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ABSTRACT 84 

Despite the importance of healthy soils for human livelihood, wellbeing, and safety, current gaps in our 85 

knowledge and understanding of biodiversity in soil are numerous, undermining conservation efforts. These 86 

gaps are particularly wide in mountain regions where healthy soils are especially important for human 87 

safety and yet evidence is accumulating of ongoing degradation, posing significant threats to ecosystem 88 

functioning and human settlements. 89 

To analyse these gaps in detail, we synthesise current research on the global diversity of microorganisms, 90 

cryptogams, and invertebrates in mountain soils above the treeline. This synthesis is based on a semi-91 

quantitative survey of the literature and an expert-based analysis. Our work reveals not only deficiencies in 92 

geographic cover but also significant gaps in taxonomic coverage, particularly among soil protists and 93 

invertebrates, and a lack of (functional and ecological) description of the uncultivated majority of 94 

prokaryotes, fungi, and protists. We subsequently build on this overview to highlight opportunities for 95 

research on mountain soils as systems of co-occurring species that interact in complex environmental 96 

matrices to fulfil critical functions and make essential contributions to life on land. 97 

Closing gaps in biodiversity research in mountain soil is crucial to enhance our understanding and to 98 

promote laws and guidelines advancing international soil biodiversity conservation targets in mountains. 99 

Addressing sparse and biased data, recognizing the impact of environmental changes on mountain 100 

ecosystems, and advocating dedicated policies are essential strategies to safeguard mountain soils and their 101 

biodiversity.  102 

 103 

 104 

Keywords: alpine soils, bacteria, biogeography, bryophytes, cryptogams, fungi, lichens, microbial diversity, 105 

protists, soil fauna 106 
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GLOSSARY 108 

 109 

Term Chapter Definition 

acidophile General Organisms which favour low pH conditions; especially regarding 

growth and reproduction 

aeolian food source General Any kind of organic material that is transported by wind and that 

can serve as a nutrient source 

alkaliphile General Organisms which favour high pH conditions; especially regarding 

growth and reproduction 

autotrophic General Ability to produce biomass solely by using inorganic substances; 

often refers to C-autotrophy when using inorganic C compounds, 

such as CO2, for synthesis of biomass-C 

brachyptery Soil fauna Describes an anatomical condition where winged animals (mostly 

insects) have very short and/or non-functional wings. This can be 

sex-specific (e.g. often found in females) or be related to 

environmental conditions (e.g. cold, windy) 

bryophytes Cryptogams Non-vascular plants that include mosses, hornworts, and liverworts 

cetrarioid lichen Cryptogams Monophyletic group of lichens that either belong to or are closely 

related to the genus Cetraria 

chasmolithic Cryptogams Growing in rock cracks 

chionophilous Cryptogams Organisms which prefer or need a permanent snow cover 

chionophobic Cryptogams Organisms which avoid snow-covered habitats 

cryophilous Cryptogams Organisms which prefer very low temperatures 

ecotone General Transition between ecological communities, ecosystems, and/or 

ecological regions along an environmental gradient 

endemic General Native and restricted to a certain place 

endophyte Soil 

microbiota 

Organisms, mostly fungi or bacteria, living within a plant without 

causing a disease 

epiphyte General Growing on plants 

eukaryotes, 

eukaryotic 

General Organisms with cell nucleus; protists, animals, fungi, plants 

eurihydric Cryptogams Ability to withstand a wide range of humidity 

fruticose Cryptogams Fruticose lichens have a three-dimensional, shrub-like or bushy 

growth pattern 

halophile 

 

General Organisms which favour high salt concentrations; especially 

regarding growth and reproduction 

liverwort Cryptogams A non-vascular bryophyte that belongs to the division 

Marchantiophyta 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 23, 2023. ; https://doi.org/10.1101/2023.12.22.569885doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.22.569885


 

6 

neutrophile General 
Organisms which favour neutral pH conditions; especially 

regarding growth and reproduction 

nitrogen fixation 
Soil 

microbiota 

The biotic energy consuming process by which inorganic N2 is 

converted to NH3; only performed by bacteria and archaea 

nunatak General 

Mountain summits and ridges that remained ice-free during the 

last Ice Age and served as refuges for alpine and high alpine 

fauna, flora, and microbiota 

petrophile Soil fauna Organisms which favour rocky environments 

phanerogam Cryptogams Plants that produce seeds. Also termed as spermatophytes 

pleurocarpous 

moss 
Cryptogams 

Mosses in which the sporophyte is borne on short lateral branches 

and not culminating the growth of the main axes (i.e. acrocarpous 

moss) 

poikilohydric  Cryptogams 
Organism whose water status is passively controlled by the 

environment 

prokaryote, 

prokaryotic 

Soil 

microbiota 
Organisms without cell nucleus; archaea and bacteria 

protist 
Soil 

microbiota 
All eukaryotes that are not plants, metazoans, or fungi  

psychrophile General 
Organisms which favour low temperature conditions; especially 

regarding growth and reproduction 

rhizosphere 
Soil 

microbiota 
Narrow space/region in the soil directly influenced by plant roots  

saprotrophic General An organism that feeds on dead organic matter 

saxicolous Cryptogams Growing on rock 

soil microbiota 
Soil 

microbiota 
Prokaryotes, fungi, and protists living in soil 

terricolous Cryptogams Growing on soil 

thermophile General 
Organisms which favour high temperature conditions; especially 

regarding growth and reproduction 
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I. INTRODUCTION 111 

In recent years, our awareness of the importance of soils and their biodiversity has steadily increased, 112 

pressed by the growing evidence of rapid soil degradation worldwide and across all biomes (European 113 

Environment Agency, 2019; FAO et al., 2020; Anthony, Bender & van der Heijden, 2023). Because of 114 

their environmental, societal, and economic consequences, soil degradation and the loss of soil biodiversity 115 

pose a major threat to humankind. The need to protect soils has become an international priority (IPBES, 116 

2018), reflected in both the Agenda for Sustainable Development of the United Nations and the recently 117 

adopted Kunming-Montreal Global Biodiversity Framework (United Nations, 2015; UN Convention on 118 

Biological Diversity, 2022). The demand for data, knowledge, and global responses to the challenge of how 119 

to safeguard soils and their biota has led to an increasing number of international initiatives, including the 120 

Soil Biodiversity Observation Network (SoilBON), the Global Soil Biodiversity Initiative (GSBI), the 121 

International Network on Soil Biodiversity (NETSOB), and the Global Soil Laboratory Network 122 

(GLOSOLAN). All these initiatives aim at providing the biological and ecosystem information needed to 123 

implement sustainable management and conservation of soils. 124 

Despite these recent developments, major gaps and blind spots still exist in soil research and in available 125 

data and knowledge on soil biodiversity. This is particularly the case with mountains (Baruck et al., 2016; 126 

Guerra et al., 2020), even though mountain soils are critical for many ecosystem processes, functions, and 127 

services, and their maintenance and stability are particularly important in terms of hazards and natural risk 128 

management (FAO, 2015; Stanchi et al., 2023). Given that mountain soils can take thousands of years to 129 

develop (up to 1000 years for 2–3 cm in (high) alpine areas (Stanchi et al., 2023), their degradation and 130 

gradual erosion as a result of overexploitation and poor management may ultimately lead to a loss of 131 

biodiversity and associated ecosystem collapse, with no option for recovery (Körner, 2021; Singh et al., 132 

2023). It emphasises the complexity of ecological restoration, pointing out that while repairing functions 133 

and maintaining existing taxa is feasible to some extent, the irreversible loss of certain locally adapted 134 

species, especially in isolated environments like nunataks, is a significant concern. These threats are further 135 

exacerbated by climate and land-use change, as well as the increasing occurrence of invasive non-native 136 

species (Palomo, 2017; Zucconi & Buzzini, 2021; Iseli et al., 2023). Here, we first provide a synthetic 137 

overview of the current state of knowledge on biodiversity in mountain soils above the treeline. We 138 

subsequently build on this overview to highlight opportunities for research on mountain soils as systems of 139 

co-occurring species that interact in complex environmental matrices to fulfil critical functions and make 140 

essential contributions to life on land. We restrict this review to alpine soils above the treeline in mountain 141 

regions (Fig. 1, Table 1). The term ‘alpine’ in this context specifically refers to soils located in mountainous 142 

areas above the treeline. The synthesis was performed as a collaborative effort by members of the Global 143 

Mountain Biodiversity Assessment (GMBA) ‘Mountain Soil Biodiversity’ working group, who 144 
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summarised current literature in their respective fields of expertise. This body of literature was further 145 

consolidated based on a semi-comprehensive review of available publications. 146 

 147 

148 

Fig. 1. Global map of the number of scientific papers on biodiversity in mountain soils above the treeline 149 

(cryptogams, soil microbiota, and soil invertebrates) by alpine region. The dark core of the pies represents 150 

the number of publications in the respective area compared to the number of the region with the most 151 

publications (i.e. Central Asia). The alpine regions were named here as (1) North American Cordillera, (2) 152 

Appalachians & Northeast Ranges, (3) Northern Europe, (4) North Asia, (5) Central & Southern Europe, 153 

(6) Caucasus, (7) Central Asia, (8) East Asia, (9) Andes & South America, (10) Afro-alpine Region, and 154 

(11) Australia & New Zealand. See Fig. S1 for an alternative version showing the density of papers per km² 155 

of alpine area. Photos from left to right: Cryptogams: Arctic-alpine lichen Thamnolia vermicularis, arctic-156 

alpine lichen Peltigera aphthosa (credit: Bettina Weber); Soil microbiota: DNA stained microscope 157 

preparation of soil bacteria (credit: Nadine Praeg & Paul Illmer), Russula sp. (credit: Andrea J. Britton); 158 

Soil invertebrates: Nematodes and a male velvet spider Eresus sandaliatus (credits: CSIRO Entomology 159 

and Michael Steinwandter, respectively). 160 

 161 

 162 
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 163 

Table 1. List of the alpine mountain regions included in this review, presenting their respective area, and 164 

the corresponding number of papers per main soil organism group. The identification (ID) numbers of the 165 

alpine mountain regions align with those referenced in the Figs. 1 & 3–5. The designation of the regions 166 

identified as ‘alpine region’ along with a summary of the corresponding mountain ranges is detailed in 167 

Table S3. For visual comparison of the areas (tree map) of the alpine mountain regions, please refer to Fig. 168 

S2 in Appendix S1. 169 

Nr. Alpine region Area [km²] 

Number of scientific articles 

Cryptogams Microbes Invertebrates Total 

1 
North American 

Cordillera 
306,815 10 28 13 51 

2 
Appalachians & 

Northeast Ranges 
10,929 4 0 3 7 

3 Northern Europe 47,623 36 18 17 71 

4 North Asia 395,738 3 5 3 11 

5 
Central & Southern 

Europe 
26,606 41 103 88 232 

6 Caucasus 16,567 4 8 5 17 

7 Central Asia 2,188,571 20 209 32 261 

8 East Asia 2,778 4 17 10 31 

9 
Andes & South 

America 
547,091 8 15 3 26 

10 Afro-alpine Region 497 2 1 4 7 

11 
Australia & 

New Zealand 
12,639 5 8 27 40 

 Sums 3,555,854 137 412 205 754 

 170 

 171 
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II. METHODS 172 

The synthesis was performed by querying ‘Web of Science’ for scientific papers on biodiversity in 173 

mountain soils in the alpine zones of the world (i.e. above the treeline in temperate and continental climatic 174 

zones, excluding tropical areas) and attributing each paper to one or more of the organismic groups 175 

considered here, making a distinction between primary and secondary focus as many publications covered 176 

more than one organismic group (Figs. 3–5) (see detailed methods in Appendix S1). Each paper was also 177 

attributed to one of the 11 defined alpine regions (see Table 1 and Table S3) according to the mountain 178 

ranges or systems that were specified in the title, abstract, keywords, or methods. The lists were 179 

subsequently reviewed and validated and supplemented with references from the authors personal reference 180 

databases. See Appendix S1 for a detailed description of the literature search and data processing. 181 

 182 

III. CHARACTERISTICS OF MOUNTAIN ZONES ABOVE THE TREELINE 183 

(1) Soil 184 

Major soil types occurring in the alpine and nival zones of temperate and continental mountains include 185 

(according to the soil taxonomy, Soil Survey Staff, 2022) Entisols, Inceptisols, Mollisols, Histosols, 186 

permafrost-affected soils, and Podzols, the latter mainly found on siliceous rocks, slopes with conifers, and 187 

alpine dwarf-shrub zones (Gelisols) (Price & Harden, 2013). Soil formation in mountain areas is – besides 188 

climatic factors – typically controlled by microrelief and morphodynamics, gravitational and fluvial 189 

dynamics, solifluction, and wind-related processes (Egli, Dahms & Norton, 2014). Accordingly, soil types 190 

and properties show small-scale heterogeneity (Egli & Poulenard, 2016) resulting from the high variability 191 

in (micro-) climate, topography, orientation, slope, and regional/local wind systems (Burga, Klötzli & 192 

Grabherr, 2004; Hoorn, Perrigo & Antonelli, 2018). Properties that are specific to alpine soils include an 193 

incomplete development (Donhauser & Frey, 2018), with slow humus accumulation and limited nutrient 194 

supply, even though accumulation of wind-blown fine material may, on a small scale, improve the physical 195 

and chemical characteristics of stony substrates (Gild, Geitner & Sanders, 2018). Detailed information on 196 

mountain soil types and characteristics is an important prerequisite to understanding biodiversity in soil and 197 

the unique adaptations of soil (micro-)organisms to overall hostile environmental conditions (Fig. 2) 198 

(Pellissier et al., 2014; Orgiazzi et al., 2016; Yashiro et al., 2016; Mod et al., 2020; Seppey et al., 2020). 199 

However, this information remains rare (Baruck et al., 2016; Guisan et al., 2019) and needs to be 200 

implemented through specific and targeted initiatives (e.g. the establishment of the Alpine Soil Partnership 201 

in 2017). 202 

Generally, life in mountain soils is determined by their abiotic properties, including water content and 203 

temperature as the main drivers of chemical and physical weathering, parent material, including chemical 204 

composition, physical properties, resistance against weathering, and the predetermination of soil pH as well 205 

as organic matter quality and quantity (Fig. 2) (Paul & Clark, 1996). Both the length of the growing season 206 
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and the mean temperature in mountain soils typically decrease with increasing elevation. In eastern 207 

Scotland, for example, Britton et al. (2011) measured a decrease in mean summer soil temperature at 10 cm 208 

depth from 9.5 °C at the treeline at 640 m a.s.l. to 7.2 °C at 908 m and a decline in the length of the growing 209 

season from 198 to 156 days based on a threshold of 5 °C. The low temperatures typical of mountain soils 210 

at high elevations favour the accumulation of organic matter through reduced decomposition rates, which 211 

can result in large amounts of soil carbon (Praeg et al., 2020). Accordingly, mountain regions have received 212 

increasing attention for their contribution to terrestrial C storage (Hagedorn, Gavazov & Alexander, 2019; 213 

