markers and/or fluorochromes can 387 
still be processed but in this case, equivalent populations will likely fail to co-localise 388 
adequately due to a lack of common landmarks (Supplementary Figure 7).  389 

In summary, FlowAtlas is relatively robust at handling samples with moderately 390 
different panels where marker MFIs have not been normalised, but optimum co-391 
localisation of equivalent populations requires batch-normalisation at pre-processing, 392 
and that panel differences are minimal. 393 
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 394 

Figure 5 Merging of panels and detection of batch variance. a, Two healthy control donors were stained with 395 
our 3 panels as one batch, and data were processed in FlowAtlas as recommended. Events are coloured by panel 396 
and show minimum differences in population geometry, driven by our choice of CD4 fluorochrome (BUV661 on 397 
panel A, BUV805 on panels B and C). Spread from BUV661 into CD25-APC and CXCR5-APCR700 is visible in 398 
panel A in violin plots. The three panels integrate well without normalisation.b) Blood samples stained with panel 399 
C are shown as embedding and violin plots (yellow= deceased organ donor blood, processed ex vivo is designated 400 
“batch 1”; cyan= healthy control blood, processed after cryopreservation and designated “batch 2”). FlowAtlas has 401 
successfully merged the panels, but the topography is very different between the two batches. This likely represents 402 
a mixture of biological differences, and in large part- batch differences due to different sample handling and 403 
cytometer configurations.   404 

Discussion 405 

FlowAtlas is a novel open-source data exploration tool, which combines the 406 
computational power of the GigaSOM library and Julia programming language with 407 
the widely used software FlowJo, expanding its capabilities in a completely graphical, 408 

fast, user-friendly interface. This approach removes all entry barriers imposed by 409 
command-line analysis pipelines that currently hold many users back from taking 410 
advantage of powerful computational tools. FlowAtlas brings a new iterative analysis 411 
concept to biomedical scientists by linking the familiar FlowJo workflow with a high-412 
performance machine learning framework. FlowAtlas allows rapid computation of 413 
millions of high-dimensional events without the need for down-sampling. The highly 414 

interactive embedding enables zooming and intuitive exploration of population 415 
substructure, considerably speeding up population discovery. Missing-data handling 416 
methods enable concomitant analysis of datasets with non-identical panel designs or 417 
markers.  418 

Importantly, FlowAtlas does not incorporate batch normalisation, and, to prevent 419 
algorithmic bias, does not display imputed values in the embedding. Here, we briefly 420 

discuss the rationale behind our design decision. 421 

Firstly, we designed FlowAtlas without a data normalisation step so that users can 422 

select the most appropriate method for eliminating technical variability for their specific 423 
experimental context at the data pre-processing step. 424 
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Best practice currently relies on inter-laboratory protocol harmonisation through the 425 
use of standardised antibody cocktails, identical staining procedures, calibration of 426 
cytometers using fluorescence standards or Application Settings [25] and internal 427 

biological “anchor” controls stained with each batch of samples. Anchor controls 428 
enable batch correction using pipelines such as swiftReg in R [26] and CytoNorm [14]. 429 
The latter is available as a FlowJo plugin and circumvents the need for coding 430 
expertise. These protocol-based approaches, which we used to acquire our tissue-431 
derived immune cell dataset, would likely best suit the primary target user 432 

demographic of FlowAtlas.  433 

In the absence of internal anchor controls, the currently available computational 434 

methods of batch correction mostly require considerable command-line competence. 435 
For example, GaussNorm (in R) aligns cellular landmarks (positive and negative 436 
population peaks) across samples [27]. This approach may eliminate biologically 437 
relevant MFI differences and is only suitable when population frequency is the variable 438 
of interest. Powerful batch correction tools rooted in single-cell genomics packages 439 

are now finding application in flow and mass cytometry, e.g. Seurat (in R) [28] and 440 
Pytometry (in Python) [29]. The stringency of batch effect removal versus biological 441 
effect preservation varies widely between these methods [30], so the optimum analysis 442 
pipeline may vary between datasets. These pipelines were originally developed to 443 
handle very high-dimensional data with thousands of observations per parameter and 444 

high batch variability (e.g. different technology platforms). Datasets with very few 445 
observations per sample, in which batch effects are driven by few parameters, as was 446 
the case in our tissue-derived dataset, may not be amenable to these correction 447 
methods.  448 