Stanchi et al., 2021). While nival (and alpine) soils exhibit minimal C stocks (Frey et al., 2016; Adamczyk 214 

et al., 2019; Luláková et al., 2019), soils at lower elevations, where temperatures and plant coverage are 215 

higher, may act as larger C sinks.  216 

An additional factor affecting life in mountain soils is the presence of a substantial and long-lasting snow 217 

cover. Together, seasonal snowpack depth, duration, and melt-out control the onset and duration of the 218 

growing season, mitigate low soil temperatures, and affect microbial activity, soil nutrient cycling, soil gas 219 

fluxes, and pedogenesis (Freppaz et al., 2017). These factors further determine community composition, 220 

and their high spatial variability may enable the close co-occurrence of species adapted to differing 221 

environmental conditions such as chionophilous and chionophobic taxa (Odland & Munkejord, 2008; 222 

Carlson et al., 2015; Niittynen & Luoto, 2018; Seeber et al., 2021; Panchard et al., 2023). In addition to 223 

the presence of substantial (and natural) snow cover, further drivers of change in abiotic soil properties 224 

include winter sports operations. These activities, such as the establishment and maintenance of (large) ski 225 

areas, including levelling and grading operations, represent strong mechanical disturbance. This promotes 226 

the breakdown of soil aggregates, causes the exposure of organic matter that was previously protected in 227 

undisturbed soils (Gros et al., 2004), and fosters soil erosion, which all together lowers the organic C 228 

content (Delgado et al., 2007; Negro et al., 2013) and reduces the soil micropore porosity, with 229 

consequences for soil aeration and water holding capacity (Pohl et al., 2009). Additionally, artificial 230 

snowmaking uses nucleating agents and water, often diverted from lakes and streams, which contain 231 

mineral and organic compounds that are not present in natural snow. This provides an additional input of 232 

solutes during snow melting (Wipf et al., 2005; Roux‑Fouillet, Wipf & Rixen, 2011), resulting in higher 233 

soil pH and electrical conductivity (Delgado et al., 2007; Freppaz et al., 2013; Casagrande Bacchiocchi et 234 

al., 2019).  235 

Considering the impact of global change, mountain soils are likely to undergo major transitions. Nival 236 

soils, as stated above, can be expected to increasingly serve as C sinks with climate warming. They are 237 

equally expected to become N sinks due to increased plant productivity under warmer conditions 238 

(Steinbauer et al., 2018). This holds especially true for barren or sparsely vegetated soils with low C and N 239 

content, where increased plant growth and primary production clearly outweigh temperature-driven 240 

increases in soil respiration (Hagedorn et al., 2019). In contrast, distinct increases in C loss have also been 241 
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reported as a consequence of increased temperatures allowing lowland plants to colonise alpine 242 

environments (Walker et al., 2022). Thus, predictions about the amount and the dynamics of C and N 243 

cycling in response to global warming can only be made on a basis of a better understanding of the complex 244 

biotic and abiotic interactions in mountain soils (Fig. 2). 245 

 246 

247 

Fig. 2. Overview of mountain characteristics and abiotic factors, influencing alpine landscape, mountain 248 

soils, and soil organisms. 249 

 250 

(2) Vegetation  251 

Mountain ecosystems above the treeline consist of alpine shrub- and grasslands that gradually give way 252 

to high alpine areas extending into the zone of perennial snow and ice. These alpine areas typically have 253 

sparse vegetation but often rich cryptogam communities. The treeline itself is a transition zone, a so-called 254 

ecotone, between the higher montane forest, often dominated by coniferous trees, and the alpine zone. 255 

The abundance of plant species and their distribution are determined by temperature, water availability, 256 

and the duration of snow cover, which results from the interacting effects of temperature, precipitation, 257 

topography, and wind (Rodwell, 1992a, 1992b; Thompson & Brown, 1992; Panchard et al., 2023). Alpine 258 

grasslands share many structural and functional traits and characteristics with polar grass-dominated tundra 259 
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ecosystems (Riebesell, 1982; Janišová et al., 2011; Dengler et al., 2014), and in both systems, low air- and 260 

soil temperatures are an important factor for plant growth. Frost often limits the growth of trees and shrubs 261 

(Peel, Finlayson & McMahon, 2007), whereas permafrost (i.e. continuous frost conditions) controls the 262 

entire soil system and slows down all biotic activity (Parolo & Rossi, 2008; Zollinger et al., 2013; Goordial 263 

et al., 2016; Giaccone et al., 2019; Jin et al., 2020). At the upper limit of grasslands, occasionally increased 264 

aridity and shortened vegetation periods cause poikilohydric cryptogamic organisms to gradually replace 265 

the standing euryhydric phanerogams (Körner, 2021).  266 

Adaptations of alpine vegetation to short and cold growing seasons include the ability to metabolise 267 

rapidly at low temperatures, the transition to dormancy as a strategy to withstand the rigours of winter, and 268 

the storage of carbohydrates in roots/rhizomes or of lipids in old leaves for regrowth and flower primordia 269 

formation (Billings, 1974) (Fig. 2). Alpine plants are also adapted to intense solar radiation, as well as to 270 

extended periods of dehydration. Whereas the structure and composition of alpine vegetation depends on 271 

soil type and the chemical and physical properties of soil, plant communities, in turn, influence soil 272 

structure, properties, and stability. 273 

 274 

 275 

IV. CRYPTOGAMS AND BIOLOGICAL SOIL CRUSTS 276 

KEY ASPECTS 

● Cryptogam communities are widely distributed across different elevational zones in alpine 

regions 

● Biological soil crusts are mainly restricted to high alpine areas. 

● Lichen and bryophyte diversity and productivity decline above the treeline towards the nival 

belt, but at slower rates than that of vascular vegetation. 

● The composition of lichen and bryophyte communities is strongly related to bedrock chemistry 

and soil texture. 

● Climate change causes bryophytes to move upwards, whereas at lower elevations sensitive and 

rare lichens and bryophytes are endangered by vascular plant growth. 

● We found 137 publications dealing primarily with alpine cryptogams (i.e. 16 for biological soil 

crusts and 121 for cryptogams in general), mainly from the mountain regions of Central & 

Southern Europe (29.9%), Northern Europe (26.3%), and Central Asia (14.6%); see Fig. 1, 3, 

and Table S4. 

 277 
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 278 

Fig. 3. Global map of available scientific articles focusing on cryptogams in alpine mountain soils. Number 279 

of publications is given per crust type and relative to the maximum of papers found (Central & Southern 280 

Europe): the dark-coloured part of the bar represents those papers where the organismic group was likely 281 

the primary object, the light-coloured part represents those papers where the organismic group was 282 

mentioned, but not as the main subject of the publication. See Appendix S1 for a detailed description of the 283 

methods and full lists of publication numbers per region and soil organism group. Photos from left to right: 284 

Soil crusts: cyanobacteria-dominated soil crust (dark surface colouration) intermingled by bryophytes, in 285 

alpine zone of Großglockner, Austria (credit: Stefan Herdy); cyanobacteria-dominated biocrust mixed with 286 

chlorolichens, dominated by Fulgensia sp., alpine zone of the Großglockner, Austria (credit: Stefan Herdy); 287 

cyanobacteria-dominated biocrust mixed with mosses, dominated by Tortella sp., alpine zone of the 288 

Großglockner, Austria (credit: Stefan Herdy); Other cryptogams: arctic-alpine lichen Thamnolia 289 

vermicularis, alpine zone of the Großglockner, Austria (credit: Stefan Herdy); arctic-alpine lichen Peltigera 290 

apthosa in vicinity of Kangerlussuaq, Greenland (credit: Bettina Weber); moss Polytrichum sp. in vicinity 291 

of Kangerlussuaq, Greenland (credit: Bettina Weber). 292 

 293 
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(1) Cryptogams 294 

Cryptogams are non-vascular organisms that do not form flowers and seeds but reproduce by fission, 295 

fragmentation, and spores. They comprise lichens, bryophytes, eukaryotic algae, and cyanobacteria (Büdel, 296 

Friedl & Beyschlag, 2023). Cryptogams occur widely at different elevations in alpine regions, where they 297 

grow epiphytically on vascular plants as well as on and within rocks (saxicolous) and on soil. In some cases, 298 

soil-inhabiting (epigaeic) organisms form biological soil crusts (abbreviated as biocrusts). Since biocrusts 299 

are defined as an ‘intimate association between soil particles […] and organisms which live within, or 300 

immediately on top of, the uppermost millimetres of the soil’ (Weber et al., 2022), they do not include 301 

fruticose lichen and bryophyte carpets, which mainly grow above the soil and form valuable vegetation 302 

components on their own. A detailed description of alpine biocrusts is given in Chapter IV.2 below.  303 

In Europe, descriptions exist for 200 lichen species in the nival belt of the Alps, with a remarkable 304 

development of the genera Cetraria, Parmelia, and Umbilicaria (Ozenda & Borel, 2003). The number of 305 

bryophytes and macrolichens increases towards the North, with 439 species of bryophytes in the Italian 306 

Alps (Pedrotti & Grafta, 2003), 65 bryophyte and 218 lichen species in the south-eastern Carpathian 307 

Mountains (Coldea, 2003), 150–200 species of lichens in the Pyrenees (Gómez, Sesé & Villar, 2003), and 308 

about 558 bryophyte species in the Southern and Northern Scandes (Virtanen et al., 2003). Areas with the 309 

highest species richness of bryophytes but also the highest numbers of threatened species, are located in the 310 

eastern European Alps, Carpathian Mountains, eastern Pyrenees, and the Scandes (Hodgetts et al., 2019). 311 

The highest elevational records for lichens and bryophytes are found in the subtropical Dry Andes, near the 312 

summit of Socompa volcano at 6,060 m (Halloy, 1991) and on Mount Everest, Himalaya at 7,400 m 313 

(Lecidea vorticosa (FLÖRKE) KÖRB. and Pertusaria bryontha (ACH.) NYL.; (Miehe, 1988).  314 

Grassland ecosystems contain a high diversity of cryptogamic autotrophs, especially bryophytes and 315 

lichens, whose occurrence is primarily determined by elevation and exposition (Cleavitt, 2004; Daniëls et 316 

al., 2004; Baniya et al., 2012; Rai, Upreti & Gupta, 2012). Their diversity and productivity follow the 317 

same elevational gradients of temperature and aridity as phanerogams (Sundstøl & Odland, 2017); species 318 

richness of lichens, bryophytes, and algae increase above the treeline and progressively decline towards the 319 

nival belt (Austrheim, 2002; Vittoz et al., 2010). 320 

In temperate central European mountains, alpine grasslands are characterised by the presence of large 321 

meadows dominated by genera including Festuca and Carex (Ozenda, 1988), driven by the presence of a 322 

long-standing, deep snow cover, which melts relatively fast in spring. In this region, communities 323 

dominated by bryophytes and lichens cover only relatively small areas. In contrast, in Central Asian and 324 

Scandinavian mountains, higher aridity or a stronger clearing of snow cover by wind promotes communities 325 

richer in cryptogams and less dominated by graminoids. This trend is also observed in continental Nearctic 326 

mountain ranges such as the Rocky Mountains (Leuschner and Ellenberg 2017). In all mountain ranges, 327 

snow abrasion poses a major mechanical challenge to alpine vegetation of exposed habitats (Wieser, 328 
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Holtmeier & Smith, 2014) and promotes the development of stress tolerant cryptogamic communities in 329 

windswept localities. 330 

The topographic heterogeneity found in high alpine slopes tends to intersperse grasslands with azonal 331 

communities of saxicolous, terricolous, and chasmophytic cryptogams that colonise skeletal soils and 332 

patches of exposed mineral substrate. These azonal patches become more abundant towards the nival zone 333 

and in arid or windswept localities. There, some fruticose lichens and pleurocarpous mosses grow among 334 

graminoid patches and are thereby an integral part of alpine grasslands. The lower dependence of 335 

cryptogams on substrate presence can create highly discordant diversity patterns between cryptogams and 336 

vascular plants, as well as among cryptogam groups (Di Nuzzo et al., 2021). However, moss and 337 

phanerogam richness also showed a strong correlation with soil richness and diversity on the 338 

Hardangervidda plateau in Norway (Vestvidda, Southern Scandes), whereas there was no correlation with 339 

liverworts (Odland, Reinhardt & Pedersen, 2015). In Palearctic and Nearctic mountains, Cladonia species 340 

and pleurocarpous mosses such as Pleurozium sp. tend to dominate towards the treeline, while cetrarioid 341 

species or Thamnolia sp. become more common towards the upper part of the gradient.  342 

The exact composition of lichen communities varies significantly, depending on the bedrock chemistry 343 

and resulting texture of the mineral fraction of local soils (Guo & Cao, 2001). Calcium-rich spring seeps 344 

were observed to form a refugium harbouring a rich variety of bryophytes and lichens (Miller, Fryday & 345 

Hinds, 2005). Conversely, areas with higher water retention and permanently flooded soils develop into 346 

bryophyte dominated bogs mostly shaped by Sphagnum species and pleurocarpous mosses (Halsey, Vitt & 347 

Gignac, 2000; Wahren, Williams & Papst, 2001; Bragazza, Gerdol & Rydin, 2003). Also in wetlands, 348 

fens, springs, and snowfields, cryptogams can reach high diversity (Dierssen & Dierssen, 2005; Cooper et 349 

al., 2010; Austin & Cooper, 2016). In alpine fellfields, cryptogams are a prominent component, with 350 

lichens covering up to about 50% of the surface area on the Beartooth Plateau, Montana and Wyoming 351 

(Greater Yellowstone Rockies; Eversman, 1995). Generally, lichen communities develop on substrates 352 

with little mechanical perturbation under changing hydration conditions. Wet and soft soils of glacier 353 

forefields are not colonised by lichens. Soils in many windswept localities are typically colonised by 354 

fruticose lichens, which usually interlock with shrubby plants rather than being connected with the soil. In 355 

contrast to a common notion of lichens as pioneer vegetation, crustose lichens in biocrust communities need 356 

not only soil stability but also long stable time intervals to develop, and they can suffer extinction due to 357 

shading from nearby plants. One means by which evolution has made it possible for lichens to overcome 358 

competition with plants or unsuitable soil conditions is by the development of shrublike fruticose 359 

morphologies, which grow as lichen heath and pleurocarpous mosses between persistent plant vegetation 360 

such as dwarf shrubs (e.g. genera Vaccinium, Salix, and Erica with Hypnum cupressiforme HEDW.; 361 

Schellenberg & Bergmeier, 2020). 362 
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Compared to phanerogams, which show high levels of endemism, lichens associated with alpine 363 

grasslands have very broad distributions, often being apparently sub-cosmopolitan. This interregional 364 

connectivity in arctic-alpine organisms has been studied in lichens (Fernández‑Mendoza & Printzen, 2013; 365 

Garrido-Benavent & Pérez-Ortega, 2017; Onuţ-Brännström, Tibell & Johannesson, 2017), but also occurs 366 

in bryophytes (Mirek & Piekos‑Mirkowa, 1992), and seems to reflect range expansions originating from 367 

interregional connectivity during the Pleistocene. This does not exclude the rare endemism of lichens at 368 

higher elevations, which can be due to substrate conditions that are not or hardly found elsewhere, or to 369 

habitat shrinkage due to climatic factors (e.g. Cetradonia linearis (A.EVANS) J.C.WEI & AHTI is only found 370 

in few localities in the Appalachian Mountains; Woodward, 2021). 371 

While soil properties are key in determining cryptogam presence and composition, effects are reciprocal, 372 

and cryptogams also influence soil properties. For example, in an alpine Vaccinium thicket accompanied 373 

by Polytrichum strictum MENZIES EX BRIDEL and Sphagnum sp., the moss cover caused a pedogenic 374 

feedback by increased water storage, which promoted stronger weathering and increased dissolved organic 375 

C contents in the soil. The latter then caused the soil to cross the threshold of podsolisation (Musielok et 376 

al., 2021). Similarly, mat-forming lichens have also been shown to influence litter decomposition and 377 

buffer soil temperatures in subalpine and alpine environments (van Zuijlen et al., 2020; Mallen‑Cooper, 378 

Graae & Cornwell, 2021). Mosses, in turn, have been reported to mediate soil properties such as 379 

temperature, moisture, and C:N ratios, with varying effects depending on the shrub species under which 380 

they occur (Bueno et al., 2016). Generally, lichens and mosses also contribute to soil stability and reduce 381 

erosion in alpine environments (Martin et al., 2010). 382 

The interactions between plants and lichens have also been explored (Favero‑Longo & Piervittori, 383 

2010). Most notably, the elimination of fruticose lichens, especially cetrarioid species, has been shown to 384 

significantly reduce the growth of neighbouring grasses and sedges (Jespersen, 2013), probably as a result 385 

of changes in microclimate, surface water retention, and protection from run-off. In an experimental 386 

approach, presence of most lichens facilitated seedling recruitment, while only very thick mats of Cladonia 387 

stellaris (OPIZ) POUZAR & VĔZDA had an inhibitory effect (Nystuen et al., 2019). Interactions between 388 

vascular plants and bryophytes are also variable. Ptilium crista-castrensis DE NOTARIS, a feather moss, was 389 

observed to have a negative effect on the survival of alpine tree seedlings, likely due to altered competition 390 

or nutrient availability, whereas Sphagnum mosses had no effect (Lett et al., 2020). In contrast, a study in 391 

a boreal forest-tundra ecotone (Central Labrador Ranges, Canada) revealed that a Pleurozium schreberi 392 

MITTEN seedbed improved seed emergence, survival, and nutrient availability for black spruce (Wheeler, 393 

Hermanutz & Marino, 2011). Similarly, Racomitrium lanuginosum BRIDEL, mats stimulated growth of the 394 

sedge Carex bigelowii TORR. EX SCHWEIN. in the alpine/subarctic tundra of Swedish Lapland (Carlsson & 395 

Callaghan, 1991). 396 
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Effects of environmental changes on cryptogams are likely diverse. Climate change in alpine regions 397 

generally causes a shift of bryophytes to higher elevations (Wen et al., 2022), whereas nutrient input, CO2 398 

increase, or warming, cause vascular plant productivity to increase at the cost of sensitive and long-399 

established soil lichen and bryophyte communities (Graglia et al., 2001; Klanderud, 2008; Dawes et al., 400 

2017). Such changes in plant communities also affect microbial community composition, which may result 401 

in altered biogeochemical cycling (Bueno de Mesquita et al., 2017). 402 

Anthropogenic drivers, such as grazing, trampling, and N deposition also affect cryptogams in complex 403 

and multiple ways. For instance, the effects of grazing are variable. Grazing in extensively farmed 404 

secondary grasslands has been shown to increase the diversity and coverage of bryophytes and lichens due 405 

to a decreased competition for light (Nascimbene, Fontana & Spitale, 2014). On the other hand, in mid-406 

elevation pastures in India (3000–3400 m), where significant grazing by cattle occurs, lichen diversity is 407 

reduced compared to higher (3400–4000 m) and lower (2700–3000 m) habitats (Rai et al., 2012). In the 408 

Uinta Mountains of Utah (Western Rocky Mountains), grazing favoured the growth of crustose or 409 

squamulose lichens, whereas in ungrazed areas fruticose and foliose taxa also occurred (St. Clair et al., 410 

2007). Vascular plants are also influenced, since further effects of (heavy) grazing include an increase in 411 

root biomass (Mayel, Jarrah & Kuka, 2021), also in alpine meadows (Yang et al., 2018), likely resulting 412 

from increased rates of nutrient cycling due to herbivore excretion. The effects of human trampling include 413 

the reduction of lichen abundance and diversity in an alpine heath ecosystem in northern Sweden 414 

(Jägerbrand & Alatalo, 2015) as well as a reduced coverage of the moss Pleurozium schreberi (WILLD. EX 415 

BRID.) MITT. in a subarctic grassland (Sørensen et al., 2009). 416 

Finally, existing evidence for the effects of N deposition on cryptogams includes a loss in moss cover in 417 

an alpine Racomitrium moss-sedge heath in the United Kingdom (Britton et al., 2018), a general decline in 418 

richness, and a community shift from bryophytes and lichens towards graminoids (Nilsson et al., 2002; 419 

Armitage et al., 2014; Britton et al., 2019). Declines in moss cover are possibly due to the positive effects 420 

of N deposition on the growth of moss-associated fungi (Taylor et al., 2022). In a study in Norway, N 421 

addition caused a decrease in lichen cover and size (Fremstad, Paal & Mols, 2005), whereas in northern 422 

Sweden, N, P, and K fertilisation positively affected bryophyte biomass (Haugwitz & Michelsen, 2011). 423 

After disturbance, succession under natural conditions or facilitated by restoration measures may help 424 

to reach the natural vegetation state again. In a study investigating the succession on alpine soil heaps in 425 

western Norway, it took about 30 years until the bryophyte and lichen cover and species richness was 426 

similar to the surrounding area (Rydgren et al., 2011). Similar results were also obtained in a separate study, 427 

where gamma diversity of cryptogams peaked 23 to 28 years after cessation of ploughing and fertilising 428 

subalpine grasslands (Austrheim & Olsson, 1999). In a study on habitat restoration after clearcutting of 429 

non-indigenous Pinus mugo TURRA in the Eastern Sudetes (Bohemian Massif), bryophyte diversity was 430 

mapped and compared to that in areas of undisturbed dwarf pine canopy and in autochthonous grassland 431 
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areas. The results revealed a habitat homogenisation, as related to bryophytes, nine years after the impact, 432 

and suggested that restoration measures, in addition to clear-cutting, might be helpful to enhance restoration 433 

speed and quality (Zeidler et al., 2022). In a different study in Iceland, application of shredded turf led to a 434 

quick increase in bryophyte cover and thus might form a valuable restoration measure (Aradottir, 2012). 435 

 436 

(2) Biocrusts 437 

As a pioneer community in alpine environments, biological soil crusts (biocrusts) comprise a dense layer 438 

of cyanobacteria, green algae, lichens, and bryophytes that covers the soil surface (Gold, Glew & Dickson, 439 

2001; Huber et al., 2007; Karsten & Holzinger, 2014; Mikhailyuk et al., 2015; Weber, Büdel & Belnap, 440 

2016) and grows in patches between vascular plants (Türk & Gärtner, 2003). Unlike lichen and bryophyte 441 

carpets, biocrusts do not elevate much above the soil surface. However, their presence and activity play a 442 

crucial role in forming soil aggregates, thereby enhancing soil stability. Early successional communities 443 

are dominated by cyanobacteria, which facilitate the gradual colonisation by lichens and bryophytes under 444 

suitable conditions. A more detailed definition of biocrusts and their delimitation against other cryptogam 445 

communities was published by Weber et al. (2022). Whereas cryptogams occur widely in alpine grasslands, 446 

biocrusts are mainly restricted to the high alpine zone, where they can achieve very large cover values. In 447 

the Austrian Alps (Hochtor, High Tauern), for example, biocrust coverage reached up to 30% of the surface 448 

area in the studied homogeneous vegetation unit (Büdel et al., 2014), with a high prevalence of 449 

cyanobacteria, which has also been observed in Himalayan soils (Reháková, Chlumská & Doležal, 2011). 450 

An increase with elevation was also detected for cyanobacterial biomass in cyanobacteria-dominated 451 

biocrusts in the Zanskar Range (Himalaya; Janatková et al., 2013).  452 

The occurrence and composition of biocrusts in alpine regions appear to be mainly influenced by habitat 453 

availability and precipitation (Büdel et al., 2009; Lütz, 2012; Jung et al., 2018; Xiao et al., 2020). Biocrust 454 

activity status, in turn, is regulated by morphological, physiological, and local microclimatic conditions 455 

(Longton, 1988; Tamm et al., 2018). Additional variables affecting biocrust occurrence include elevation, 456 

aspect, snowpack, dust input in alpine areas, as well as standing vegetation (Miller, 2009; Sun et al., 2013; 457 

Mejia et al., 2020; Peer et al., 2022). Across four mountain ranges at high elevation in Ladakh, India, 458 

cyanobacterial occurrence along an elevational gradient from 3,700–5,970 m was mainly determined by 459 

the studied mountain range, but also elevation and vegetation type were relevant (Reháková et al., 2011). 460 

Whereas Oscillatoriales mostly occurred on alpine meadows, Nostocales were dominant in the subnival 461 

zone and screes. 462 

Thawing of permafrost and glaciers produce particularly suitable habitats for biocrusts. Accordingly, 463 

apart from long-established cryptogam communities, (cyano-)bacteria, (lichenised) fungi, and algae play a 464 

key role in primary substrate colonisation after glacier retreat. This has been investigated in different alpine 465 

regions around the world, including Norway, Chile, Peru, and in the European Alps (Frey et al., 2013; 466 
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Bilovitz et al., 2014b; Matthews & Vater, 2015; Krisai‑Greilhuber et al., 2017). In Tierra del Fuego, Chile 467 

(Cordillera Darwin, Patagonian Andes), bacterial communities with cyanobacteria and algae of the order 468 

Prasiolales were the dominating groups close to the glacier terminus, whereas lichen-forming and parasitic 469 

fungi occurred in early successional stages (Fernández‑Martínez et al., 2017). Cyanobacteria hosted by 470 

bryophytes and fertilising the immature soils by actively fixing atmospheric N were also observed 4–7 471 

years after deglaciation (Arróniz‑Crespo et al., 2014). Cyanobacteria were further described to play a vital 472 

role in primary succession with respect to both C and N fixation and soil stabilisation at high elevations 473 

(5,000 m) in the Cordillera de Vilcanota (Cordillera Oriental, Peru) (Schmidt et al., 2008). In the case of 474 

lichens, multiple studies in the European Alps describe an increasing abundance and diversity with moraine 475 

age (e.g. Bilovitz et al., 2014b, 2014a, 2015) and higher coverage compared to the surrounding non-476 

glaciated area (Hestmark, Skogesal & Skullerud, 2007). In central Svalbard, repeated surveys of glacier 477 

forefields 10–20, 30–50, and 80–100 years after glaciation detected a marked shift in cryptogam community 478 

structure over time (Pessi et al., 2019). 479 

Biocrusts provide ecosystem services via their functions in soil stabilisation, N and C fixation, nutrient 480 

accumulation, and water retention (Gold et al., 2001; Huber et al., 2007; Peer, 2010; Zheng et al., 2014; 481 

Jung et al., 2018; Borchhardt et al., 2019). They are further known for improving soil microenvironments, 482 

mainly due to the activity of microorganisms within the biocrust (Wei et al., 2022). In the case of glacier 483 

forefields, cyanobacteria fix and thus provide N to the strongly N-limited raw soils, with rates directly 484 

related to the availability of organic C (Wang et al., 2021). High N fixation rates by alpine Collema-485 

dominated biocrusts in the mountains of Western Canada (i.e. Chilcotin Plateau (British Columbia Interior) 486 

and Southern Icefield Ranges (Saint Elias Mountains)) suggest an important contribution of cyanolichens 487 

to ecosystem N budgets (Marsh et al., 2006). While Antarctic and alpine biocrusts show similarities in 488 

composition, alpine biocrusts seem to be much more physiologically active than their polar counterparts 489 

(Colesie et al., 2014, 2016), with activity rates closely linked to the local climatic conditions (Raggio et al., 490 

2017).  491 

An additional effect of biocrusts is their influence on soil temperature. This was shown for instance on 492 

the Tibetan Plateau, where Ming et al. (2022) found that at a depth of 5 to 100 cm, soil temperatures were 493 

0.6–1.0 °C lower in the presence of biocrusts; Xu et al. (2020) showed similar effects for moss-dominated 494 

biocrusts. These results differ from previous studies, where biocrusts increased surface temperatures due to 495 

their dark colour (Chamizo et al., 2013). A possible explanation is the high insulating potential of soil 496 

organic matter and the high water-holding capacity of the local biocrusts (Ming et al., 2022). Biocrusts on 497 

the Tibetan Plateau (i.e. Min Mountains and Qilian Mountains), were also observed to significantly reduce 498 

soil pH in the upper 10 cm (Xu et al., 2020) and to impact seed germination, thus influencing vascular plant 499 

community composition (Li et al., 2016). In another study, biocrusts tended to support the survival of 500 
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Nothofagus pumilio (POEPP. & ENDL.) KRASSER tree seedlings in the southern Patagonian Andes (Pissolito, 501 

Garibotti & Villalba, 2021). 502 

Besides their effects on environmental conditions, biocrusts also comprise various bacterial 503 

communities. Bacterial composition within biocrusts appears to be strongly impacted by the dominating 504 

photoautotrophs (i.e. cyanobacteria, algae, lichens, or bryophytes), whereas for microfungi such a link 505 

could not be observed (Maier et al., 2018; Abed et al., 2019). Along an aridity gradient on the Tibetan 506 

Plateau, algae-dominated biocrusts hosted more diverse bacterial communities, with diversity increasing 507 

with rising aridity, while in lichen-dominated biocrusts bacterial communities were less diverse and 508 

bacterial diversity decreased with rising aridity. Whereas the bacterial communities differed depending on 509 

the biocrust type, they were also influenced by environmental and stochastic processes (Wei et al., 2022). 510 

In alpine biocrusts, the soil–lichen interface was colonised by characteristic bacteria, namely 511 

Alphaproteobacteriota and Acidobacteriota (Muggia et al., 2013). 512 

Adaptive strategies of lichens to severe conditions in alpine regions include accumulation of UV-513 

absorbing phenolic usnic acid and storage of polyols for protection of cellular constituents during 514 

desiccation (Bligny & Aubert, 2012; Armstrong, 2017). Protective strategies of terrestrial, photosynthetic 515 

green algae include photoprotection, non-photochemical quenching and flexibility of secondary cell walls 516 

(Karsten & Holzinger, 2014; Kitzing, Pröschold & Karsten, 2014). Diurnal freeze–thaw cycles that 517 

frequently occur in high alpine habitats were shown to have no negative impact on the growth of 518 

cyanobacteria-dominated biocrusts collected in the Peruvian mountains of the Cordillera Oriental (Schmidt 519 

& Vimercati, 2019).  520 

Land use by agriculture and recreational activities can cause severe damage to high-mountain 521 

ecosystems, including their biocrusts. On high elevational grasslands of the Ötztal Alps (European Alps) in 522 

Tyrol, Austria, for example, even weak trampling pressure caused a decrease in the frequency of sensitive 523 

species, including fruticose and crustose lichens (Grabherr, 1982). Also, in the Canadian Rockies of 524 

Alberta, recreational trails had substantially lower coverage of lichens and biocrusts, as compared to 525 

undisturbed sites (Crisfield, Macdonald & Gould, 2012). After disturbance of biocrusts in alpine habitats, 526 

restoration could be facilitated by inoculation with mature biocrusts (Letendre, Coxson & Stewart, 2019). 527 

Climate change poses another threat: In Switzerland, the observed increase in the mean elevation of 528 

bryophytes, driven by extinction of cryophilous species at lower elevations and by an upward movement at 529 

their upper range limits, was likely a result of recent climate change (Bergamini, Ungricht & Hofmann, 530 

2009). Changes in bryophyte and lichen species richness, cover, and composition were also observed during 531 

a 15-year period from 2001 and 2015 in the Southern Scandes of Norway, with an effect on species 532 

interactions. For lichens, the observed decrease in species richness and cover over time was attributed to 533 

the increased competition with vascular plants (Vanneste et al., 2017). 534 

  535 
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V. SOIL MICROBIOTA 536 

KEY ASPECTS 

● Soil microorganisms are essential for mineralization processes, nutrient cycling and for many 

symbiotic relationships with plants and animals. 