Secondly, panel merging and missing-data handling methods in FlowAtlas ensure it is 449 
relatively robust to moderate panel differences, enabling dataset integration in 450 
selected circumstances. We substituted some markers in our panels with completely 451 

spectrally unique fluorochromes and demonstrated that FlowAtlas can preserve the 452 
embedding geometry under the tested conditions. Nevertheless, panels with little 453 
overlap in markers or fluorochromes are unlikely to integrate successfully. Where 454 
multiple markers differ, users are advised to test the effectiveness of panel integration 455 
by staining a single donor sample with their panels of interest and assessing the 456 

resulting embedding geometry. Tools have been developed, which aim to combine 457 
panels through marker imputation, e.g. CytoBackBone [31], CyTOFMerge [32], 458 
Infinicyt (Cytognos, BD) and CyCombine [13]. Nevertheless, we chose not to display 459 
imputed values in the FlowAtlas embedding to protect against bias. A critical 460 
assessment of these methods has recently reported relatively poor approximation of 461 

known expression values [33], justifying our decision.  462 

In conclusion, FlowAtlas is a novel data exploration tool, which leverages advanced 463 

machine learning methods, rapid computational speed, and a near-complete lack of a 464 
user learning curve before data exploration can commence. The highly interactive and 465 
intuitive workflow eliminates the need for command-line coding and brings high-466 
dimensional data exploration and population discovery to the non-bioinformatician 467 
biologist.  468 
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Methods: 469 

Ethical statement 470 

All work was completed under ethically approved studies. Healthy human PBMCs 471 
were isolated from volunteers having given informed consent under CAMSAFE (REC- 472 
11/33/0007). All deceased organ donor tissue samples were collected via the 473 

Cambridge Biorepository for Translational Medicine under Research Ethics 474 
Committee approval 15/EE/0152. In addition, two donor-matched blood samples were 475 
collected prior to withdrawal of life support, under Ethics Committee approval 97/290. 476 

Tissue acquisition and dissociation, and preparation of healthy control PBMCs 477 

Tissue was obtained from five deceased organ donors following circulatory death. 478 
Donor metadata is given in Supplementary Table 1. Briefly, following cessation of 479 
circulation, human donor organs were perfused in situ with cold organ preservation 480 
solution and cooled with topical application of ice. Samples for the study were obtained 481 

within 60 minutes of cessation of circulation and placed in University of Wisconsin 482 
organ preservation solution for transport at 4°C to the laboratory. Lung and liver 483 
samples were obtained from the left lower lobe of the lung and the right lobe of the 484 
liver. In addition, two donor-matched blood samples were collected prior to withdrawal 485 
of life support (under REC approval 97/290). To minimise the possibility of processing-486 

dependent differences in cell surface marker expression, all samples, including blood, 487 
were processed using enzymatic digestion protocol. Briefly, solid tissues were 488 
weighed, transferred into 10cm tissue culture dishes, and cut into small pieces. Up to 489 
5g of tissue was then transferred into a GentleMACS C tube (Miltenyi Biotec) prefilled 490 
with 5mL of dissociation media composed of X-VIVO15 with 0.13U/mL Liberase TL 491 

(Roche), 10U/mL Benzonase nuclease (Millipore/Merck), 2% (v/v) heat-inactivated 492 
foetal bovine serum (FBS, Gibco), penicillin (100 U/ml, Sigma-Aldrich), streptomycin 493 
(0.1 mg/ml, Sigma-Aldrich), and 10mM HEPES (Sigma Aldrich). The samples were 494 
then homogenised using a GentleMACS Octo dissociator (Miltenyi Biotec) running a 495 
protocol that provided gradual ramping up of homogenisation speed and two 15-496 

minute heating/mixing steps at 37°C. Digested tissue was passed through a 70μm 497 
MACS Smartstrainer (Miltenyi Biotec) and the flow-through was first washed with X-498 
VIVO15 supplemented with 2 mM EDTA and then with PBS. Mononuclear cells were 499 
enriched by Ficoll-Paque (GE Healthcare) density centrifugation according to the 500 
manufacturer's instructions. Following density centrifugation, mononuclear layer was 501 

collected, washed once with PBS and the cell pellet was resuspended in FACS buffer 502 
(PBS, 2.5% FBS). Bone marrow aspirates and peripheral blood samples were first 503 
subjected to Ficoll-Paque density centrifugation, according to manufacturer’s 504 
instructions, the mononuclear layer was then collected, washed with PBS and cells 505 
were treated with the same dissociation media as solid tissues for 30 min at 37°C prior 506 

to washing and resuspension in FACS buffer.  507 

Healthy control PBMCs were prepared by Ficoll-gradient centrifugation and 508 

cryopreserved in cell freezing medium (Sigma) containing 10% DMSO for future use.  509 

Flow cytometry of tissue-derived mononuclear cells 510 

Depending on the cell yield, up to 1x106 mononuclear cells/tissue were stained with 511 

antibodies shown in Supplementary Table 3. Not all donors were stained with the 512 
same panel. To expand the total number of markers, sentinel panel design was 513 
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implemented where CD3 and IgD were detected with antibodies conjugated to 514 
BUV395 and FOXP3 and IgM were detected with antibodies conjugated to PE in some 515 
donors. Refer to Supplementary Table 2 for details. Single cell suspensions were 516 

washed once in PBS, transferred into 96 v-bottom plate and stained with Zombie UV 517 
viability dye for 30 min at 4°C followed by a wash with FACS buffer. Cell pellets were 518 
resuspended in 50μl FACS buffer with Human FcR block (BD Biosciences) and 519 
incubated for 10 min at 4°C. Next, cells were pelleted, excess buffer removed and 520 
100μl of antibody master mix composed of cell-surface antibody cocktail (see 521 