● The very great majority of soil microorganisms cannot be investigated by culture-based 

approaches that, therefore, need to be further improved.  

● Knowledge about the enormous microbial diversity in alpine soils is distinctly increasing since 

the advent of high-throughput molecular methods. 

● Microbial diversity is determined by complex interactions with abiotic soil properties such as 

soil pH, water content and quality and quantity of organic matter. 

● Changes in microbial communities can have cascading effects on other components of the 

ecosystem. 

● Fungal diversity is more strongly influenced by plants than the diversity of prokaryotes. 

● Patterns of diversity and effects of abiotic and biotic drivers are distinctly group specific. 

● We found 412 publications dealing primarily with alpine microbial soil diversity (i.e. 16 for 

archaea, 190 for bacteria, 184 for fungi, and 23 for protists), mainly from the mountain regions 

of Central Asia (50.7%), Central & Southern Europe (25.0%), and the North American 

Cordillera (6.8%); see Fig. 4 and Table S5. 

 537 

 538 

 539 

 540 
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541 

Fig. 4. Global map of available scientific articles focusing on microbial diversity in alpine mountain soils. 542 

Number of publications are given per microbial group and relative to the maximum of papers found (Central 543 

Asia): the dark-coloured part of the bar represents those papers where the organismic group was likely the 544 

primary object, the light-coloured part represents those papers where the organismic group was mentioned, 545 

but not as the main subject of the publication. See Appendix S1 for a detailed description of the methods 546 

and full lists of publication numbers per region and soil organism group. Photos from left to right: Archaea: 547 

Methanosarcina sp. (credit: Paul Illmer), Bacteria: Methylosinus sporium (credit: Nadine Praeg), DNA 548 

(green) stained microscope preparation of soil bacteria attached to soil particle (red) (credit: Nadine Praeg 549 

& Paul Illmer), Fungi: Trichoderma asperellum intercoiled with Botrytis sp. (credit: Siebe Pierson), 550 

Leccinum vulpinum (credit: Andrea J. Britton), Protists: Acanthamoeba sp. (credit: Kenneth Dumack). 551 

  552 

 553 

(1) Bacteria and Archaea (Prokaryotes) 554 

Prokaryotes include two distinct phylogenetic domains, archaea and bacteria, which are both characterised 555 

by the absence of a cell nucleus. Most prokaryotes are unicellular and reproduce asexually. Due to a very 556 

high metabolic diversity (various chemo- and phototrophic ways of life), prokaryotes colonise almost every 557 

ecological niche on Earth. 558 
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A significant proportion of prokaryote diversity studies on high alpine soils (King et al., 2010; Yashiro et 559 

al., 2016) and alpine permafrost have been conducted on the Tibetan Plateau in Central Asia, which 560 

harbours the largest area of mountain permafrost soils globally (Cheng et al., 2022), resulting in 54 % of 561 

all prokaryote diversity studies in mountain soils being performed in Central Asia (Fig. 4). Studies 562 

addressing microbial diversity (all prokaryotes, selected studies also including fungi and protists) in 563 

mountain permafrost outside of China were conducted recently in the European Alps (Frey et al., 2016; 564 

Luláková et al., 2019; Praeg, Pauli & Illmer, 2019; Adamczyk, Rüthi & Frey, 2021; Sannino et al., 2021) 565 

and high-elevation soils from the Andes, Rocky Mountains, and Alaskan Brooks Range (Lipson & 566 

Schmidt, 2004; Nemergut et al., 2005; King et al., 2010; Ricketts et al., 2016; Wagner et al., 2017; Farrer 567 

et al., 2019). Despite partially harsh environmental conditions, mountain soils harbour a considerable 568 

bacterial diversity (Rime et al., 2015; Frey et al., 2016). Bacteria contribute substantially to 569 

biogeochemical cycles, both at the regional and supraregional scale (Donhauser & Frey, 2018) and together 570 

with archaea (and fungi, see Section V.2) are considered fundamental in stabilising soils and influencing 571 

the physical and biological development of soil ecosystems (Bernasconi et al., 2011). Prokaryotic 572 

colonisers contribute significantly to the initial build-up of biomass, by fixation of atmospheric CO2 and 573 

N2 (Frey et al., 2013), and using C and N from (microbial) necromass (Zumsteg, Schmutz & Frey, 2013b; 574 

Rime et al., 2016b; Donhauser et al., 2021). Quantification of precise amounts of CO2 and N2 fixation and 575 

usage of dead microbial cells as a non-negligible C pool in mountain soils is challenging due to the 576 

complexity and variability of mountain soils and is still lacking. Further nutrients, such as P and S, may be 577 

obtained from the bedrock by biological weathering (Frey et al., 2010; Brunner et al., 2011). As glaciers 578 

increasingly retreat with climate change, barren bedrock is exposed and colonised by pioneer 579 

microorganisms such as Acidobacteriota, Planctomycetota and Bacteroidota (Zumsteg et al., 2012; Rime 580 

et al., 2015; Rime, Hartmann & Frey, 2016a). From permafrost soils, bacterial candidate phyla OD1, TM7, 581 

GN02 and OP11 forming the superphylum Patescibacteria were recovered besides well-established phyla, 582 

such as Proteobacteria, Verrucomicrobiota and Acidobacteriota and were found to represent one third of 583 

the entire community (Frey et al., 2016). At lower elevations, e.g. in alpine grasslands, bacterial 584 

communities are primarily dominated by Acidobacteriota (subgroup6, Acidobacteria), Actinobacteriota 585 

(Actinobacteria, Thermoleophilia), Proteobacteria (Alpha- and Gammaproteobacteria), Bacteroidota 586 

(Bacteroidia), and Verrucomicrobiota (Yuan et al., 2014, 2015; Yashiro et al., 2016; Chen et al., 2020, 587 

2021; Ji et al., 2020). Gemmatimonadota and Bacillota (formerly Firmicutes) are further phyla that are 588 

commonly present in alpine grasslands, such as in the Tibetan Plateau (Jiang et al., 2021). Studies 589 

specifically addressing archaeal communities in grasslands are still lacking. However, existing work 590 

suggests that Thaumarchaeota (Nitrosphaeria), Nanoarchaeota (Woesearchaeota), Crenaerchaeota 591 

(Bathyarchaeota, Thermoprotei), and Euryarchaeota (Thermoplasmata, Methanobacteria) represent the 592 

most prevalent archaeal phyla (Malard et al., 2022). However, ongoing changes in microbial taxonomy, for 593 
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archaea (and bacteria), facilitated by the widespread availability of genome sequences that led to the 594 

development of comprehensive sequence-based taxonomies like the Genome Taxonomy Database (GTDB) 595 

(Parks et al., 2018) should be considered. Besides, the coverage of archaea can be less than 25% by using 596 

universal primers for 16S metabarcoding (Bahram et al., 2019) and selective and specific detection of 597 

archaea has been rarely done so far and is thus urgently needed. The dominance of Actinobacteriota and 598 

Acidobacteriota and especially of ammonium-oxidising archaea is due to their adaptation to the N- and P-599 

limited conditions typical for alpine grassland soils or higher elevation soils (Liu et al., 2017; Ma et al., 600 

2019; Praeg et al., 2019). 601 

Wang et al. (2015) reported no clear trend across a transect spanning 3,106 to 4,479 m on Mount Shegyla 602 

(Transhimalaya), Tibetan Plateau in the abundances of bacteria and archaea; however, they found that the 603 

ratio of bacterial to archaeal gene copy numbers (as a function of abundances) decreased with increasing 604 

elevation, highlighting a switch in favour of archaea. Liang et al. (2023) compared variations in taxonomic 605 

and functional (N cycle) dis/similarity of bacteria across the Tibetan plateau and found that both were more 606 

driven by soil abiotic characteristics than vegetation, but with different environmental drivers prevailing 607 

for each. Lazzaro et al. (2015) observed the lowest bacterial and fungal abundances at the highest site of an 608 

elevational transect in the Swiss Uri Alps (1,930–2,519 m, European Alps). Similar to findings for 609 

phylogenetic marker genes, functional gene abundance and diversity were shown to vary with elevation in 610 

these studies. Yang et al. (2014), in turn, studied the functional diversity at four sites along an elevational 611 

gradient in the Qilian Mountains (Tibetan Plateau). Abundance of the Rubisco (ribulose-1,5-bisphosphate 612 

carboxylase/oxygenase, involved in CO2-fixation) gene was lower at the lowest site compared to the other 613 

sites, which might indicate lower CO2-fixation activities (Yang et al., 2014; Guo et al., 2015). A succession 614 

of the functional genetic potential has also been demonstrated in Swiss glacier forefields (Feng et al., 2023). 615 

Given that the majority (approximately 99%) is not cultivable, high-throughput sequencing (HTS) has 616 

become a powerful tool for assessing and comparing the diversity of prokaryotes, and metagenome 617 

assembled genomes increasingly help to describe the uncultivable majority (Hug et al., 2016). In alpine 618 

systems, the composition, distribution, and structure of microbial communities depend on a number of 619 

environmental factors such as temperature, precipitation, and other climatic variables such as moisture and 620 

snow cover duration (Malard et al., 2022), substrate and nutrient availability, biotic interactions, slope 621 

aspect (Adamczyk et al., 2019), as well as soil physicochemical and vegetation properties (Shen et al., 622 

2015; Donhauser & Frey, 2018; Adamczyk et al., 2019; Praeg et al., 2019, 2020; Liang et al., 2023). 623 

While temperature and precipitation typically have a direct effect on microbial communities, the effects of 624 

soil and vegetation properties are likely indirect and depend on climatic variables as well as biological and 625 

chemical feedback. Yet, the establishment of plants has been identified as an important driver of prokaryotic 626 

community structure during early succession (Rime et al., 2015; Wojcik et al., 2020). Overall, edaphic 627 

factors such as soil pH, organic matter content, water, and available P concentrations (Yashiro et al., 2016; 628 
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Bueno de Mesquita et al., 2020) remain the main determinants of bacterial and archaeal richness, diversity, 629 

and community composition. Soil transplantation experiments to study the changes in the taxonomic and 630 

functional gene structures of microbial communities with warming (Zumsteg et al., 2013a; Rui et al., 2015) 631 

confirm field observations. In these studies, changes in the structure of the community were attributed to 632 

temperature, moisture, soil properties, and vegetation parameters. By condensing information on 633 

community composition to microbial richness and diversity indices, it was shown that bacterial richness 634 

decreased with increasing elevation (Shen et al., 2015; Adamczyk et al., 2019; Praeg et al., 2019), whereas 635 

for archaea, Singh et al.(2012) documented a peak in alpha-diversity at mid-elevations along a 1,000–3,760 636 

m gradient on Mount Fuji (Kantō Mountains), Japan. In glacier forefield soils, microbial community 637 

composition was reported to shift in response to increasing C content in soils, decreasing soil pH, and plant 638 

establishment (Zumsteg et al., 2012). Temperature further affects microbial communities when it reaches 639 

extremes (>25 °C) and passes a tipping point where microorganisms react to further temperature increase 640 

with pronounced non-linear responses in community-level growth rates, changes in the temperature 641 

sensitivity of bacterial growth (Q10), and alterations in community structure (Donhauser et al., 2020, 642 

2021). While fungal communities are tightly associated with plants (see Section V.2), bacterial and archaeal 643 

communities are also influenced by other prokaryote communities (Malard et al., 2022). Soil functions and 644 

processes are driven by microbial interactions, and the study of network interactions among bacterial, 645 

archaeal, and fungal microbiota is gaining interest. In alpine grasslands, soil pH was found to be a key 646 

driver for predicting network-level topological features of soil microbial co-occurrence networks; with 647 

increasing soil pH, associations between microorganisms were enhanced and networks became more stable 648 

(Chen et al., 2021).  649 

Overall, central gaps in knowledge about prokaryotic diversity in alpine soil exist, firstly, in a 650 

geographical context. Considering the data from Fig. 4, it is obvious that the global distribution of microbial 651 

studies is heterogeneous. Secondly, a deficit we observe is the lack of knowledge about the activity and 652 

ecological functions of prokaryotes in situ. While molecular data provide information about phylogeny, 653 

conclusions about the function of specific clades are often drawn from few cultured isolates which may not 654 

be representative for the entire group (e.g. Verrucomicrobiota). Furthermore, there is a growing need to 655 

increasingly take into account the complex interactions among microorganisms themselves, as well as their 656 

relationships with plants and soil organisms, when investigating and evaluating microbial diversity. 657 

 658 

(2) Fungi 659 

Fungi comprise a large ecologically heterogenous group of microorganisms (Stajich et al., 2009), of 660 

which only 2–6% of the estimated 1.5–12 million species have been formally described (Taylor et al., 2014; 661 

Hawksworth & Lücking, 2017; Bhunjun et al., 2022). Functionally, fungi range from ecosystem recyclers, 662 

as the main saprotrophic decomposers of (recalcitrant) organic materials (Baldrian & Valásková, 2008; 663 
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Finlay & Thorn, 2019), to those forming a great diversity of symbiotic associations with plants and animals 664 

(Mueller & Gerardo, 2002; Crowther, Boddy & Hefin Jones, 2012; Genre et al., 2020). It is this 665 

multifunctionality that makes fungi essential components of soil biodiversity in all terrestrial habitats 666 

(Wagg et al., 2014), including high alpine ecosystems.  667 

To date, much of what is known concerning alpine soil fungal communities comes from European and 668 

North American studies of the macroscopic reproductive structures (the sporocarps) produced by fungi. 669 

Studies include taxonomic works (Horak, 1993; Cripps, Larsson & Horak, 2010), community and 670 

biogeographic studies (Senn‑Irlet, 1988, 1993; Ronikier, 2008), and ecological investigations (Graf, 1994). 671 

These studies have identified a rich diversity of saprotrophic and plant associated symbionts, many of which 672 

appear to be restricted to alpine and arctic environments (Cripps et al., 2019).  673 

There are comparably few metabarcoding studies that have included analyses of whole fungal 674 

communities in alpine soils, although elevational gradient studies often comprise samples from vegetation 675 

neighbouring high-elevation treelines, including alpine heaths (e.g. Tonjer et al., 2021). Alpine grassland 676 

fungal communities have been investigated using metabarcoding approaches in China (Yang et al., 2017; 677 

Jiang et al., 2018; Zhang et al., 2020; Zhang & Fu, 2021) and Central Europe (e.g. Pellissier et al., 2014; 678 

Praeg et al., 2019), regions which comprise 79% of the fungal diversity studies found (Fig. 4). These studies 679 

demonstrate that different functional groups show a range of responses to changes in elevation, temperature, 680 

N addition, and grazing management. In the European Alps, fungi are locally diverse (Brunner et al., 2017; 681 

Adamczyk et al., 2019; Praeg et al., 2019; Arraiano‑Castilho et al., 2021), similar to other alpine regions 682 

(Bjorbækmo et al., 2010; Perez‑Mon, Frey & Frossard, 2020; Rüthi et al., 2020). In alpine grassland, soil 683 

fungal communities are primarily composed of Ascomycota and Basidiomycota, but also comprise large 684 

proportions of unidentified fungi (Pellissier et al., 2014; Malard & Pearce, 2018; Praeg et al., 2020). 685 

Within these phyla, Agaricomycetes (Basidiomycota), Archaeorhizomycetes (Ascomycota), 686 

Sordariomycetes (Ascomycota) and Leotiomycetes (Ascomycota) are the most abundant classes of fungi 687 

in grasslands (Pellissier et al., 2014; Pinto‑Figueroa et al., 2019). Agaricomycetes are commonly 688 

saprotrophic (decomposers) and actively participate in the decomposition of organic matter (Ludley & 689 

Robinson, 2008; Edwards & Zak, 2010), especially in cold and dry environments (Ludley & Robinson, 690 

2008). Sordariomycetes and Leotiomycetes are ecologically diverse and include pathogens of either plants 691 

and animals, mycorrhiza and plant endophytes, as well as saprotrophs (Maharachchikumbura et al., 2016; 692 

Johnston et al., 2019). Finally, the Archaeorhizomycetes are a widely distributed and abundant class of 693 

terrestrial fungi, yet, their role in the ecosystem is still debated (Rosling, Timling & Taylor, 2013; 694 

Pinto‑Figueroa et al., 2019) and their detection is hampered by using the ITS2 region instead of the 18S 695 

rRNA gene (Tonjer et al., 2021). Archaeorhizomycetes are believed to be associated with plant roots, but 696 

experiments suggest they are neither mycorrhizal nor pathogenic (Rosling et al., 2013). 697 
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Fungal community composition has been intensively studied in glacier forefields where it was shown 698 

that the active fungal community composition changes according to soil developmental stages (Zumsteg et 699 

al., 2012, 2013b; Rime et al., 2015; Sannino et al., 2020). The diversity of fungi was surprisingly high in 700 

barren ground closest to the glacier tongue and was similar to older vegetated soils (Rime et al., 2015; 701 

Dresch et al., 2019). Glacier ice is considered as a fungal inoculum source for the earliest ice-related barren 702 

ground and for later plant-covered soil (Rime et al., 2016a). Besides the glacier environment, permafrost 703 

soils also provide living space for numerous fungi from the prehistoric era (Frey et al., 2016; Luláková et 704 

al., 2019; Pontes et al., 2020; Frey, 2021). European permafrost soils are dominated by lichenised fungi 705 

and basidiomycetous Rhodotorula, including the genera Naganishia, Mrakia, or Leucosporidium (Frey et 706 

al., 2016; Adamczyk et al., 2021; Sannino et al., 2021). 707 

Historically, below-ground studies of alpine fungi have focused on ectomycorrhizal (EM) and arbuscular 708 

mycorrhizal fungi as well as root associated symbionts of plants. However, there are very few studies on 709 

fungal symbionts associated with ericaceous plants, despite the importance of heath vegetation in alpine 710 

systems (Kivlin et al., 2017). EM fungi are nevertheless essential for establishment and habitat colonisation 711 

by alpine plants such as willows (Nara & Hogetsu, 2004). EM fungi have been examined on a range of 712 

hosts, using combinations of linking sporocarps to associated EM tips (Salix herbacea L., Graf & Brunner, 713 

1996) or selection of EM tips followed by molecular identification (Dryas sp. and Salix sp. (Kernaghan & 714 

Harper, 2001); Arctostaphylos uva-ursi (L.) SPRENG. (Krpata et al., 2007); Bistorta vivipara (L.) 715 

DELARBRE (Thoen et al., 2019)). Gao & Yang (2016) used a cloning approach to examine mycorrhizal 716 

fungi on herbaceous plant roots in alpine meadows in Southwestern China. However, metabarcoding 717 

studies have provided more comprehensive assessments of root associated fungi on particular host species, 718 

including Arctostaphylos sp. (Hesling & Taylor, 2013), Dryas sp. (Bjorbækmo et al., 2010), Carex 719 

myosuroides VILL. (Mühlmann & Peintner, 2008), Bistorta vivipara (Mühlmann, Bacher & Peintner, 720 

2008), Salix spp. (Ryberg, Andreasen & Björk, 2011). The recent barcoding study by Arraiano-Castilho et 721 

al. (2021) demonstrated that habitat was a stronger determinant than the host plant for EM fungal 722 

distribution in alpine habitats. All of these studies highlight the high diversity of fungal symbionts 723 

supporting alpine plants.  724 

Fungi carry out a multitude of functions in ecosystems, and although they interact with many trophic 725 

groups, the major focus has so far been on plant associated symbionts. The importance of fungal/plant 726 

interactions in the development of plant communities has been particularly well investigated at glacial 727 

fronts in alpine zones using metabarcoding studies in Norway (Blaalid et al., 2012), the Central European 728 

Alps (Brunner et al., 2011; Rime et al., 2015), and North America (Jumpponen et al., 2015). 729 

Fungal communities in alpine grasslands are primarily affected by edaphic, climatic, and biotic 730 

parameters. Specifically, soil pH, soil organic C, N, P, soil water content and electrical conductivity are 731 

important soil variables, with snow cover duration also exerting an important influence on fungal richness 732 
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(Pellissier et al., 2014; Yang et al., 2017; Malard et al., 2022). The importance of microtopography in 733 

alpine zones, particularly differences in snow lie, is widely recognised in structuring plant communities 734 

(e.g. Carlson et al., 2015), and a number of studies have also shown topography to be an important driver 735 

of soil fungal community composition (Zinger et al., 2009, 2011; Frey et al., 2016). However, this 736 

importance is confounded by the close vegetation/fungal relationships. Further studies on individual plant 737 

species (see (Yao et al., 2013) over a range of topographies may provide greater insights into the direct role 738 

of soil conditions on structuring communities.  739 

The strong connections and dependencies between above-ground plant and below-ground fungal 740 

communities (see Yao et al., 2013; Tonjer et al., 2021) illustrate that climatic and pollutant-induced 741 

changes in alpine plant communities (see Steinbauer et al., 2018) will have major impacts on the associated 742 

soil fungi. The upwards migration of treelines (Harsch et al., 2009; Bryn & Potthoff, 2018) and expansion 743 

of trees and shrubs into formerly grazed areas (Dibari et al., 2020) will, in particular, have significant 744 

impacts on both the taxonomic and functional attributes of alpine soil fungal communities. Similarly, the 745 

invasion of alien weed species into alpine vegetation, although currently still limited (Alexander et al., 746 

2016), could lead to alterations of the indigenous fungal communities (Johnston & Pickering, 2001). Lastly, 747 

plant richness and diversity are key to fungal alpha and beta diversity in alpine grasslands (Pellissier et al., 748 

2014; Yang et al., 2017; Malard et al., 2022). Similarly, elevated nitrogen deposition induces major shifts 749 

in soil fungal functional groups (van der Linde et al., 2018; Zhang, Chen & Ruan, 2018). Coupled with 750 

these effects of vegetation change and nutrient availability, there are also direct impacts of changing 751 

environmental conditions on fungal communities, with both temperature and moisture being strong drivers 752 

of community structure at local (Yao et al., 2013), regional (van der Linde et al., 2018), and global scales 753 

(Tedersoo et al., 2014).  754 

 755 

(3) Protists 756 

Protists are defined as all eukaryotes that are not plants, metazoans, or fungi (O’Malley, Simpson & 757 

Roger, 2013). They form a vast paraphyletic entity spanning the whole eukaryotic tree of life, comprising 758 

large, phylogenetically and functionally diverse groups, and are represented mainly by microbial unicellular 759 

organisms (Adl et al., 2019; Burki et al., 2020). 760 

Due to their phylogenetic, morphological, and functional diversity, it is difficult to generalise findings 761 

on the entire protist community. The total diversity of protists in general is unknown, most species are 762 

undescribed, and their distribution and functions are poorly understood. Accordingly, knowledge on soil 763 

protists is lagging behind that of many other soil organisms (Geisen et al., 2018; Bonkowski, Dumack & 764 

Fiore‑Donno, 2019), and this is reflected in the number of studies focusing on protist diversity in alpine 765 

soils (Fig. 4, Table S5). Due to the methodological challenges associated with the study of soil 766 

microorganisms, many of which cannot be easily grown in the laboratory, the diversity of protists living in 767 
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oceans and freshwater ecosystems is better documented than that of soil protists. However, high throughput 768 

sequencing studies are revealing that their diversity is highest in soils, partly due to the strong heterogeneity 769 

of the soil environment and diversity of soil types (Singer et al., 2021). Thus, while numerous studies have 770 

explored the diversity of individual protist groups in mountain soils, documentation of this diversity beyond 771 

high throughput sequencing approaches still represents a largely open field of research, as is true for minute 772 

and microscopic soil organisms in general (Decaëns, 2010). While some protist taxa were described in the 773 

European Alps, such as the family Grossglockneriidae (Petz et al., 1986; Foissner, 1999), and Puytoracia 774 

jenswendti SANTIBÁÑEZ ET AL. 2011, a euglyphid testate amoeba discovered on glaciers in the Andes 775 

(Santibáñez et al., 2011), the true degree of endemicity among alpine protist taxa remains to be determined 776 

(Ronikier & Ronikier, 2009). 777 

Diversity patterns of soil protists along elevation gradients have primarily been investigated for specific 778 

groups, such as testate amoebae, a group of shelled protists commonly used as models for biogeographic 779 

studies. Along such gradients, contrasting patterns of distribution were observed: a hump-shaped pattern 780 

along the gradient (e.g. Krashevska et al., 2007; Krashevska, Maraun & Scheu, 2010; Lamentowicz et al., 781 

2013), the lowest diversity at mid-elevations (Tsyganov et al., 2022), decreasing richness, diversity, and 782 

equitability with increasing elevation (Heger et al., 2016), or no response to elevation (Mitchell, Bragazza 783 

& Gerdol, 2004). 784 

With the rise of the molecular era, it has become possible to study the response of the whole community, 785 

and Shen et al. (2014) showed that an elevational gradient induced little shaping force on protistan 786 

communities, which were more strongly influenced by edaphic factors such as soil pH. These contradictory 787 

patterns reflect the high diversity of protists, but also likely the fact that some groups are poorly recovered, 788 

either due to the fact that primers are not totally universal (e.g. Amoebozoa are typically under-estimated) 789 

or that the barcode used (e.g. V4 region of the SSUrRNA gene) contains insertions (e.g. some common soil 790 

Rhizaria) that make it impossible to use short reads, as in Illumina sequencing (Pawlowski et al., 2012).  791 

Protists are paraphyletic and comprise microeukaryotes that are similar in size and shape to yeasts, but 792 

also comprise taxa that are several millimetres in size or even reach several decimetres, such as e.g. slime 793 

moulds. It is therefore not surprising that protists do not necessarily respond uniformly to environmental 794 

gradients. Nonetheless, as in other habitats, the majority of protistan taxa in alpine soils are believed to be 795 

small, motile, and cyst forming bacterivores (Oliverio et al., 2020; Kang et al., 2022). Accordingly, only a 796 

small effect of elevation on alpha and beta diversities of protistan communities can be expected. 797 

Stramenopiles, Alveolates, and Rhizaria (SAR), along with Amoebozoa and Archaeplastida dominate the 798 

protist diversity in alpine grasslands (Seppey et al., 2020). In terms of function, consumers are followed by 799 

parasites and phototrophs (Mazel et al., 2022). The dominance of consumers in mountain open habitat soils 800 

suggests that this functional group could be key in the cycling and turnover of nutrients in this type of 801 

ecosystem (Geisen et al., 2015; Oliverio et al., 2020). 802 
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As it is known from low-elevation soils, edaphic factors (e.g. soil moisture, C content, and soil pH) and 803 

the local plant community are strongly determining factors of soil protist communities (Oliverio et al., 804 

2020; Aslani et al., 2022). Besides edaphic factors, temperature and slope of mountain systems also drive 805 

protist community assemblages (Seppey et al., 2020; Malard et al., 2022). Likewise, Hu et al. (2022) 806 

showed a strong influence of soil moisture and N content as shaping factors of soil protistan communities 807 

at high elevations, while Shen et al. (2014) found protist communities to be primarily correlated with soil 808 

pH. Only a few studies have aimed at inventorying protist communities in alpine ecosystems (Hu et al., 809 

2022; Kang et al., 2022). These studies claim that body size determines the assembly of protist 810 

communities, with deterministic factors (e.g. soil acidity, temperature) being more important in protists 811 

than in other microbes. Furthermore, Kang et al. (2022) showed that the turnover rates among alpine 812 

environments were lower in protists than in other microorganisms (bacteria and fungi), which they explain 813 

with a higher dispersal rate of motile protists. However, this finding contrasts with floodplains where 814 

protists showed higher spatial patterns while bacteria communities changed primarily seasonally (Fournier 815 

et al., 2020). Borg Dahl et al. (2019) highlighted the importance of plant community as a major determinant 816 

of myxomycetes in the European Alps. As such, physicochemical properties and vegetation patterns will 817 

differentially shape protists in alpine forests, shrublands, grasslands, pastures, and high alpine zones. To 818 

test these suggested trends and hypotheses on protist communities, more targeted inventories are needed 819 

across alpine systems. A recent study manipulated precipitation, warming, and nitrogen addition in alpine 820 

habitats, revealing that these global change factors fundamentally alter soil protist communities and their 821 

abundances. In this study, precipitation and nitrogen input caused an increase in protist diversity and 822 

abundance, respectively, while decreased precipitation and warming reduced them (Hu et al., 2022). 823 