Supplementary Table 2), BV buffer (BD) and True-Stain Monocyte Blocker 522 
(Biolegend) and incubated for 1h at 4°C. Following incubation, cells were washed 523 
three times in PBS and prepared for intracellular staining using transcription factor 524 
fixation/permeabilisation kit (eBioscience) according to the manufacturer’s 525 
instructions. Following intracellular staining, cells were resuspended in PBS and 526 

analysed on BD FACSymphony A3 cell analyser within 10 hours. 527 

Flow cytometry of healthy PBMCs 528 

In contrast to tissue-derived samples, which were processed ex vivo, healthy PBMC 529 
samples were thawed in X-VIVO15/10% FCS at room temperature and stained 530 

according to the procedure above. Analysis was performed on a BD FACSymphony 531 
A5 cell analyser within 10 hours. The optical configuration of the two cytometers used 532 
in this study is shown in Supplementary Table 4. The cytometers were not cross-533 
calibrated for comparable measurement of MFI, but each underwent individual CS&T 534 
bead quality control before sample acquisition. 535 

Computational methods and step-by-step instructions for FlowAtlas use 536 

Flow cytometry data pre-processing  537 

Raw FCS data were cleaned using FlowAI [11] to remove acquisition anomalies. High-538 
quality files were saved and imported into FlowJo for data pre-processing. In this step, 539 
compensation matrices were curated; aggregates and dead cells were gated out; and 540 

remaining cells were gated on lymphocytes and T-cells (see Figure 2). The live T-cell 541 
gate of each sample was exported as a new FCS file containing only compensated 542 
fluorescence channels. The pre-processed files were then opened in a new FlowJo 543 
workspace, where antibody labels were assigned to all fluorescence channels. 544 

Compensated parameters were exported for live single aggregate-free T-cells from all 545 
panels for dimensionality reduction, since we found that this produced optimal 546 

geometry for analysing the T-cell population, which was of particular interest. 547 
Therefore, we labelled the PE channel as FOXP3 in all files. Also, CD4 was used on 548 
either BUV661 (Panel A) or BUV805 (Panels B and C).  549 

It is possible to subject the entire Live Singlet aggregate-free population to DR analysis 550 
if desired. In this case, CD19+ events would only be identifiable in samples labelled 551 
with panel C; equivalent cells would appear as “Ungated” in other panels. For this 552 
workflow, we would recommend labelling the PE channel in all datasets as FOXP3-553 

IgM; this would display both PE-labelled markers on a single violin plot; separate 554 
downstream differential expression analysis of each marker is made possible by 555 
filtering events by cell type (B-cell or T-cell) in FlowAtlas. 556 
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FlowAtlas code availability 557 

The code for FlowAtlas is open-source and is available at our GitHub repository: 558 
https://github.com/gszep/FlowAtlas.jl.git  559 

Installation and Loading of FlowAtlas 560 

FlowAtlas is compatible with FlowJo version 10.8.1. 561 

FlowAtlas requires Julia language, which is easily installed on any operating system 562 
by downloading an installer available here: https://julialang.org/downloads and 563 
following the on-screen instructions. Tick the option to add Julia to PATH environment 564 

when prompted.  565 

Once Julia is installed, FlowAtlas can be installed and run in three lines of code as 566 

follows: 567 
 1. Windows: open Run (Windows Key + R), type cmd and hit enter.  MacOS: open 568 
command prompt (Cmd Key + Space), type terminal and hit enter. This will launch 569 
Windows/MacOS command prompt. 570 
 2. In the prompt type Julia and hit enter. This will launch the Julia environment. 571 

 3. Type ] and the prompt will change to display that package manager is now active. 572 
 4. Type add FlowAtlas and hit enter. This will download and install FlowAtlas.jl. Once 573 
installation is complete, you can close the command prompt window. 574 

To start using FlowAtlas, navigate to the folder containing your pre-processed FCS 575 
files (make sure that the FlowJo workspace file is there as well) and launch command 576 
prompt: in Windows by typing cmd in the File Explorer address bar (where file path is 577 
usually displayed) and hitting enter or in MacOS launch terminal and navigate to the 578 

folder by typing cd followed by the folder path. In the prompt, type Julia and hit enter 579 
to start it, then type using FlowAtlas and hit enter. Once FlowAtlas is loaded, type 580 
FlowAtlas.run("workspace.wsp"; files="*/*.fcs") where workspace.wsp is the 581 
name of your FlowJo analysis file with .wsp extension. Adding new files into the 582 
workspace after initial analysis will force a recalculation of the embedding.  583 

A short video demonstrating the use of FlowAtlas can be watched here: 584 

 https://www.youtube.com/watch?v=FeYrFKgP91s  585 
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