Further, it can be expected that changes in bacterial, fungal, but also plant and animal communities will 824 

cascade to protists (Valencia et al., 2018). Therefore, climate change is expected to alter protist 825 

communities in alpine habitats with potential impacts on other components of the soil microbiome and on 826 

soil functions (Mazel et al., 2022).  827 

The last decades have revolutionised the perspective on soil protist functional roles, which span the 828 

whole spectrum from predators, primary producers, parasites, decomposers, phototrophs and saprotrophs 829 

(Geisen et al., 2018, 2020). In soils, protists feed on a wide variety of substrates, with heterotrophs 830 

representing the most abundant and diverse functional group (Bonkowski et al., 2019). Soil protists were 831 

first shown to be key bacterial predators that control bacterial abundances and, via the microbial loop, make 832 

nutrients available for plant growth (Clarholm, 1985). However, protist predators occupy different trophic 833 

niches by feeding on other microorganisms like bacteria, fungi, algae, micro-metazoa such as nematodes 834 

and rotifers (Yeates & Foissner, 1995; Gilbert et al., 2000; Jassey et al., 2013; Geisen et al., 2015; 835 

Estermann et al., 2023), and other protists (Seppey et al., 2017; Geisen et al., 2018; Bonkowski et al., 836 
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2019). Hereby, phagocytosis appears to be the main mechanism for nutrient acquisition (Singer et al., 837 

2021).  838 

Bacterivorous taxa may dominate the protist community in many cases (Oliverio et al., 2020; Aslani et 839 

al., 2022), but the dominant feeding habits can be expected to match the available resources and especially 840 

the bacteria to fungi ratio, which responds to soil pH (Rousk, Brookes & Bååth, 2009). Hence, fungivores 841 

are likely more common in subalpine (e.g. conifer-dominated forests) and lower alpine (e.g. ericoid heath) 842 

habitats, as perfectly illustrated by the obligate fungivorous grossglocknerid ciliates that were discovered 843 

in the European Alps (Petz et al., 1986; Foissner, 1999). 844 

Soil protists, including crop pathogens like Phytophthora infestans (MONT.) DE BARY, have a broader 845 

role as parasites, potentially affecting plant or soil animals. However, the diversity and interactions of these 846 

protist parasites remain understudied. Apicomplexa parasites of invertebrates and vertebrates, strongly 847 

dominate soil protist diversity in tropical forests and this dominance is thought to reflect the overall 848 

invertebrate diversity throughout the ecosystem, from soil to canopy (Mahé et al., 2017). In line with this, 849 

a study in the Swiss Alps showed that the diversity of Apicomplexa in various alpine habitats correlated 850 

positively with the diversity of their putative metazoan hosts (Singer et al., 2020). The relative contribution 851 

of parasites to the total protist community compared to other functional groups was, however, shown to 852 

decrease with increasing elevation, likely due to the reduction in host density with elevation (Mazel et al., 853 

2022). 854 

Phototrophic protists, like Chlorella and Trebouxia, are common as symbionts in lichens, but also as 855 

free-living forms at the soil surface (Jassey et al., 2022). However, the abundance of free-living 856 

phototrophic protists (and their predators) is highest in moist (e.g. peatlands) and open (e.g. arid or alpine) 857 

vegetation (Gilbert et al., 1998; Seppey et al., 2017). In arid habitats, including patchy alpine vegetation, 858 

phototrophic protists contribute to the formation of biocrusts, which are major contributors to organic C 859 

and N fixation (Dickson, 2000) and reduce soil erosion (Evans & Johansen, 1999). While soil protists have 860 

long been neglected in soil microbiological studies (Geisen et al., 2020), they now are the focus of an 861 

increasing number of studies as their importance as determinants of plant performance is established 862 

(Bonkowski, 2004; Gao et al., 2019). Thus, protists are now recognised as important elements in soils 863 

ecosystems due to their role in the microbial food web and nutrient cycling (Adl & Gupta, 2006; Geisen et 864 

al., 2016) and their contribution to biogeochemical cycles, especially C (Geisen et al., 2020) and silica 865 

(Aoki, Hoshino & Matsubara, 2007). 866 

  867 
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VI. SOIL INVERTEBRATES 868 

KEY ASPECTS 

● The treeline ecotone harbours a high diversity of soil macro-, meso-, and micro-invertebrates, 

as species from both forest and grassland ecosystems coexist. At higher elevation, the shallow 

soils are mainly inhabited by soil meso- and micro-invertebrates. 

● Faunal diversity generally decreases with increasing elevation, as climatic and energetic 

conditions become more challenging. Some taxa reach their upper distribution limits (e.g. 

earthworms and millipedes in the high alpine zone). 

● Essential ecosystem functions are carried out by only a few key taxa (e.g. litter decomposition 

in the high alpine is mainly carried out by Nematocera larvae and soil meso-invertebrates). 

● Soil food webs in high alpine soils are simple, with fewer interactions compared to lowland 

soils. Omnivorous and opportunistic feeding habits have increased to ensure energy intake. 

● Extensive grazing by livestock and wild ungulates can improve conditions for soil fauna by 

providing nutritious manure and reducing cover of recalcitrant dwarf shrubs. 

● We found 205 publications dealing primarily with alpine soil fauna (i.e. 118 for macro-, 52 for 

meso-, and 35 for micro-invertebrates), mainly from the mountain regions of Central & 

Southern Europe (42.9%), Central Asia (15.6%), and Australia & New Zealand (13.2%); see 

Fig. 5 and Table S6. 

 869 
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870 

Fig. 5. Global map of scientific articles focusing on invertebrates in alpine mountain soils. Number of 871 

publications are given per invertebrate group and relative to the maximum of papers found (Central & 872 

Southern Europe): the dark-coloured part of the bar represents those papers where the organismic group 873 

was likely the primary object, the light-coloured part represents those papers where the organismic group 874 

was mentioned, but not as the main subject of the publication. See Appendix S1 for a detailed description 875 

of the methods and full list of publication numbers per region and soil organism group. Photos from left to 876 

right: Micro-invertebrates: images of Nematoda (credit: CSIRO Entomology), and a Tardigrada 877 

Macrobiotus sp. (credit: Michala Tůmová) through microscopes; Meso-invertebrates: the Collembola 878 

Entomobrya nivalis and the Acari Platynothrus pelifer (credit: both Frank Ashwood); Macro-invertebrates: 879 

the ‘green’ earthworm Aporecctodea smaragdina inhabits calcareous mountain soils in the European Alps 880 

and Dinaric Alps, male velvet spider Eresus sandaliatus found in alpine dry pastures in the Central 881 

European Alps (credit: both Michael Steinwandter). 882 

 883 

 884 

In general, soil invertebrates belong to a wide range of taxa. Their diversity is particularly high close to 885 

the treeline, as representatives of all size classes (micro-, meso-, and macro-invertebrates, (Orgiazzi et al., 886 

2016) are found and grassland species co-occur with forest species, especially in intertwined dwarf shrub 887 
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habitats. Macro-invertebrates (taxa with a mean body size > 2 mm, mainly earthworms, spiders, myriapods, 888 

isopods, ants, and insect larvae) decrease in numbers with increasing elevation due to climatic and 889 

topographic factors. Vegetation cover and the amount of soil decrease, particularly limiting soil macro-890 

invertebrates that require a vegetation cover that produces litter material and/or the physical habitat space 891 

that is provided by mature soils. Meso- (mainly collembolans, mites, and enchytraeids) and micro-892 

invertebrates (mainly nematodes, rotifers, and tardigrades) can still be abundant in shallow high-elevation 893 

soils even though habitat space and litter inputs from vegetation are reduced. 894 

Compared to soil microbiota, data on soil fauna are scarce and often limited to ground-dwelling taxa 895 

(Burton et al., 2022). Soil fauna studies focusing on alpine and high-elevation habitats are especially rare. 896 

Available data pertain primarily to alpine regions in Central & Southern Europe (i.e. 42.9%, Fig. 4 and 897 

Table S6) such as the Central European Alps (e.g. Puntscher, 1980; Meyer & Thaler, 1995; Koch & 898 

Erschbamer, 2010; Gobbi et al., 2020; Seeber et al., 2021), Central Asia (15.6%) such as the Tibetan 899 

Plateau (e.g. Wu, Zhang & Wang, 2015; Devetter et al., 2017), and Australia and New Zealand (13.2%, 900 

e.g. Salmon, 1940; Hammer, Foged & Nørvang, 1966; Houston & Greenslade, 1994; Minor et al., 2016; 901 

Mesibov, 2018; Green & Slatyer, 2020), while alpine regions in the Americas (i.e. Rocky Mountains, 902 

Appalachians, and Andes), Africa (i.e. Drakensberg), and the Caucasus remain understudied (but see 903 

Armstrong & Brand, 2012; Kokhia & Golovatch, 2020). We were able to find only five soil fauna 904 

publications for each of these alpine regions (Table S6, Appendix S1). A similar outcome was found for 905 

the alpine region of Siberia (i.e. North Asia), where information is locally available but mainly published 906 

in Russian and therefore not indexed in the ‘Web of Science’ portal.  907 

In alpine environments, large soil fauna is generally sampled by installing pitfall traps (macro-, partially 908 

also meso-invertebrates), by taking soil core samples (all groups), by suction sampling (ground-dwelling 909 

meso-invertebrates), as well as via hand sorting and hand sampling (macro-invertebrates); pitfall traps are 910 

preferably used in higher elevations as soil is getting scarce and shallow. To cope with methodological and 911 

logistical limitations, additional approaches such as soil biodiversity indices (e.g. QBS-ar, Maienza et al., 912 

2022) and DNA metabarcoding (e.g. via environmental DNA (eDNA), Rota et al., 2020) are increasingly 913 

applied also in alpine habitats. Amongst the alpine soil fauna species described to date, some are rarely 914 

found and observations are often based on occasional records. Such observations can even lead to new 915 

discoveries for alpine regions due to the scarcity of research such as the carabid beetle Orthoglymma 916 

wangapeka LIEBHERR, MARRIS, EMBERSON & SYRETT & ROIG-JUÑENT, 2011 (Liebherr et al., 2011) and the 917 

oribatid mite Crotonia ramsayi COLLOFF, 2015 (Colloff, 2015) for New Zealand, the isotomid springtail 918 

Skadisotoma inpericulosa GREENSLADE & FJELLBERG, 2015 (Greenslade & Fjellberg, 2015) for Australia, 919 

and Opetiopalpus sabulosus MOTSCHULSKY, 1840 (Steinwandter et al., 2019). A high percentage are 920 

regionally endemic or found in restricted geographical areas, as observed in the European Alps (e.g. 921 

Komposch, 2011), in Australasia (Boyer & Giribet, 2009), and in the Drakensberg of Southern Africa 922 
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(Armstrong & Brand, 2012). These species are mainly relicts of the last glaciations that survived in 923 

nunataks and other refugia offered by highly heterogeneous mountain topography (Brighenti et al., 2021); 924 

in subsequent interglacial periods, these alpine invertebrates have expanded extensively (Hill et al., 2009). 925 

For Australasian alpine taxa, a deeper phylogeographic structuring was shown compared to European and 926 

North American ones, possibly reflecting less intense glaciation and a higher availability of refuges during 927 

glaciation events (King et al., 2020). Colonisation processes in high alpine areas can be surmised by 928 

observing the colonisation of alpine land when glaciers retract (Koch & Kaufmann, 2010; Hågvar et al., 929 

2020). The first to re-colonise the bare land, which is comparable to quarries, are mostly agile ground-930 

dwelling predators (e.g. carabid beetles, harvestmen, lycosid spiders) depending presumably on windblown 931 

animals as food sources, followed by the meso-invertebrates (springtails and oribatid mites) after 30 years. 932 

Finally, larger detritivores (millipedes and Nematocera larvae) appear when the soil and the vegetation are 933 

more developed (Kaufmann, Fuchs & Gosterxeier, 2002). 934 

 935 

(1) Macro-invertebrates 936 

The diversity of soil macro-invertebrates – often referred to simply as soil macrofauna – is generally 937 

lower in high alpine grasslands than in the alpine and subalpine zone and often peaks in ecotone areas (i.e. 938 

the transition zones at the treelines and open alpine grasslands; Fontana et al., 2020; Steinwandter & 939 

Seeber, 2023). Elevation and vegetation are the primary determinants of alpine soil macro-invertebrate 940 

communities (Kooch & Noghre, 2020; Steinwandter et al., 2022; Xie et al., 2022; Lavelle et al., 2022). 941 

Earthworms (Lumbricidae), for instance, show a hump-shaped distribution peaking at the treeline ecotone 942 

area (Fontana et al., 2020; Gabriac et al., 2023). Earthworm abundance decreases in alpine grasslands 943 

(Seeber et al., 2005; Steinwandter et al., 2018), likely because of their limited tolerance to the cold 944 

temperatures encountered at higher elevations (Meshcheryakova & Berman, 2014). Additional influencing 945 

factors include vegetation attributes such as plant life-forms and host-plant distributions (e.g. Edwards & 946 

Arancon, 2022), as well as soil attributes such as pH, clay, and water content. Also, poorly developed soils 947 

provide limited habitat space for burrowing species. Yet, abundances and species diversity may increase 948 

with the presence of grazing livestock and wild mammals, whose dung represents a readily available food 949 

source for all decomposer taxa (Bueno & Jiménez, 2014; Steinwandter et al., 2018; Jászayová et al., 950 

2023). 951 

Millipedes (Diplopoda) are litter-dwellers and therefore mostly found in dwarf shrub-rich grasslands and 952 

ecotones above the treeline, where they find the mature and stable soils they prefer as well as more abundant 953 

food resources such as litter and organic debris (Onipchenko & Zhakova, 1997; Steinwandter et al., 2018; 954 

Gobbi et al., 2020; Kokhia & Golovatch, 2020). Most millipede species reach their upper limit of 955 

distribution at the transition between the subalpine and alpine zones and are rare or even completely absent 956 

in high alpine habitats. Soil core samples from high elevations generally contain few to no millipede 957 
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specimens, making estimates of their densities difficult. However, millipedes (and soil invertebrates in 958 

general) are easier and more efficiently detected in high alpine environments by using pitfall traps or hand 959 

sampling and are therefore occasionally found at higher elevations (e.g. Beronodesmoides spp. 960 

(Polydesmida: Paradoxosomatidae) up to 4500 m in Nepal (Golovatch, 2015). Millipede species inhabiting 961 

high elevations mainly belong to the orders Polydesmida, Chordameutida, and Julidae (Beron, 2008, 2016). 962 

In the Central European Alps, species found in higher elevations belong mainly to Chordeumatida, which 963 

are described to be petrophilic with a preference for cold mountain areas and which are active beneath the 964 

snow (Meyer, 1980). These millipedes were found in high numbers at sites up to 3000 m (Steinwandter & 965 

Seeber, 2023), while other myriapods such as centipedes (Chilopoda) were almost absent. Other millipede 966 

species that frequently inhabit European mountain soils and can be found at high elevation include eurytope 967 

millipede species such as Ommatoiulus sabulosus (LINNAEUS, 1758) (Julida: Julidae) as well as specialists 968 

such as the endemic Glomeris transalpina KOCH C. L., 1836 (Glomerida: Glomeridae); both are known to 969 

inhabit alpine rocky sites and soils even up to 3000 m. However, elevational limits may now change with 970 

ongoing global warming: Gilgado et al. (2021) recently described ten millipede species whose elevational 971 

limits in the Swiss Alps have expanded upwards by several 100 metres over the last century. 972 

Surface-active and highly mobile and agile predators, such as spiders, harvestmen, and some beetle 973 

families are abundant representatives of the high alpine soil fauna (Kaufmann et al., 2002; Hågvar et al., 974 

2020; Gilgado et al., 2022) and seem not to depend on mature soils but rather on available prey. Numerous 975 

studies have investigated the diversity of beetles in mountain soils, but the majority focus on a few widely 976 

distributed and well-known families (e.g. Carabidae, Staphylinidae, and Scarabaeidae). The density, 977 

diversity, and distribution of predatory beetles are affected by a wide range of factors such as biotic 978 

interactions, vegetation (Negro et al., 2010; Yu et al., 2013), abiotic factors such as temperature and 979 

moisture (Yu et al., 2013), historical factors such as climatic variability and topographical changes, and 980 

human activities (Larsen, 2012; Brandmayr & Pizzolotto, 2016). Further, topographic isolation may boost 981 

beetle diversity as it was found by Armstrong & Brand (2012) on isolated peaks (i.e. > 3000 m) of the 982 

Drakensberg (Afro-alpine Region), where leaf- (Chrysomelidae), ground- (Carabidae), and sap beetles 983 

(Nitidulidae) dominated.  984 

In the case of ants (Hymenoptera: Formicidae), as with other soil fauna, their presence and abundance 985 

decrease with increasing elevation in alpine settings, where severe filtering can be detected both on 986 

taxonomic as well as functional and phylogenetic diversity (Glaser, 2006; Machac et al., 2011; Chaladze, 987 

2012; Reymond et al., 2013; Bishop et al., 2014). Elevational limits to occurrence are related to the ability 988 

of ants to cope with low temperatures (Bishop et al., 2017). However, while ant colonies tend to occur in 989 

the lower alpine area and become increasingly absent in high alpine areas, some individuals (mainly 990 

specimens from the winged 'alates' caste) may be transported upwards by wind. Overall, ant diversity peaks 991 

at mid-elevation and decreases constantly – and often linearly – with increasing elevation (Subedi & Budha, 992 
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2020). Similar results were found for the Maloti-Drakensberg in Southern Africa by Bishop et al., (2014) 993 

who attributed the spatial and temporal differences primarily to temperature. In the European Alps, most 994 

ant species occurring in the alpine habitat are also present in the higher montane forest belt (Glaser, 2006), 995 

and a higher species diversity was recorded in the treeline ecotone (Guariento & Fiedler, 2021). 996 

Interestingly, a high number of social parasitic ant species are reported from alpine habitats without a clear 997 

explanation so far, except that the harsher environment might positively select for such life history traits 998 

(Dunn et al., 2009; Schifani et al., 2021). In alpine grasslands, the effect of ants on soils is mostly related 999 

to nest construction, since most taxa build their nests in the soil, causing soil turnover as well as nutrient 1000 

accumulation and influencing the vegetation (Wang et al., 2017; Zhao et al., 2020). Ants strategically 1001 

establish their nests beneath rocks, leveraging the warmth absorption and insulation (McCaffrey & Galen, 1002 

2011). Therefore, the rock features (e.g. distribution, shape) represent an important factor for the 1003 

establishment of ant nests. Studies investigating the functional role of ants indicate higher trophic levels in 1004 

the alpine environment (Spotti et al., 2015; Guariento, Martini & Fiedler, 2018), even suggesting 1005 

intraspecific dietary shifts (Guariento, Wanek & Fiedler, 2021). 1006 

Other insect taxa such as larvae of lower flies (Nematocera) increase in numbers at higher elevations. 1007 

They can – at least in parts – carry out crucial ecological functions such as litter decomposition and 1008 

bioturbation which are usually provided by detritivores such as millipedes and earthworms (Meyer & 1009 

Thaler, 1995; Kitz et al., 2015). 1010 

 1011 

(2) Meso-invertebrates 1012 

Soil meso-invertebrate communities – often referred to simply as soil mesofauna – are mainly composed 1013 

of springtails (Collembola), mites (Acari), other small arthropods, and potworms (Enchytraeidae) (Potapov 1014 

et al., 2022). Of these, springtails are the most widespread and abundant invertebrates, occurring in almost 1015 

all terrestrial ecosystems (Hopkin, 1997; Deharveng, 2004). They play essential roles in many soil 1016 

ecosystem processes, such as C and N cycling, soil microstructure formation, and plant litter decomposition. 1017 

Collembola density and diversity vary significantly with environmental factors and plant community 1018 

composition, and in the shallow alpine soils they inhabit mostly the litter and upper soil layers (Seeber et 1019 

al., 2021; Xie et al., 2022).  1020 

In general, the composition and abundance of meso-invertebrate communities in soil are dependent on 1021 

elevation (Striganova & Rybalov, 2008; Jiang, Yin & Wang, 2015; Khabir et al., 2015; Schatz, 2017; 1022 

Winkler et al., 2018), soil properties (van der Merwe et al., 2020), the identity of plant species and the 1023 

variability of vegetation communities (Eo et al., 2016; Xie et al., 2022), all of which can lead to a high 1024 

spatial heterogeneity with many local microhabitats. Furthermore, factors related to climate change, such 1025 

as temperature (Harte, Rawa & Price, 1996; Alatalo et al., 2017) and reduced soil water availability 1026 

(Sylvain et al., 2014), as well as (anthropogenic) disturbances may also affect soil mesofauna diversity and 1027 
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communities. Habitat management (Kooch, Shah Piri & Dianati Tilaki, 2021), tourist activity (Meyer, 1028 

1993; Kopeszki & Trockner, 1994), cattle trampling and grazing (Hauck et al., 2014; Risch et al., 2015), 1029 

fire (Driessen & Kirkpatrick, 2017), soil erosion (Meyer, 1993; van der Merwe et al., 2020), and pollution 1030 

(Rusek, 1993; Visioli et al., 2019) all affect the meso-invertebrates living in alpine grasslands, suggesting 1031 

that environmental filtering is the predominant process shaping soil meso-invertebrate communities (Visioli 1032 

et al., 2019). 1033 

In the nival zone, the soil fauna community is composed almost exclusively of meso-invertebrates – 1034 

springtails, mites, and by region additionally by predatory false scorpions (Pseudoscorpiones), e.g. in 1035 

European Alps, Carpathian Mountains. Mesofauna distribution is scattered and limited to favourable 1036 

refugia such as congregations of detritus or cushion plants (Meyer & Thaler, 1995). Some specialist taxa 1037 

are adapted to snowbeds, which can persist for most of the year (Seeber et al., 2021). These species rely on 1038 

aeolian food sources (i.e. wind-blown debris) or prey on small animals searching for this food; the different 1039 

taxa are active at different times of the day as extreme environmental conditions restrict their activity 1040 

(Mann, Edwards & Gara, 1980). 1041 

 1042 

(3) Micro-invertebrates 1043 

Soil micro-invertebrates (taxa < 0.1 mm in size) – simply referred to as soil microfauna – mainly 1044 

comprise roundworms (Nematoda), rotifers (Rotifera), and water bears (Tardigrada). Little research on 1045 

these tiny soil invertebrates has been conducted in alpine regions (Devetter et al., 2017), however, a global 1046 

distribution map of nematodes revealed a positive relationship between organic C content in mountain soils 1047 

and abundance of nematodes (van den Hoogen et al., 2019). Micro-invertebrates are generally favoured in 1048 

fertile soils with high contents of N, P, and organic matter (Devetter et al., 2017), and are easily affected 1049 

by disturbances such as soil degradation and shrub encroachment after abandonment (Hu et al., 2017; Wu 1050 

et al., 2017; Wang et al., 2018)(Hu et al., 2017; Wu et al., 2017; Wang et al., 2018). Recently, Porazisnka 1051 

et al. (2021) showed that soil nematodes expand their distribution ranges with elevation by following 1052 

expanding plant species, and as plant communities become more complex and diverse even at higher 1053 

elevations, a more diverse nematode community may increasingly contribute to C and N sequestration. 1054 

Further, Li et al. (2023) found that soil nematodes – which are generally water-bound – respond positively 1055 

to higher precipitation and soil water content in alpine grasslands of the Tibetan Plateau, with higher 1056 

trophic-level nematodes (i.e. omnivores, carnivores) showing stronger effects than lower trophic-level 1057 

nematodes (i.e. bacterivores, fungivores). 1058 

 1059 

(4) Adaptation strategies of fauna to mountain soils 1060 

The conditions in high alpine areas can be hostile to animal life, but soil taxa have adapted over a long 1061 

time and have developed strategies to cope with the harsh and varying climate. Many taxa have black, dark 1062 
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brown, or dark grey body colour (e.g. beetles, spiders) (Armstrong & Brand, 2012), an adaptation that 1063 

allows larger cold-blooded mountain animals to better absorb sunlight and therefore energy. Appendages 1064 

and legs are often shorter than those of the same species and groups living in lower habitats. Wing size is 1065 

also often reduced (i.e. a higher degree of brachyptery or winglessness), for example in carabid 1066 

communities of high alpine habitats (Pizzolotto, 2016). Due to the long duration of snow cover, alpine soil 1067 

invertebrates show increased cold resistance, behavioural thermoregulation, and actively seek thermally-1068 

buffered microhabitats (Dillon et al., 2006; Schoville et al., 2015; Buckley et al., 2015). Yet, individuals 1069 

often search for food on the snow surface or in more favourable locations that can only be reached by 1070 

crossing snowfields, thus, the risk of hypothermia is often high.  1071 

Beside physiological adaptations, high alpine soil fauna typically show more generalist diets (i.e. 1072 

omnivory) due to the low availability of food resources. Predation seems to be driven by the presence and 1073 

abundance of a given prey. For example, in extremely high-elevation environments such as glacier 1074 

forefields, carabid beetles of Nebria spp. and lycosid spiders of Pardosa spp. prey on springtails (König, 1075 

Kaufmann & Scheu, 2011; Sint et al., 2019; Hågvar et al., 2020), which are specifically tied to the 1076 

geomorphology of these habitats (i.e. rough stones that can trap food and prevent flushing, Buda et al., 1077 

2020). Food limitation in such environments results in simpler and more reduced food webs compared to 1078 

lowland habitats (König et al., 2011; Raso et al., 2014; Steinwandter et al., 2018). Species which are 1079 

usually saprotrophic also include animal food sources (e.g. exuvia, carcasses, tissue parts) in their diet and 1080 

may feed on living animal tissue as plant-based litter is rare or even absent. For predators such as carabid 1081 

beetles living in barren high alpine soils with limited number of prey (i.e. mainly springtails), increased 1082 

intraguild and intraspecific predation has been observed to sustain nutritional needs (Raso et al., 2014). 1083 

Additional food can also come from airborne sources, including flying and wind-carried insects, as well as 1084 

detritus (Růžička & Zacharda, 1994; Hågvar et al., 2020). However, specialised predation to efficiently 1085 

intercept the most abundant prey has also evolved, as in the case of the carabid genera Leistus and 1086 

Notiophilus, which trap springtails with their antennae setae (i.e. setal traps, Bauer, 1985). Additional 1087 

adaptations pertain to the invertebrates’ life history. For example, the life cycle of millipedes and other soil 1088 

invertebrates can be interrupted and postponed to spring of the following year if it cannot be completed 1089 

within a single season (Meyer, 1985; Sømme & Block, 1991; Valle et al., 2020). Also, parthenogenesis is 1090 

widespread, especially among the soil meso-invertebrates (e.g. springtails and mites), allowing them to 1091 

thrive when the conditions are more variable (Pan et al., 2023). 1092 

 1093 

  1094 
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VII. KNOWLEDGE GAPS AND RESEARCH OPPORTUNITIES 1095 

A number of recent papers discuss data, knowledge, and policy gaps in soil biodiversity science at a 1096 

global scale (Guerra et al., 2020, 2021, 2022), but there has been no such contribution for alpine soils so 1097 

far. This is the case despite the critical importance of healthy mountain soils for human safety and wellbeing 1098 

and for the global provisioning of essential goods and services such as clean water. In this section, we 1099 

address this gap and identify three main fields/topics for future soil biodiversity research and policymaking 1100 

in mountains. We put a special emphasis on mountain characteristics that are key but also challenging for 1101 

soil biodiversity research in mountains (see Klein et al., 2019). These include the typical elevational 1102 

gradients encountered in mountains, their remoteness and simultaneous exposure to global change, and 1103 

their global distribution.  1104 

 1105 

(1) Opportunity 1: Increase and improve mountain soil biodiversity data  1106 

Premise: In line with recent global analyses, our synthesis indicates that data on mountain soil 1107 

biodiversity is generally sparse and biased (Figs. 1 and 3–5) towards specific geographic regions (Central 1108 

Asia and Central Europe) and taxonomic groups (mostly soil microbiota). In particular, it points to limited 1109 

data for groups such as soil invertebrates that are more exhaustively described in other biomes (Geisen et 1110 

al., 2017, 2018; Eisenhauer et al., 2022). This lack of data on species diversity and occurrence in mountain 1111 

soils constitutes an important gap in our knowledge of biodiversity on Earth. It causes species to be 1112 

overlooked by science, conservation, policy, and advocacy, even if they are possibly on the verge of 1113 

extinction and/or play critical roles in supporting ecosystem functions. This is particularly important in 1114 

soils, where interactions among taxa are ubiquitous and essential for species persistence and ecological 1115 

functions (e.g. Bardgett & van der Putten, 2014). As soil organisms and keystone species disappear, the 1116 

functioning of entire ecosystems could be disrupted, threatening humanity at large (Jousset et al., 2017; 1117 

Banerjee, Schlaeppi & van der Heijden, 2018; Chen et al., 2020; Guerra et al., 2021). 1118 

The observed lack of species data also comes with the risk of overlooking invasive species that could 1119 

alter soil properties and represent a threat to native species (e.g. the earthworm Amynthas agrestis (GOTO 1120 

& HATAI, 1899) in the Great Smoky Mountains (Appalachian Mountains, Snyder, Callaham & Hendrix, 1121 

2011)). In addition to the absence of information on the mere existence of many species, limited (long-1122 

term) data on trends in populations, species distributions, and community composition further jeopardise 1123 

the ability of science and policy to detect, interpret, and ultimately address or prevent effects of global 1124 

change on mountain soils and ecosystem functions. It equally hinders the detection of potentially 1125 

unexpected effects of nature conservation. Whereas species distribution and range expansions are 1126 

increasingly better documented in particular for plants (e.g. Rumpf et al., 2018; Staude et al., 2022), such 1127 

information hardly exists for soil biota, and temporal variation in diversity along elevational, topographical 1128 

or other ecological gradients is largely unknown (e.g. see Seppey et al., 2020 for soil protists). Furthermore, 1129 
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limitations in spatial representativeness and coverage of taxonomic groups in soil biodiversity data 1130 

constrain our capacity to understand mountain soil systems and their response to change based on 1131 

comparative analyses at multiple biogeographic scales. Given the worldwide occurrence of mountains, the 1132 

differences between mountain ranges, and the existence of differences even between the south- and north-1133 

facing slopes of individual mountains, such comparative approaches are both important and particularly 1134 

interesting. Importantly, these gaps in knowledge also hamper the establishment, design, and prioritisation 1135 

of monitoring efforts as well as the integration of soil biodiversity in “Red Lists”. 1136 

Directions: We support previous calls for a better geographic and taxonomic coverage in soil biodiversity 1137 

research and for prioritising long-term monitoring of life in mountain soils at national (Guerra et al., 2020, 1138 

2021; Eisenhauer et al., 2022) and global (Maestre & Eisenhauer, 2019) scales. Multiple options exist for 1139 

increasing and improving mountain soil biodiversity data (see also Hochkirch et al., 2021). One resides in 1140 

molecular approaches such as DNA or RNA barcoding and the use of metagenomics and 1141 

metatranscriptomics. These methods offer great opportunities, in particular for the detection and 1142 

identification of microbiota as well as for attributing them to threat categories (e.g. Guerra et al., 2021). 1143 

While in use for bacteria and fungi already (see Section V), they could also deliver much needed 1144 

information for other soil organisms in mountains. Another option to increase species discovery rates 1145 

resides in the identification of mountain locations where unknown taxa are most likely to be encountered 1146 

(e.g. Delgado‑Baquerizo, 2019; Verdon et al., 2023). Such an effort is particularly interesting in remote 1147 

locations, where in situ sampling is particularly challenging. Similar approaches for the identification of 1148 

sampling locations based on the intersection of spatial datasets of mountain extents (Snethlage et al., 2022), 1149 

key environmental variables, and abiotic factors (e.g. soil temperature and type) might also serve the 1150 

prioritisation of appropriate sites for long-term monitoring of mountain soil species and communities along 1151 

elevational gradients. Furthermore, as suggested by van der Putten et al. (2023), an alternative to identifying 1152 

species is to qualify soil biota based on traits and thereby more readily understand what ecosystem functions 1153 

are likely to be lost as species go extinct. A trait-based approach could be particularly interesting in 1154 

mountains where harsh environmental conditions, including extreme temperature (gradients) and 1155 

biophysical stressors such as recurrent avalanches, are likely determining unique sets of traits.  1156 

 1157 

(2) Opportunity 2: Increase and improve information on the environmental determinants of 1158 

biodiversity in mountain soils, the drivers of change in mountain soil biodiversity, and the 1159 

consequences of these changes 1160 

Premise: The occurrence and diversity of life forms in mountain soils are strongly determined by 1161 

environmental factors, including temperature, snow cover, precipitation, humidity and wind, as well as 1162 

factors such as soil properties (e.g. pH, organic matter quantity and quality, parental material composition). 1163 

Accordingly, as these factors are changing in response to changes in climate, land-use, and other drivers 1164 
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such as pollution, soil communities are expected to experience novel life conditions influencing their 1165 

distribution, dynamics, survival potential, and functions (e.g. Feng et al., 2023). In that context, glacial 1166 

forefields represent newly forming ecosystems of particular interest and need of protection (Bosson et al., 1167 

2023; Tollefson, 2023). Additionally, (expected) change in the elevation range limits, distribution, and 1168 

community composition of vascular plants in response to global change are likely to have additional 1169 

consequences on soil organisms, whose ecology and life histories are tightly associated with plants. 1170 

Furthermore, as environmental factors such as temperature and soil moisture determine not only the 1171 

occurrence and diversity of organisms but also specific biochemical cycles such as the production of 1172 

methane (e.g. Hofmann, Reitschuler & Illmer, 2013), feedback loops are likely to magnify effects of 1173 

climate and land-use change and thereby exacerbate the exposure of soil biota to unprecedented and extreme 1174 

environments. Such feedback loops or cascading effects are further exacerbated by the reciprocal effects of 1175 

organisms on their environment (e.g. pedogenic effects of cryptogams, Musielok et al., 2021).  1176 

Directions: Identifying the impacts of global change and anthropogenic activities on mountain soil 1177 

biodiversity is essential to safeguard soil functions, services, and health (Arora, 2023). In that context, 1178 

considerable improvements are needed in the spatial resolution, temporal coverage, and accuracy of 1179 

information on fundamental variables such as soil type, temperature, moisture, pH, and precipitation in 1180 

mountains (e.g. Randin et al., 2020). We also join others (e.g. Bouaicha et al., 2022; Eisenhauer et al., 1181 

2022) in calling for improved data and remote-sensing products on less common drivers of soil biodiversity, 1182 

such as pollution by microplastics, chemicals, and heavy metals. Such data are particularly important in 1183 

mountain regions, where global atmospheric transport of micropollutants as well as human activities, such 1184 

as mining, pastoralism, and tourism are major sources of pollution (Schmeller et al., 2022), impacting soils 1185 

and their biodiversity. Improved data are further important to identify and better understand the interactions 1186 

of global change drivers, both in space but also in time, as exposure to anthropogenic factors typically 1187 

varies over the seasons (e.g. pastoralism in the summer and ski runs in the winter). Moreover, given the 1188 

high level of interactions between soil organisms, which causes conditional dependencies between groups 1189 

of soil biota and the environment, a holistic approach is needed when making inferences about possible 1190 

drivers of change or responses to given environmental variables. Accordingly, understanding the response 1191 

of soil biota to global change calls for the joint monitoring and analysis of multiple groups and species in 1192 

their interaction with each other and their environment (Eisenhauer et al., 2022). Given the worldwide 1193 

distribution of mountains (Körner et al., 2017; Snethlage et al., 2022), we further recommend a 1194 

comparative approach to global change research in mountain soils and take advantage of the fact that 1195 

mountains across the world differ in their environmental conditions, their history of exposure to human 1196 

pressure, as well as in their environmental gradients. For example, whereas extreme temperatures are not 1197 

yet recurrent in most mountain regions worldwide, exposure to high temperatures and extreme dryness is 1198 

typical in certain ranges such as in the Mediterranean or inner European Alps, where soils and their biota 1199 
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show specific community composition and species adaptations in response to these conditions (Praeg et al., 1200 

2020). Accordingly, comparative analyses of soil biodiversity, as well as of genetic and trait diversity across 1201 

mountain ranges are likely to yield interesting understanding with respect to evolutionary potential of 1202 

terrestrial ecosystem (Bardgett & van der Putten, 2014) in the face of global change. Similarly, beyond the 1203 

assessment of niche variation along environmental gradients within mountains (e.g. Malard et al., 2022), 1204 

the quantification and comparison of niche properties across environmental gradients in different mountain 1205 

ranges is expected to help evaluate the potential influence of global change on taxa and communities as 1206 

well as improving our capacity to predict the fate of ecosystems and thereby inform conservation (e.g. Mod 1207 

et al., 2021). Biogeographic studies and palaeoecological analyses might further provide useful information 1208 

on the distribution of species over evolutionary times and on the resilience of mountain soils to changes in 1209 

climate. 1210 

 1211 

(3) Opportunity 3: Increase policy-relevant mountain soil biodiversity science and improve mountain 1212 

soil conservation and policies 1213 

Premise: Belowground biodiversity is essential to healthy soils, which in turn are crucial for food 1214 

production, aboveground biodiversity, climate control, and human health and security (Banerjee & van der 1215 

Heijden, 2023). Due to the intrinsic connection between terrestrial and aquatic environments, soil 1216 

biodiversity and healthy soils are particularly important in mountains in their role as water towers. However, 1217 

despite their importance and the growing interacting impacts of climate and land-use change, pollution, and 1218 

overexploitation (e.g. mining) in mountain regions, mountain soils and their biodiversity – even more so 1219 

than lowland soils – remain only poorly addressed in laws, restoration, and conservation policies (but see 1220 

Stanchi et al., 2023). One of the numerous challenges associated with soil conservation and protection and 1221 

with formulating laws and guidelines for sustainable use of mountain soils is that soils are connected across 1222 

national borders and continents by human activity (van der Putten et al., 2023), calling for international 1223 

agreements. An additional difficulty specific to mountains is their transboundary nature, with many 1224 

mountain ranges crossing national borders, which further requires reinforced international collaboration in 1225 

the establishment of meaningful policies. In that context, the Soil Conservation Protocol and the Soil 1226 

Working Group of the Alpine Convention represent valuable efforts. The difficulty of collecting data in 1227 

mountains further contributes to making their soils and the diversity of species they host a blind spot in 1228 

science, conservation, and policymaking. The observation that most parties to the Convention for Biological 1229 

Diversity (CBD) have no national target explicit to soil conservation and biodiversity (Guerra et al., 2021) 1230 

and that the protection and conservation of soil biodiversity and soil ecosystem functioning have been 1231 

insufficient to date (Zeiss et al., 2022) also applies to mountain soils. 1232 

Direction: We support ongoing efforts (e.g. Guerra et al., 2021; Arora, 2023; van der Putten et al., 1233 

2023) to raise the importance of soil biodiversity in environmental policies and to formulate frameworks 1234 
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for the protection and restoration of soils (e.g. ‘EU Soil Strategy for 2030’ and the associated ‘Soil 1235 

Monitoring Law’). However, given the critical importance of healthy and biodiverse soils in mountains 1236 

(e.g. for natural risk regulation), we herewith call for dedicated efforts and explicit political commitments 1237 

towards their targeted protection. The ongoing development of National Biodiversity Strategies and Action 1238 

Plans in response to the adoption of the Kunming-Montreal Global Biodiversity Framework represents a 1239 

unique opportunity to collaborate on the formulation of soil biodiversity conservation targets and policy-1240 

ready soil biodiversity indicators applicable to mountain ecosystems, which enable policy-makers to 1241 

prioritise mountain soils for conservation (Guerra et al., 2021). In support of such developments, we 1242 

reiterate previous calls (Maestre & Eisenhauer, 2019; Guerra et al., 2021, 2022) for improved monitoring 1243 

of soil biodiversity and soil-related essential biodiversity variables and for increased efforts to identify 1244 

hotspots of mountain soil biodiversity and endemism, as well as priority habitats in the light of ongoing and 1245 

future global change. We also call for the systematic evaluation of the efficiency of protected areas in 1246 

preserving mountain soil species and their functions (see e.g. Ciobanu et al., 2019). International initiatives 1247 

such as SoilBON, the Global Soil Biodiversity Initiative, and the Global Soil Partnership of the United 1248 

Nations Food and Agriculture Organisation represent effective opportunities for mountain soil scientists to 1249 

engage with the endorsement of the Mountain Partnership (e.g. Stanchi et al., 2023), the Global Mountain 1250 

Biodiversity Assessment, and other institutions committed to the conservation and sustainable use of 1251 

mountain biodiversity. Besides political commitments and increased scientific efforts, awareness raising 1252 

and education through effective communication methods (e.g. Steinwandter & Seeber, 2022) remain 1253 

essential on our path to safeguarding sustainable mountain soils. 1254 

 1255 

VIII. CONCLUSIONS 1256 

(1) Despite a growing number of initiatives responding to the demand for data and knowledge on soil 1257 

biodiversity, there are still major gaps and blind spots that exist, especially for the Global South and 1258 

remote areas such as mountains. 1259 

(2) This review intended to highlight the gaps in knowledge regarding mountains, which have become 1260 

even more vulnerable due to ongoing land-use and climate change. Given the natural hazards and 1261 

ecosystem services associated with mountain areas, maintaining soil health is of paramount 1262 

importance. However, due to difficulties in data collection and the lack of a systematic assessment 1263 

of the existing research corpus, addressing these challenges is proving challenging. 1264 

(3) Here, we conducted a comprehensive review of the globally available data on biodiversity in 1265 

temperate and continental alpine soils, above the treeline. This is, to our knowledge, the first time 1266 

such data has been collated. Our systematic literature survey involved experts in the field of alpine 1267 

soil biology, where we obtained an overview of the geographical distribution and number of studies 1268 

focusing on alpine soil invertebrates, microbiota and cryptogams. 1269 
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(4) Our review has revealed research gaps in alpine regions outside of Europe and Central Asia, as well 1270 

as for soil cryptogams and soil invertebrates, which have relatively limited data available in 1271 

comparison to soil microbiota. Shortcomings were particularly notable among soil protists and soil 1272 

invertebrates, and for the vast majority of uncultivated prokaryotes and fungi, for which functional 1273 

or ecological descriptions are lacking. To address these issues, it will be necessary to improve 1274 

geographic and taxonomic coverage. All these soil organisms have evolved over millennia to 1275 

withstand the ever-growing extreme environmental conditions in mountain areas. Thus, there is a 1276 

pressing need for a wider range of knowledge on all fronts. 1277 

(5) We highlight three crucial areas for future research and policymaking on soil biodiversity in 1278 

mountainous regions, emphasising their global distribution and the distinctive challenges posed by 1279 

elevational gradients, remoteness and exposure to global change. 1280 

(6) We call for a significant improvement in mountain soil biodiversity data, while we emphasise the 1281 

need for enhancing the understanding of environmental drivers and consequences for biodiversity 1282 

in mountain soils, advocating for improved spatial and temporal data resolution. Furthermore, we 1283 

stress the importance of comparative analyses across different mountain ranges to inform 1284 

conservation strategies in the face of global change. 1285 

(7) Our review recommends clear political commitments, international collaboration, and the 1286 

incorporation of biodiversity in mountain soils within global frameworks. This underscores the 1287 

importance of raising awareness and providing education to promote the conservation and 1288 

sustainable use of mountain soils. 1289 

 1290 
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XI. SUPPORTING INFORMATION 2610 
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Additional supporting information may be found online in the Supporting Information section at the end 2612 

of the article. 2613 

Appendix S1: Detailed description of the methodology and statistical analyses, accompanied by 2614 

additional tables and figures: 2615 

Table S1. List of search strings used to assess the available literature in ‘Web of Science’ focusing 2616 

on alpine mountain soil biodiversity. 2617 

Table S2. Main steps of the semi-quantitative literature analysis to assess the number of available 2618 

scientific papers focusing on alpine mountain soil biodiversity. 2619 

Table S3. List of the alpine regions and the encompassing mountain ranges used for this review. 2620 

Table S4. Number of scientific papers focusing primarily and secondarily on cryptogams in alpine 2621 

mountain soils. 2622 

Table S5. Number of scientific papers focusing primarily and secondarily on microbiota (archaea, 2623 

bacteria, fungi, and protists) in alpine mountain soils. 2624 

Table S6. Number of scientific papers focusing primarily and secondarily on fauna (macro-, meso-, 2625 

and microfauna) in alpine mountain soils.  2626 

Fig. S1. Global map of scientific paper density per 1,000 km² on alpine soil biodiversity 2627 

(cryptogams, soil microbiota and soil fauna) by mountain region.  2628 

Fig. S2. Comparison of the area of the eleven global alpine regions used in this review. 2629 
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